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Abstract

The astonishing increase in computer performance over the past two decades has made it
possible for economists to base many statistical inferences on simulated, or bootstrap,
distributions rather than on distributions obtained from asymptotic theory. In this
paper, I review some of the basic ideas of bootstrap inference. The paper discusses
Monte Carlo tests, several types of bootstrap test, and bootstrap confidence intervals.
Although bootstrapping often works well, it does not do so in every case.
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1. Introduction

One of the most remarkable examples of technological progress has been the massive
increase in the speed of digital computers during the past forty years. For scientific
computing, a typical personal computer of today is several hundred times as fast as a
typical PC of just a decade ago, although it costs less than half as much. Even the
PC of a decade ago was faster than multi-million dollar mainframe computers of just
two decades ago. Some of this progress is documented in Figure 1, which shows the
number of medium-sized ordinary least squares regressions (4000 observations and 20
regressors) that a more or less state-of-the-art, but affordable, personal computer could
perform in a single second at various points in time over the past two decades.1

Since computer time is now very cheap, it makes sense for applied econometricians to
use far more of it than they did just a few years ago. There are at least three ways
in which they have been doing so. One approach is to estimate very ambitious, struc-
tural models, which often involve explicitly modeling choice at the level of individual
agents. For many of these models, simulations are needed simply to estimate the model.
Because this is very time-consuming, inference is normally based on standard asymp-
totic results. Important early examples of this approach include Pakes (1986) and Rust
(1987). Eckstein and Wolpin (1989) and Stern (1997) provide useful surveys.

A second line of research involves Bayesian estimation using Markov-chain Monte Carlo
methods; see, among many others, Albert and Chib (1993), McCulloch and Rossi (1994),
Geweke (1999), and Elerian, Chib, and Shephard (2001). With this approach, inference
is exact, in the Bayesian sense, but it generally depends upon strong distributional
assumptions and the investigator’s prior beliefs.

The third line of research, which is the one I will discuss here, is to base statistical
inferences on distributions that are calculated by simulation rather than on ones that
are suggested by asymptotic theory and are strictly valid only when the sample size is
infinitely large. In this approach, parameter estimates and test statistics are calculated
in fairly conventional ways, but P values and confidence intervals are computed using
“bootstrap” distributions obtained by simulation. This bootstrap approach can often,
but does not always, lead to much more accurate inferences than traditional approaches
are capable of. However, like every tool in econometrics, it must be used with care.

The reason for using bootstrap inference is that hypothesis tests and confidence intervals
based on asymptotic theory can be seriously misleading when the sample size is not large.
There are many examples. One is the popular J test of nonnested regression models
(Davidson and MacKinnon, 1981), which always rejects the null hypothesis too often.
In extreme cases, even for sample sizes as large as 50, an asymptotic J test at the .05
level can reject a true null hypothesis more than 80% of the time; see Davidson and
MacKinnon (2002a). Some versions of the information matrix test overreject even more
severely. Davidson and MacKinnon (1992) report a simulation in which one such test

1 The numbers in Figure 1 are based on my own Fortran programs run on various machines that I
have had access to. Times are for an XT clone (1984), a 286/10 (1986), a 386/20 (1988), a 486/25
(1990), a 486DX2/50 (1992), a Pentium 90 (1994), a Pentium Pro 200 (1996), a Pentium II/450
(1998), an Athlon 800 (2000), and a Pentium 4/2200 (2002).
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at the .05 level rejected a true null hypothesis an astounding 99.9% of the time when
the sample size was 200.

Of course, asymptotic tests are not always misleading. In many cases, a bootstrap test
will yield essentially the same inferences as an asymptotic test based on the same test
statistic. Although this does not necessarily imply that the asymptotic test is reliable,
the investigator may reasonably feel greater confidence in the results of asymptotic tests
that have been confirmed in this way.

Statistical inference in a classical framework involves either testing hypotheses or con-
structing confidence intervals. Most of this paper will focus on hypothesis testing,
because simulation-based hypothesis testing is generally easier and more reliable than
constructing simulation-based confidence intervals. Moreover, hypothesis tests and con-
fidence intervals are very closely related, so that much of what is said about bootstrap
tests will also be applicable to bootstrap confidence intervals.

The next section discusses Monte Carlo tests, which can be thought of as a special case
of bootstrap tests. Section 3 then goes on to discuss bootstrap tests more generally.
Section 4 explains why bootstrap tests will often work well and provides evidence from a
simulation experiment for a case in which they work extremely well. Section 5 considers
three common situations in which bootstrap tests do not always work well and provides
evidence from several simulation experiments which illustrates the problems that can
arise. Section 6 deals with the power of bootstrap tests. Finally, Section 7 briefly
discusses bootstrap confidence intervals.

2. Monte Carlo Tests

Statisticians generally make a distinction between two types of simulation-based tests,
namely, Monte Carlo tests and bootstrap tests. In this section, I will begin by discussing
a fairly simple example of a Monte Carlo test. In the next section, I will move on to a
discussion of bootstrap tests.

One of the best-known test statistics in econometrics is the d statistic proposed by
Durbin and Watson (1950, 1951) for testing the null hypothesis that the error terms of
a linear regression model are serially uncorrelated. The model under test is

yt = Xtβ + ut, ut ∼ NID(0, σ2), (1)

where there are n observations, and the row vector of regressors Xt is treated as fixed.
If ût denotes the tth residual from OLS estimation of (1), then the Durbin-Watson
statistic is

d =

∑n
t=2(ût − ût−1)2∑n

t=1 û2
t

. (2)

The finite-sample distribution of d depends on X, the matrix of regressors with tth row
Xt. Therefore, it is customary to base inferences on tables which merely provide bounds
on the critical values. Since these bounds are often quite far apart, it is frequently
impossible to tell whether the null hypothesis of serial independence should be rejected.
The exact distribution of d can be calculated, but very few econometric packages do so.
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Under the null hypothesis, the vector of OLS residuals is

û = MXu, where MX ≡ I−X(X>X)−1X>.

Thus the residuals depend solely on the error terms and the matrix X. Since they are
evidently proportional to σ, we can see from (2) that the statistic d depends only on
the normalized error terms εt ≡ ut/σ and the matrix X. It does not depend on β or σ2

at all. A statistic like d that does not depend on any unknown parameters is said to be
pivotal. For any pivotal statistic, we can perform an exact simulation-based test. Such
a test is called a Monte Carlo test. When we say that the test is exact, we mean that
the probability of rejecting the null hypothesis when it is true is precisely equal to α,
the nominal level of the test, which would often be .10, .05, or .01.

The steps required to perform a Monte Carlo test based on the Durbin-Watson statistic
are as follows:

1. Estimate the linear regression model (1) and compute d.

2. Choose B, the number of simulations. It should be chosen so that α(B + 1) is an
integer for all levels α of interest. A common choice is B = 999. However, since
estimating a linear regression model and computing d is very inexpensive, B = 9999
might be a slightly better choice. It is also possible to start with a small value like
99 and then increase it if the outcome of the test is not clear.

