REGRESSION
Table of Contents
- Introduction
- Definition of the Simple Linear Regression Model (LRM)
- Derivation and Numerical Properties of OLS Estimates for the LRM
- Statistical Properties of OLS Estimates Under LRM Assumptions
- Confidence Intervals for Regression Coefficients
- Hypothesis Tests for Regression Coefficients
- Prediction using OLS
- Analysis of Variance and Measure of Fit
Hot Link Index of Names Defined in regress
- LRM |-->LRM
- A0 |-->The nature of the data to be study with the LRM
- A1 |-->The Population Regression Equation (PRE)
- spec |-->Specification of the PRE
- dlog |-->We
- slog |-->is
- A2 |-->Assumptions about Observed Terms
- A3 |-->Assumption A3 about the LRM
- A3* |-->Assumption A3*
- A4 |-->Assumptions about the Unobserved Term $u$
- A5 |-->Assumption A5
- A6 |-->Assumption A6
- A7 |-->Assumption A7
- ols |-->The Least Squares Approach
- yhat |-->Predicted value of $Y_i$:
- err |-->Prediction error:
- RSS |-->Sum of Squared Errors
- b2hat |-->estimates
- b1hat |-->as
- normeq |-->normal equations
- NP1 |-->Property 1
- NP2 |-->Property 2
- NP3 |-->Property 3
- NP4 |-->Property 4
- NP5 |-->Property 5
- NP6 |-->Property 6
- SP1 |-->1. Properties
- SP2 |-->2. Properties Requiring Assumptions A0-A4
and
- gmt |-->Gauss-Markov Theorem
- SP3 |-->3. Properties Requiring Assumptions
[Directory Index]