3. Generate B simulated samples, or bootstrap samples, indexed by j, by drawing
vectors of errors u∗j from the standard normal distribution. Then regress them on
X to generate B simulated residual vectors û∗j .

4. For each bootstrap sample, compute d∗j from the bootstrap residuals û∗j using the
formula (2).

5. Use d and the d∗j to compute a P value. The Durbin-Watson statistic is often treated
as a one-tailed test against positive serial correlation, and the null hypothesis is
rejected whenever d is sufficiently small. For such a test, the simulated P value is

p∗(d) =
1
B

B∑

j=1

I(d∗j ≤ d).

Here I(·) denotes the indicator function, which is equal to 1 if its argument is true
and 0 otherwise. Thus the simulated P value is the fraction of the time that d∗j is
smaller than d. Alternatively, we could test against negative serial correlation by
calculating the fraction of the time that d∗j is larger than d.

6. Reject the null hypothesis that the error terms are serially independent if whichever
simulated P value is appropriate is less than α, the level of the test. To test for both
positive and negative serial correlation, we could reject whenever the simulated P
value for either one-tailed test is less than α/2.

The simulated P value p∗(d) makes sense intuitively. If a substantial proportion of the
d∗j are more extreme than d, then the probability of obtaining a test statistic as or more

–3–



extreme than d must be high, the simulated P value will be large, and we will not reject
the null hypothesis that the error terms are serially uncorrelated. Conversely, if very
few of the d∗j are more extreme than d, then the probability of obtaining a test statistic
as or more extreme than d must be low, the simulated P value will be small, and we
will reject the null hypothesis.

Because d is pivotal, this procedure yields an exact test. Suppose, for concreteness, that
B = 99 and α = .05. Then there are 100 possible values that p∗(d) can take on: 0,
1/99, 2/99, . . . , 98/99, 1. If the null hypothesis is true, d and the d∗j come from exactly
the same distribution. Therefore, every possible value of p∗(d) has exactly the same
probability, namely, 1/100. There are five values that will cause us to reject the null:
0, 1/99, 2/99, 3/99, and 4/99. Under the null hypothesis, the probability that one of
these five values will occur by chance is precisely .05. Note that this argument would
not work if α(B + 1) were not an integer.

Simulation necessarily introduces randomness into our test procedure, and it seems clear
that this must have a cost. In this case, the cost is a loss of power. A test based on
99 simulations will be less powerful than a test based on B = 999, which in turn will
be less powerful than one based on B = 9999, and so on. However, as we will see in
Section 6, the power loss is generally very small indeed when B ≥ 999.

As I remarked above, it is possible to start with a small value of B, say B = 99, and then
perform more replications only if the initial results are ambiguous. If, for example, 38
out of the first 99 bootstrap samples yield test statistics more extreme than the actual
one, then we can be confident that the null hypothesis is not rejected at any standard
significance level, and there is no need to generate any more bootstrap samples. If the
initial results are not so clear, we can generate more bootstrap samples until we obtain a
sufficiently accurate estimate of the P value. Davidson and MacKinnon (2000) propose
a formal procedure for doing this.

Procedures very similar to the one just described for the Durbin-Watson test can also
be used to perform a variety of other Monte Carlo tests of linear regression models with
fixed regressors and error terms that follow a distribution known up to scale, which
does not have to be the normal distribution. These include tests for higher-order serial
correlation based on the Gauss-Newton regression, tests for heteroskedasticity, tests for
skewness and kurtosis, and tests of certain types of linear restrictions in multivariate
linear regression models. As long as the test statistic simply depends on error terms
with a known distribution and fixed regressors, it will be pivotal, and we can perform
an exact simulation-based test. Monte Carlo tests were first proposed by Dwass (1957).
For a much fuller discussion of these tests, see Dufour and Khalaf (2001).

3. Bootstrap Tests

When a test statistic is not pivotal, we cannot use a Monte Carlo test. However, we can
use bootstrap tests that work in very much the same way. For example, the Durbin-
Watson d statistic would no longer be pivotal if the distribution of the error terms were
unknown. But we can still generate bootstrap samples (in a somewhat different way),
compute the d∗j , and calculate bootstrap P values exactly as before. These bootstrap
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P values will not be entirely accurate, but they will often be much more accurate than
P values calculated from an asymptotic distribution.

Without the normality assumption, it does not make sense to generate bootstrap errors
from the normal distribution. Instead, we want to generate them nonparametrically.
One of the simplest and most popular approaches is to obtain the u∗j by resampling the
residuals ût. To generate a single bootstrap sample, we pick n integers between 1 and n
at random with equal probability. If the tth integer is equal to k, we set u∗t = ûk. In this
way, we effectively generate the bootstrap error terms from the empirical distribution
function of the residuals. Resampling is the key idea of the bootstrap as it was originally
proposed by Efron (1982).

As every student of econometrics knows, OLS residuals have smaller variance than the
error terms on which they are based. Thus it would seem to be desirable to resample
not the vector û of raw residuals but rather the vector of rescaled residuals

ũ ≡
(

n

n− k

)1/2

û, (3)

the elements of which have variance σ2. In the case of the Durbin-Watson statistic and
other test statistics that do not depend on σ2, it makes absolutely no difference whether
or not the residuals have been rescaled before we resample them. However, for many
other test statistics, it is important to resample ũ instead of û.

Other, more complicated, methods of rescaling the residuals can also be used. For
example, we could resample the vector with typical element

üt =
(

n

n− 1

)1/2
(

ût

(1− ht)1/2
− 1−

n

n∑
s=1

ûs

(1− hs)1/2

)
, (4)

where ht denotes the tth diagonal element of the hat matrix, that is, the matrix PX ≡
I−MX . In expression (4), we divide by (1− ht)1/2 in order to ensure that, if the error
terms were homoskedastic, all the transformed residuals would have the same variance.
We then subtract the mean of the residuals after the initial transformation so that the
transformed residuals will have mean zero, and we then multiply by the square root of
n/(n− 1) to undo the shrinkage caused by subtracting the mean.

In many cases, the unrestricted model is also a regression model, and we could resample
the residuals for that model instead of the residuals for the restricted model. Indeed,
several authors, including van Giersbergen and Kiviet (2002), have advocated doing
precisely this, on the grounds that it will improve power. The argument is that, when
the null is false, the unrestricted residuals will provide a better approximation to the
distribution of the error terms. As we will see in Section 6, this conjecture appears to
be false.

Bootstrap tests based on nonpivotal test statistics are calculated in essentially the same
way as Monte Carlo tests. We first calculate a test statistic, say τ , in the usual way.
Possibly as a byproduct of doing so, we estimate the model under the null hypothesis and
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obtain estimates of all the quantities needed to generate bootstrap samples that satisfy
the null hypothesis. The data-generating process used to generate these samples is
called the bootstrap DGP. The bootstrap DGP may be purely parametric, but it often
involves some sort of resampling so as to avoid making distributional assumptions.
It must always satisfy the null hypothesis. We then generate B bootstrap samples,
compute a bootstrap test statistic τ∗j using each of them, and calculate the bootstrap
P value p∗(τ) as the proportion of the τ∗j that are more extreme than τ . If p∗(τ) is less
than α, we reject the null hypothesis.

Instead of calculating a P value, some authors prefer to calculate a bootstrap critical
value based on the τ∗j and reject the null hypothesis whenever τ exceeds it. If the test is
one for which we reject when τ is large, then the bootstrap critical value c∗α is the 1−α
quantile of the τ∗j . When α(B +1) is an integer, this is simply number (1−α)(B +1) in
the list of the τ∗j , sorted from smallest to largest. For example, if B = 999 and α = .05,
then c∗α is number 950 in the sorted list.

Rejecting the null hypothesis whenever τ exceeds c∗α will yield exactly the same results
as rejecting whenever the bootstrap P value is less than α. However, since it does not
yield a P value, it normally provides less information. But calculating critical values
may be desirable when B is small (because the test is expensive to compute) and τ is
more extreme than all of the τ∗j . In such a case, observing that τ greatly exceeds the
estimated critical value may give us more confidence that the null is false than merely
seeing that p∗(τ) is equal to 0.

4. When Do Bootstrap Tests Perform Well?

The reason for using bootstrap tests instead of asymptotic tests is that we hope to make
fewer mistakes by doing so. Many asymptotic tests overreject in finite samples, often
very severely. Other asymptotic tests underreject, sometimes quite seriously. By using
a bootstrap test instead of an asymptotic one, we can usually, but not always, make
more accurate inferences. Ideally, a test will have a small error in rejection probability,
or ERP. This is the difference between the actual rejection frequency under the null
hypothesis and the level of the test. The ERP of a bootstrap test is usually, but not
always, smaller than the ERP of the asymptotic test on which it is based. In many
cases, it is a great deal smaller.

The theoretical literature on the finite-sample performance of bootstrap tests, such as
Beran (1988) and Hall and Titterington (1989), is primarily concerned with the rate
at which the ERP of bootstrap tests declines as the sample size increases. It has been
shown that, in a variety of circumstances, the ERP of bootstrap tests declines more
rapidly than the ERP of the corresponding asymptotic test. The essential requirement
is that the underlying test statistic be asymptotically pivotal. This is a much weaker
condition than that the statistic be pivotal. It means that, as the sample size tends to
infinity, any dependence of the distribution on unknown parameters or other unknown
features of the data-generating process must vanish. Of course, any test statistic that
has a known asymptotic distribution which is free of nuisance parameters, as do the
vast majority of test statistics in econometrics, must be asymptotically pivotal.
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It is not hard to see intuitively why the ERP of a bootstrap test based on an asymp-
totically pivotal test statistic will decline more rapidly than the ERP of an asymptotic
test based on the same test statistic. Suppose, for simplicity, that the finite-sample
distribution of a test statistic τ depends on just one nuisance parameter, say θ. Then
we can graph the rejection probability of the asymptotic test as a function of θ, as in
Figure 2. If the rejection probability function, or RPF, is flat, then τ is pivotal, and
the bootstrap test will work perfectly. If it is not flat, then the bootstrap test will not
work perfectly, because the distribution of the τ∗j , which is based on an estimate θ̂, will
differ from the distribution of τ , which is based on the unknown true value θ0.

As Davidson and MacKinnon (1999a) showed, the ERP of a bootstrap test depends on
the slope of the RPF, but only if θ̂ is biased, and on its curvature, whether or not θ̂ is
biased. Whenever τ is asymptotically pivotal, the RPF must converge to a horizontal
line as the sample size tends to infinity. This is illustrated in Figure 2, which shows
RPFs for the same test for three different sample sizes. The fact that the slope and
curvature of the RPF become smaller as the sample size increases would, by itself, cause
the ERP of the bootstrap test to decrease at the same rate as the ERP of the asymptotic
test. But increasing the sample size also causes both the bias and the variance of θ̂ to
decrease. This further reduces the ERP of the bootstrap test, but it has no effect on
the ERP of the asymptotic test. Therefore, as the sample size increases, the ERP of a
bootstrap test should improve more rapidly than that of an asymptotic test based on
the same test statistic.

This result does not imply that a bootstrap test will always outperform the correspond-
ing asymptotic test. There may well be values of θ for which the latter happens to
perform extremely well and the bootstrap test performs less well. However, if the ERP
of an asymptotic test is large, then it is increasingly likely, as the sample size increases,
that the ERP of a bootstrap test based on it will be smaller. In practice, it often seems
to be very much smaller. Thus, by using bootstrap tests, we may be able to avoid the
gross errors of inference that frequently occur when we act as if test statistics actually
follow their asymptotic distributions.

Let us now consider a specific example which illustrates the relationship between asymp-
totic and bootstrap tests. When a regression model includes lagged dependent variables,
the Durbin-Watson statistic is not valid. In this situation, one popular way of testing
for first-order serial correlation, which was suggested by Durbin (1970) and Godfrey
(1978), is to run the original regression again with the lagged OLS residuals added as
an additional regressor. The t statistic on the lagged residuals, which we will refer to
as the Durbin-Godfrey statistic, can be used to perform an asymptotically valid test for
first-order serial correlation; see Davidson and MacKinnon (1993, Chapter 10).

The finite-sample distribution of the Durbin-Godfrey statistic depends on the sample
size, the matrix of regressors, and the values of all the parameters. The parameter on
the lagged dependent variable is particularly important. For purposes of illustration, I
generated data from the model

yt = β1 +
4∑

j=2

βjXtj + δyt−1 + ut, ut ∼ N(0, σ2), (5)
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where n = 20, the Xtj display positive serial correlation (ρ = 0.75), all the βj are equal
to 1, σ = 0.1, and δ is allowed to vary between −0.99 and 0.99. Figure 3, which is based
on 500,000 replications for each of 199 values of δ, shows the RPF for a Durbin-Godfrey
test based on the Student’s t distribution at the .05 level.

We can see from Figure 3 that, in this particular case, the ordinary Durbin-Godfrey
test may either overreject or underreject. In the worst case, when δ = 0.96, it rejects
9.07% of the time. Note that these results are very specific to the model (5) and the
parameter values I used. Both the shape and the level of the RPF can be quite different
from what they are in the figure.

Figure 3 also shows the rejection frequencies for a bootstrap version of the Durbin-
Godfrey test for 41 values of δ (−0.99,−0.95, . . . , 0.95, 0.99). These are based on only
100,000 replications, with B = 399, and are shown as bullets. I would not recommend
using such a small value of B in practice, but sampling errors tend to cancel out in a
Monte Carlo experiment like this one. Data were generated recursively from (5), using
the OLS estimates under the null (but with δ̂ constrained not to exceed 0.999), and the
bootstrap error terms were generated by resampling residuals rescaled using (3). The
actual value y0 was used for the initial value of the lagged dependent variable.

At first glance, it appears from Figure 3 that the bootstrap test works perfectly, as all the
observed rejection frequencies are extremely close to 0.05. However, closer examination
reveals that, even though the bootstrap test works extraordinarily well, its performance
varies with δ, and it does not actually work perfectly. For example, for every value of δ
between −0.80 and −0.05, the bootstrap test always overrejects, although in the worst
case it rejects just 5.11% of the time.

In general, bootstrap tests seem to perform extremely well in the context of single-
equation models with exogenous or predetermined regressors and errors that are inde-
pendent and identically distributed. For example, Davidson and MacKinnon (1999b)
show that bootstrap tests of common factor restrictions and bootstrap tests for omitted
variables in the tobit model both perform very well indeed with samples of modest size.
More interestingly, Davidson and MacKinnon (2002a) consider the J test of nonnested
linear regression models, which often overrejects very severely as an asymptotic test.
They show, both theoretically and via simulation, that bootstrapping the J test largely
eliminates the overrejection in most cases. In certain extreme cases, in which the ordi-
nary bootstrap J test still overrejects noticeably, a more sophisticated bootstrap test
proposed by Davidson and MacKinnon (2002b) greatly reduces the remaining overre-
jection.

Based on this and other evidence, both published and unpublished, I would be very
surprised to encounter a bootstrap test that did not work well in the context of a single-
equation regression model, or a single-equation limited-dependent variable model like
the logit, probit, or tobit models, provided the regressors are exogenous or predeter-
mined and the underlying error terms are homoskedastic and serially uncorrelated.

–8–



5. When Do Bootstrap Tests Perform Badly?

As the qualifications at the end of the preceding paragraph suggest, there are at least
three situations in which bootstrap tests cannot be relied upon to perform particularly
well. I briefly discuss each of these in this section.

5.1 Models with Serial Correlation

Economists commonly encounter models with serial correlation of unknown form. This
situation frequently arises in the context of GMM estimation, and it almost always
arises when we wish to test the null hypothesis that a time series has a unit root. I will
focus on the latter case here.

A procedure that is widely used to test the unit root hypothesis is the augmented
Dickey-Fuller (or ADF) test, one version of which is based on the regression

∆yt = β0 + β1yt−1 +
p∑

j=1

δj∆yt−j + ut, (6)

where yt is an observation on the time series to be tested, and ∆yt ≡ yt − yt−1. One
popular test statistic is τc, the ordinary t statistic for β1 = 0 in regression (6). However,
it does not follow the Student’s t distribution, even asymptotically. Its asymptotic
distribution is known, but it depends on functionals of Wiener processes and must be
computed by simulation. Very accurate asymptotic critical values and P values may
be obtained by using the program of MacKinnon (1996), which uses response surface
estimates based on a large number of simulation experiments.

The lagged values of the dependent variable are included in regression (6) in order to
remove any serial correlation that would otherwise be present. For any given p, the
asymptotic distribution of τc will depend on the pattern of serial correlation in the error
terms. However, if p is allowed to grow with the sample size at a suitable rate, this
dependence will vanish, and the asymptotic distribution will be the same as if there
were no serial correlation; see Galbraith and Zinde-Walsh (1999). In practice, the value
of p is usually chosen by some sort of formal or informal testing procedure, which can
be misleading; see Ng and Perron (1995, 2001).

Although the asymptotic distribution of τc does not depend on the time-series properties
of the error terms, the finite-sample distribution certainly does. There have been many
Monte Carlo studies on this topic, a classic one being Schwert (1989). It therefore seems
natural to use a bootstrap test instead of an asymptotic one. As we will see, there can
certainly be something to be gained by doing so, but the improvement, when there is
any, tends to be much less dramatic than it was in the example of the previous section.

If the bootstrap is to work well, we need to generate bootstrap error terms that display
the same sort of serial correlation as the real ones, without knowing how the real error
terms were generated. This is evidently quite a challenging task. There are two popular,
and very different, approaches.

–9–



The first approach, which is semiparametric, is called the sieve bootstrap. We first
impose the unit root null and estimate an autoregressive model of order p, where p is
chosen in a way that allows it to increase with the sample size. We then generate sim-
ulated innovations by resampling the rescaled residuals from the autoregressive model.
The serially correlated bootstrap error terms are then constructed from the model and
the innovations. For details, see Bühlmann (1997, 1998), Choi and Hall (2000), Park
(2002), and Chang and Park (2002). Although it has merit, this approach is not entirely
satisfactory. For samples of moderate size, the AR(p) approximation may not be a good
one. Even if it is, the parameter estimates are certain to be biased. Thus it is likely
that the bootstrap samples will differ from the real one in important respects.

The second approach, which is fully nonparametric, is to resample groups of residuals.
Conceptually, one of the simplest such methods is the block bootstrap, which has been
proposed in various forms by Carlstein (1986), Künsch (1989), Politis and Romano
(1994), and a number of other authors. One particular block bootstrap procedure
works as follows:

• Pick a block length b < n.

• Form n blocks of b residuals, each starting with a different one of the n residuals,
and (in this version) wrapping around to the beginning if necessary.

• Generate the bootstrap errors by resampling the blocks. If n/b is an integer, there
will be n/b blocks. Otherwise, the last block will have to be shorter than b.

Numerous other block bootstrap procedures exist, some of which have better theoretical
properties than others; see Lahiri (1999). Although the one just described is probably
as good as any, it is far from satisfactory. The blocks of residuals will not have the same
properties as the underlying error terms, and the patterns of dependence within each
block will be broken between each block and where the blocks wrap around. Neverthe-
less, it can be shown that, if b is allowed to tend to infinity at the correct rate, which
is slower than the rate at which n does so, the bootstrap samples will have the right
properties asymptotically.

To illustrate these two approaches, I have undertaken a few Monte Carlo experiments
that examine the performance of the ADF test based on regression (6), with p = 4, in
a very special case. The data were generated by

∆yt = ut, ut = ρut−1 + εt, εt ∼ N(0, 1), (7)

in which the error terms follow an AR(1) process with parameter ρ. The parameters
β0 and β1 that appear in (6) do not appear here, because they are both equal to 0
under the null hypothesis of a unit root. In all the experiments, there were n = 100
observations.

Figure 4 shows rejection frequencies at the .05 level as a function of ρ for four different
tests. The solid line, which is based on one million replications for each of 199 equally-
spaced values of ρ between −0.99 and 0.99, shows the rejection frequencies for the usual
ADF test based on the critical value −2.8906, which is what the program of MacKinnon
(1996) gives for a sample of size 100. The various symbols show rejection frequencies
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for three different bootstrap versions of the same test, based on 100,000 replications
with B = 399 for 41 different values of ρ (−0.99,−0.95,−0.90, . . . , 0.90, 0.95, 0.99).
The crosses correspond to a semiparametric bootstrap test, in which the investigator
estimates the model (7) by maximum likelihood (to ensure that |ρ̂| < 1), and then
resamples the residuals. This should work better than the sieve bootstrap, because we
are estimating the correct model. The circles and bullets correspond to nonparametric
bootstrap tests, in which the block bootstrap with, respectively, b = 10 and b = 25 is
used to generate the bootstrap errors from the observed values of ∆yt.

The results in Figure 4 are not particularly encouraging. The semiparametric bootstrap
test overrejects slightly for most values of ρ and quite substantially for |ρ| = 0.99. How-
ever, for extreme values of ρ, it does overreject much less severely than the asymptotic
test. The two block bootstrap tests give mixed results. The one with b = 10 performs
very well for moderate values of ρ, but it performs just as badly as the usual ADF
test when |ρ| is large. The one with b = 25 underrejects quite noticeably for values
of ρ between −0.85 and 0.75. It does outperform the usual ADF test for large absolute
values of ρ, but it overrejects much more severely than the semiparametric bootstrap
test.

The case I have examined here is particularly favorable to the bootstrap. An AR(1)
process is very simple and, in practice, the investigator will almost never be sure that the
error terms follow such a process. Therefore, it seems very likely that the sieve bootstrap
will perform less well than the semiparametric one did here, and there is certainly no
reason to believe that the nonparametric bootstrap will perform any better. The poor
performance of the block bootstrap in this case is consistent with theoretical results
which suggest that the block bootstrap is likely to provide only modest improvements
over asymptotic tests; see Härdle, Horowitz, and Kreiss (2001) for a review of the highly
technical literature on this topic. Other references on bootstrapping time series include
Li and Maddala (1996), Berkowitz and Kilian (2000), and van Giersbergen and Kiviet
(2002). In the current state of the art, it appears that bootstrap tests should be used
with caution for models in which the error terms display substantial serial correlation.

5.2 Models with Heteroskedasticity

It is also challenging to make the bootstrap work well in models with heteroskedastic
error terms when the form of the heteroskedasticity is unknown. In this situation, we
must generate bootstrap samples in such a way that we retain the relationship between
the variance of each error term and the corresponding regressors. Therefore, we cannot
simply resample the residuals. Instead, two methods of generating bootstrap samples
are widely used.

The simplest way to deal with heteroskedasticity, which was originally proposed by
Freedman (1981), is called bootstrapping pairs or the pairs bootstrap. Consider the
linear regression model

yt = Xtβ + ut, ut = σtεt, E(ε2
t ) = 1, (8)

where σ2
t , the variance of the error terms, depends on the regressors in an unknown

fashion. The idea of bootstrapping pairs is to resample the regressand and regressors
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together. Thus the tth row of each bootstrap regression is

y∗t = X∗
t β + u∗t , (9)

where the row vector [y∗t X∗
t ] is equal to each of the row vectors [ys Xs], for s =

1, . . . , n, with probability 1/n. In this way, we do not specify a parametric bootstrap
DGP at all. Instead, we ensure that the bootstrap data are generated from the empirical
distribution function of the real data. Since the regressor matrix will be different for
each of the bootstrap samples, the pairs bootstrap does not make sense if the regressors
are thought of as fixed in repeated samples.

When using the pairs bootstrap, we cannot impose a parametric null hypothesis on β. In
order to compute a bootstrap P value, we need to change the null hypothesis to one that
is compatible with the data. If the hypothesis of interest is that β1 equals some specified
value, then we need to compare the actual statistic for testing this hypothesis with the
distribution of the bootstrap statistics for the hypothesis that β1 = β̂1. Bootstrap P
values are then computed in the usual way.

An alternative way to deal with heteroskedasticity is to use what is called the wild
bootstrap, which was proposed by Liu (1988) and further developed by Mammen (1993).
Once again, consider the model (9). For testing restrictions on this model, the wild
bootstrap DGP would be

yt = Xtβ̃ + f(ũt)vt, (10)

where β̃ denotes the OLS estimates subject to the restriction that is being tested, f(ũt)
is a transformation of the tth residual ũt associated with β̃, and vt is a random variable
with mean 0 and variance 1.

A simple choice for the function f(·) is

f(ũt) =
ũt

(1− ht)1/2
,

which ensures that the f(ũt) would have constant variance if the error terms were
homoskedastic. We do not have to subtract the mean from f(ũt), because the fact that
vt has mean 0 ensures that f(ũt)vt does so as well.

There are, in principle, many ways to specify the random variable vt. By far the most
popular is the two-point distribution

F1 : vt =

{
−(
√

5− 1)/2 with probability (
√

5 + 1)/(2
√

5),

(
√

5 + 1)/2 with probability (
√

5− 1)/(2
√

5).

This distribution was suggested by Mammen (1993). A much simpler two-point distri-
bution, called the Rademacher distribution, is

F2 : vt =

{−1 with probability 1
2 ,

1 with probability 1
2 .
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Davidson and Flachaire (2001) have recently shown, on the basis of both theoretical
analysis and simulation experiments, that wild bootstrap tests based on the Rademacher
distribution F2 will usually perform better, in finite samples, than ones based on F1.

In some respects, the error terms for the wild bootstrap DGP (10) do not resemble those
of the true DGP (8) at all. When a two-point distribution is used, as it almost always
is, the bootstrap error term can take on only two possible values for each observation.
With F2, these are just plus and minus f(ũt). Nevertheless, the wild bootstrap does
mimic the essential features of the true DGP well enough for it to be useful in many
cases.

In order to investigate the performance of the pairs and wild bootstraps, I conducted a
number of simulation experiments for the model

yt = β0 + β1Xt1 + β2Xt2 + ut, ut = σtεt, εt ∼ N(0, 1), (11)

where both regressors were drawn randomly from the standard lognormal distribution,
β0 = β1 = 1, β2 = 0, and

σt = z(γ)(β0 + β1Xt1 + β2Xt2)γ , (12)

z(γ) being a scaling factor chosen to ensure that the average variance of ut is equal
to 1. Thus changing γ changes the pattern of heteroskedasticity but does not, on
average, change the variance of the error terms. This model was deliberately chosen to
make heteroskedasticity-robust inference difficult. Because the regressors are lognormal,
samples will often contain a few observations on the Xtj that are quite extreme, and
the most extreme observation in each sample will tend to become more so as the sample
size increases.

The most common way to test the hypothesis that β2 = 0 in (11) is to estimate the
model by ordinary least squares and calculate a heteroskedasticity-robust t statistic.
This can be done in various ways. Following MacKinnon and White (1985), I divided
the OLS estimate β̂2 by the square root of the appropriate diagonal element of the
heteroskedasticity-robust covariance matrix

(X>X)−1X>Ω̂X(X>X)−1, (13)

where Ω̂ is an n × n diagonal matrix with typical diagonal element û2
t /(1− ht). Here

ût is the tth OLS residual, and ht is the tth diagonal element of the hat matrix PX for
the unrestricted model. The heteroskedasticity-robust LM test proposed by Davidson
and MacKinnon (1985) would almost certainly work better than the heteroskedasticity-
robust t statistic that I have chosen to study. However, the latter is more commonly
employed, and my objective here is not to find the best possible heteroskedasticity-
robust test but to investigate the effect of bootstrapping.

The results of two sets of experiments are shown in Figures 5 and 6. The solid lines show
rejection frequencies for the asymptotic test. They are based on 500,000 replications for
each of 41 values of γ between 0 and 2 at intervals of 0.05. The points show results for
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three different bootstrap tests. They are based on 100,000 replications with B = 399 for
each of 17 values of γ at intervals of 0.125. The bootstrap tests use the wild bootstrap
based on F2 (bullets), the wild bootstrap based on F1 (circles), and the pairs bootstrap
(plus signs).

When n = 50, the asymptotic test overrejects for small values of γ and underrejects for
large ones. The pairs bootstrap test does likewise. It always rejects less frequently than
the asymptotic test, and it underrejects severely when γ is large. In contrast, both wild
bootstrap tests always underreject. The underrejection is fairly modest for small values
of γ, but it becomes much more severe as γ increases, especially for the test based on F1.

When n = 400, the asymptotic test continues to overreject for small values of γ and
underreject for large ones. As before, the pairs bootstrap test always rejects less fre-
quently than the asymptotic test. Both wild bootstrap tests perform extremely well for
small values of γ, with the F1 version overrejecting slightly and the F2 version under-
rejecting very slightly. For larger values of γ, they both underreject. The test based
on F1 performs only moderately better than the asymptotic test for large values of γ,
while the test based on F2 performs very much better.

These results confirm the findings of Davidson and Flachaire (2001) and suggest that,
if one is going to use the wild bootstrap, one should use the F2 version of it. Figures
5 and 6 also suggest that bootstrapping pairs can be extremely unreliable, and that
tests based on either version of the wild bootstrap may not be particularly reliable in
samples of modest size. The sensitivity of the results to γ implies that the relative
performance of the various tests may be highly model-dependent. Nevertheless, for
datasets of reasonable size, the F2 version of the wild bootstrap does appear to be a
promising technique.

5.3 Simultaneous Equations Models

Bootstrapping even one equation of a simultaneous equations model is a good deal more
complicated than bootstrapping an equation in which all the explanatory variables are
exogenous or predetermined. The problem is that the bootstrap DGP must provide
a way to generate all of the endogenous variables, not just one of them. The class of
models for which two-stage least squares is appropriate can be written as

y = Y γ + X1β + u

Y = XΠ + V ,
(14)

where y is a vector of observations on an endogenous variable of particular interest, Y
is a matrix of observations on other exogenous variables, X is a matrix of observations
on exogenous or predetermined variables, and X1 consists of some of the columns of X.
The first equation of (14) can be estimated consistently by two-stage least squares, but
2SLS estimates are usually biased in finite samples. They can be seriously misleading
even when the sample size is large if some of the reduced form equations for Y have
little explanatory power; see Staiger and Stock (1997), among many others.

In order to bootstrap the 2SLS estimates of β and γ, we need to generate bootstrap
samples containing both y∗ and Y ∗. For a semiparametric bootstrap, we need estimates
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of β, γ, and Π. These would normally be 2SLS estimates of the parameters of the first
(structural) equation and OLS estimates of the parameters of the remaining (reduced
form) equations. We can then obtain the bootstrap error terms by resampling rows
of the residual matrix [û V̂ ], perhaps after rescaling. Alternatively, we could assume
normality and use a fully parametric bootstrap.

A simpler approach, which also allows for heteroskedasticity, is to use the pairs boot-
strap; this was proposed by Freedman and Peters (1984). However, as we have seen, this
approach is less than ideal for testing hypotheses, and it can be expected to work even
less well than the semiparametric approach when the error terms are homoskedastic.

The finite-sample distributions of the 2SLS estimates are quite sensitive to some of the
parameters that appear in the bootstrap DGP. Thus, although bootstrapping may work
well in some cases, it would be unrealistic to expect it to work well all the time. As an
illustration, I generated data from a special case of (14). The model was

yt = β + γYt + ut

Yt = Xtπ + vt,
(15)

where all coefficients were equal to 1, Xt consisted of a constant and three independent
standard normal random variables, and the error terms were jointly normally distributed
with Var(ut) = 1, Var(vt) = 16, and correlation ρ. The first equation of (15) was
estimated by 2SLS, and the ordinary t statistic was used to test the true null hypothesis
that γ = 1. Bootstrap samples were generated by a semiparametric bootstrap procedure
that used estimates of β and π under the null and obtained the error terms by resampling
pairs of rescaled residuals.

Figure 7 shows the results of a few experiments designed to illustrate how rejection
frequencies vary with ρ. These are based on 100,000 replications, with B = 399, and
sample sizes of 50 or 100. We see that both tests underreject for small values of ρ and
overreject for larger ones. The bootstrap test performs far from perfectly, although
it almost always performs better than the ordinary t test, and it seems to perform
relatively better for the larger sample size. These results are, of course, very sensitive
to the other parameters of the model. In particular, both tests would work much better
if Var(vt) were smaller and the second equation therefore fit better.

There is no doubt that the bootstrap can be useful for multivariate models. For example,
Rilstone and Veall (1996) provide encouraging evidence on the performance of certain
bootstrap procedures in the context of seemingly unrelated regressions, and Inoue and
Kilian (2002) do so in the context of vector autoregressions. But in neither case, and even
less so for simultaneous equations models, should we expect the sort of astonishingly
good performance that was observed in Figure 3.

6. The Power of Bootstrap Tests

The probability that a test will reject the null hypothesis when some alternative is true
is called its power. Economists have traditionally paid surprisingly little attention to
power, even though there is not much point in performing a hypothesis test if it does
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not have reasonably high power when the null hypothesis is violated to an economically
meaningful extent.

It is natural to worry that bootstrapping a test will reduce its power. This can certainly
happen. Indeed, some loss of power is inevitable whenever B, the number of bootstrap
samples, is finite. More importantly, if an asymptotic test overrejects under the null,
a bootstrap test based on it will reject less often both under the null and under many
alternatives. Conversely, if an asymptotic test underrejects under the null, a bootstrap
test based on it will reject more often. There is no reason to believe that bootstrapping
a test, using a large value of B, will reduce its power more substantially than will any
other method of improving its finite-sample properties under the null.

The relationship between the power of bootstrap and asymptotic tests is studied in
Davidson and MacKinnon (2001). It is shown that, if the power of an asymptotic test
is adjusted in a plausible way to account for its tendency to overreject or underreject
under the null hypothesis, then the resulting “level-adjusted” power is very similar to
the power of a bootstrap test based on the same underlying test statistic. Thus, if
bootstrapping does result in a loss of power when B is large, that loss arises simply
because bootstrapping corrects the tendency of the asymptotic test to overreject.

As an illustration, consider once again the Durbin-Godfrey test for serial correlation in
the linear regression model (5). Figure 8 graphs the power of this test, at the .05 level,
as a function of ρ, for the case in which σ = 0.1, n = 20, and δ = 0.90. This was a case in
which the test overrejected quite severely under the null; see Figure 3. The power of the
asymptotic test, shown as the solid line, is based on 500,000 replications for each of 199
values of ρ between −0.99 and 0.99. The power of the bootstrap test, shown as bullets
for 41 values of ρ (−0.99,−0.95, . . . , 0.95, 0.99), is based on only 100,000 replications,
with B = 399.

Figure 8 contains a number of striking results. Contrary to what asymptotic theory
suggests, for neither test does the power function achieve its minimum at ρ = 0 or
increase monotonically as |ρ| increases. Instead, power actually declines sharply as ρ
approaches −1. Moreover, the asymptotic test has less power for values of ρ between 0
and about 0.62 than it does for ρ = 0. In consequence, the bootstrap test actually
rejects less than 5% of the time for values between 0 and about 0.61. Thus, in this
particular case, the Durbin-Godfrey test is essentially useless for detecting positive
serial correlation of the magnitude that we are typically concerned about.

Because the asymptotic test actually rejects 9.01% of the time at the 5% level, the
bootstrap test almost always rejects less frequently than the asymptotic one. The
magnitude of this “power loss” depends on ρ. It is largest for values between about
−0.25 and −0.65, and it is quite small for very large negative values of ρ.

The results in Figure 8 are highly dependent on the sample size, the parameter values,
and the way in which the regressors are generated. To illustrate this, Figure 9 shows that
changing δ from 0.9 to −0.9 has a substantial effect on the shape of the power functions.
There is now a much smaller region in which the bootstrap test rejects less than 5%
of the time, and there is no drop in power as ρ approaches −1. Moreover, because the
asymptotic test rejects just 4.16% of the time at the 5% level, the bootstrap test always
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rejects more often than the ordinary t test on which it is based.

As I mentioned in Section 2, the power of simulation-based tests generally increases
with B. However, as Davidson and MacKinnon (2000) discuss, any loss of power is
generally quite modest, except perhaps when B is a very small number. To illustrate
this power loss, I conducted yet another simulation experiment. The null was a linear
regression model with a constant term and two other regressors, and the alternative
was the same model with nine additional regressors. The test statistic was the ordinary
F statistic for the coefficients on the additional regressors to be zero. The error terms
were normally distributed, and there were 20 observations. Therefore, under the null
hypothesis, the F statistic actually followed the F distribution with 9 and 8 degrees of
freedom.

I also performed two varieties of bootstrap test, using resampled residuals rescaled
according to the formula (4), and then computing bootstrap P values in the usual
way. One type of test used the residuals from the restricted model, together with the
diagonals of the hat matrix for that model, and the other used the residuals and hat
matrix from the unrestricted model. If the argument of van Giersbergen and Kiviet
(2002) is correct, the bootstrap test that uses unrestricted residuals should be more
powerful than the one that uses restricted residuals. To investigate this argument, I set
the coefficients on all the additional regressors to γ and calculated the power of the F
and bootstrap tests for various values of γ.

Figure 10 shows the difference between the power of the F test and the power of various
bootstrap tests as γ varies between 0 and 1. The null hypothesis is true when γ = 0.
The effects of experimental randomness are visible in the figure, since there were only
100,000 replications. Except for very small values of γ, there is always some loss of
power from bootstrapping. In the case of B = 999, this power loss is very small, never
exceeding 0.00264. However, since it is roughly proportional to 1/B, it is about ten
times as large for B = 99. The power loss is greatest for intermediate values of γ.
When γ is small, even the F test has little power, so there is not much power to be
lost. When γ is large, the evidence against the null is so strong that the additional
randomness introduced by simulation reduces power only slightly.

Interestingly, there is no systematic tendency for the bootstrap test based on the un-
restricted residuals to be more powerful than the one based on the restricted residuals.
Depending on γ, either of the tests may be very slightly more powerful than the other.
I also tried using (3) instead of (4) to rescale the residuals. This affected test power
about as much as switching from restricted to unrestricted residuals. These experi-
ments suggest that there is no reason not to use residuals from the restricted model
when generating bootstrap samples.

7. Bootstrap Confidence Intervals

The statistical literature has put far more emphasis on using the bootstrap to construct
confidence intervals than on using it to test hypotheses. In my view, this is somewhat
unfortunate, for two reasons. The first reason is that there are many more ways to con-
struct bootstrap confidence intervals than there are to perform bootstrap tests. Given
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a procedure for generating the bootstrap data, it is very straightforward to compute a
bootstrap P value or a bootstrap critical value. In contrast, there are generally many
alternative ways to compute bootstrap confidence intervals, and they may yield quite
different results. Thus the literature on bootstrap confidence intervals can easily be
confusing. The second reason is that, for a given model and dataset, bootstrap tests
generally tend to be more reliable than bootstrap confidence intervals.

The most important thing to understand about confidence intervals is that, in principle,
they can always be obtained by “inverting” a suitable test statistic. A confidence interval
for a parameter θ is simply the set of values of θ0 for which the hypothesis that θ = θ0

is not rejected. The confidence intervals that we are most familiar with are obtained by
inverting t statistics, with critical values based on either the Student’s t or the standard
normal distribution. One of the most popular bootstrap confidence intervals is obtained
in exactly the same way, but with critical values that are quantiles of a distribution of
bootstrap t statistics. It is called the bootstrap t or percentile t confidence interval.

Suppose that θ̂, which has standard error sθ, is an estimate of the parameter θ in which
we are interested. Then a t statistic for the hypothesis that θ = θ0 is

t(θ0) =
θ̂ − θ0

sθ
. (16)

Under quite weak conditions, asymptotically, this statistic follows the standard normal
distribution. Under very much stronger conditions, in finite samples, it follows the
Student’s t distribution with a known number of degrees of freedom.

Let 1−α be the level of the confidence interval we are trying to construct. We can find
such an interval by inverting the t statistic (16). The two ends of the interval are the
values of θ0 that solve the equations

θ̂ − θ0

sθ
= tα/2 and

θ̂ − θ0

sθ
= t1−α/2, (17)

where tα/2 and t1−α/2 are the α/2 and 1− α/2 quantiles of the distribution that t(θ0)
is assumed to follow. For a .95 confidence interval based on the standard normal distri-
bution, tα/2 = −1.96 and t1−α/2 = 1.96. The interval based on (17) is

[θ̂ − sθ t1−α/2, θ̂ − sθ tα/2]. (18)

Notice that the lower limit of this interval depends on the upper-tail critical value
t1−α/2, and the upper limit depends on the lower-tail critical value tα/2. This may seem
strange, but after enough reflection it can be seen to make sense.

Because the standard normal and Student’s t distributions are symmetric around the
origin, tα/2 = −t1−α/2. Therefore, the interval (18) can also be written as

[θ̂ − sθ t1−α/2, θ̂ + sθ t1−α/2]. (19)
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This form is more familiar than (18), but it is valid only for symmetric distributions. In
the familiar case in which α = .05 and we are using the standard normal distribution,
the interval (19) has endpoints at θ̂ plus and minus 1.96 standard errors.

A bootstrap t confidence interval is constructed in very much the same way as the
interval (18). The only difference is that the quantiles of the theoretical distribution are
replaced by quantiles of a bootstrap distribution. The steps required are as follows:

1. Estimate the model without restrictions to compute θ̂, sθ, and whatever other
quantities are needed to generate the bootstrap samples.

2. Choose B such that 1
2α(B+1) is an integer, and generate B bootstrap samples. For

each bootstrap sample, estimate the unrestricted model to obtain θ̂∗j , and calculate
the bootstrap test statistic

t∗j ≡
θ̂∗j − θ̂

s∗j
. (20)

This requires calculating a standard error s∗j for each bootstrap sample. It would be
a very bad idea to replace s∗j by sθ, because the t∗j would no longer be asymptotically
pivotal. Notice that θ̂ is playing the role of θ0 in expression (20), because the
bootstrap data are not constrained to satisfy a null hypothesis.

3. Find t∗α/2 and t∗1−α/2, the α/2 and 1 − α/2 quantiles of the t∗j . These are simply
the values numbered (α/2)(B + 1) and (1− α/2)(B + 1) in the list of the t∗j sorted
from smallest to largest.

4. Calculate the bootstrap t interval as

[θ̂ − sθ t∗1−α/2, θ̂ − sθ t∗α/2]. (21)

Notice that, unless the distribution of the t∗j happens to be symmetric around the
origin, this will not be a symmetric interval.

As we will see in a moment, the bootstrap t interval is far from perfect. Nevertheless,
it is attractive for at least three reasons:

• The way in which we construct it is very similar to the way in which we construct
more familiar confidence intervals like (18).

• It has excellent theoretical properties. Provided the test statistic (16) is asymp-
totically pivotal, it can be shown that a bootstrap t interval based on it will be
asymptotically valid. Moreover, its accuracy will increase more rapidly, as the sam-
ple size increases, than that of the standard interval (18) when the latter is only
valid asymptotically. See Hall (1992) for a detailed discussion and proof. In the
unlikely event that the t statistic (16) is exactly pivotal, a bootstrap t interval
based on it will be exact.

• When θ̂ is biased, the bootstrap t interval tends to correct the bias. Suppose, for
concreteness, that E(θ̂) < θ. Then we would expect t∗α/2 to be a larger negative
number than tα/2, and t∗1−α/2 to be a smaller positive number than t1−α/2. If
so, both limits of the interval (21) will be larger than the corresponding limits
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of the asymptotic interval (18), which is exactly what we want when θ̂ is biased
downwards.

Unfortunately, the actual performance of bootstrap t intervals in finite samples is often
not as good as theory suggests. These intervals generally work well if the test statistic
on which they are based, expression (16), is approximately pivotal. However, when this
is not the case, the distribution of the t∗j may differ substantially from the distribution
of t(θ0), and the interval (21) may be quite inaccurate.

There are a great many other ways to construct bootstrap confidence intervals. One
very widely applicable approach is to calculate the bootstrap standard error

s∗θ =
(

1
B − 1

B∑

j=1

(θ̂∗j − θ̄∗)2
)1/2

, where θ̄∗ =
1
B

B∑

j=1

θ̂∗j , (22)

which is simply the standard deviation of the bootstrap estimates θ̂∗j . We can then
construct the bias-corrected bootstrap interval

[2θ̂ − θ̄∗ − s∗θ t1−α/2, 2θ̂ − θ̄∗ + s∗θ t1−α/2]. (23)

This interval is quite similar to (19), but it is centered on the bias-corrected estimate
2θ̂ − θ̄∗, and it uses the bootstrap standard error s∗θ instead of sθ. The bias-corrected
estimate used in (23) is obtained by subtracting the estimated bias θ̄∗ − θ̂ from θ̂. The
bootstrap is commonly used for bias correction in this way; see MacKinnon and Smith
(1998), which also discusses more sophisticated types of bias correction. In theory, the
interval (23) should generally not work as well as the bootstrap t interval (21), but it
may actually work better when sθ is unreliable, and it can be used in situations where
sθ cannot be computed at all. Of course, when bias is not a problem, we can use an
interval similar to (23) that is centered at θ̂ rather than at 2θ̂ − θ̄∗.

Even for bootstrap t intervals, quite a few variants are available. For example, there
may often be several plausible ways to compute standard errors, each of which will lead
to a different confidence interval. It may also be possible to transform the parameter(s)
and then use an interval constructed in terms of the transformed parameters to obtain
an interval for θ. Another possibility, if we believe that the distribution of t(θ0) is
symmetric around the origin, is to estimate the 1− α quantile of the absolute values of
the t∗j and use it to define both ends of the interval.

Because neither bootstrap t intervals nor intervals based on bootstrap standard errors
(with or without bias correction) always perform well, many other types of bootstrap
confidence intervals have been proposed. For reasons of space, I will not discuss any
of these. See Hall (1992), Efron and Tibshirani (1993), DiCiccio and Efron (1996),
Davison and Hinkley (1997), Hansen (1999), Davidson (2000), Horowitz (2001), and
van Giersbergen and Kiviet (2002), among many others.

To illustrate the performance of bootstrap confidence intervals, I performed two sets of
simulation experiments. The first involved a regression model with heteroskedasticity
of unknown form. The data were generated by a variant of the model given by (11)
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and (12), with all the βj equal to 1 and γ = 1. Asymptotic confidence intervals were
based on the heteroskedasticity-robust covariance matrix estimator (13). I examined
two different bootstrap t confidence intervals, both of which also used standard errors
based on (13). One used the pairs bootstrap, and the other used the F2 version of the
wild bootstrap.

The proportion of the time that a confidence interval includes, or covers, the true
parameter value is called the coverage of the interval. The coverage of three .95 intervals,
one asymptotic and two bootstrap t, is shown in Figure 11 for a large number of sample
sizes, ranging from 10 to 2560. These results are based on 100,000 replications, with
399 bootstraps for each sample size. For the pairs bootstrap, the smallest sample size
is 13 rather than 10, because, for smaller sample sizes, the resampled X∗ matrix was
sometimes singular.

It is evident from Figure 11 that all three intervals undercover quite severely for the
smaller sample sizes. Both bootstrap t intervals always outperform the asymptotic
one, except for the pairs bootstrap for n = 2560, but neither performs particularly
well in samples of moderate size. Interestingly, the pairs bootstrap interval is the most
accurate of the three for small sample sizes and the least accurate of them for the largest
sample size. For sample sizes greater than about 100, the wild bootstrap interval always
performs the best.

The second experiment concerned the autoregressive model

yt = β + ρyt−1 + ut, ut ∼ IID(0, σ2),

where β = 0, ρ = 0.9, and σ = 0.1. This model can readily be estimated by ordinary
least squares, and the asymptotic confidence interval (19) for ρ at the .95 level can be
constructed using the OLS standard error on ρ̂. For the bootstrap, I generated data
recursively using the OLS parameter estimates, resampling the rescaled residuals. I
then constructed bootstrap t intervals based on (21), as well as bias-corrected bootstrap
intervals based on (23). It may be appropriate to use the latter in this case, because ρ̂
will be biased downwards.

The coverage of asymptotic and bootstrap confidence intervals at the .95 level for a
number of sample sizes between 10 and 2560 are shown in Figure 12. The simulations
used 500,000 replications for the asymptotic intervals and 100,000 replications, with
B = 399, for the bootstrap ones. Surprisingly, the asymptotic intervals always perform
better than the bootstrap t intervals. This happens despite the fact that ρ̂ is biased
towards 0. What seems to be happening is that the asymptotic intervals undercover
severely at the upper end but overcover at the lower end, while the bootstrap t intervals
(which tend to be considerably shorter for the smaller sample sizes) undercover at both
ends. The bias-corrected bootstrap intervals perform quite differently from both the
asymptotic or bootstrap t intervals. Unlike the latter, they tend to overcover, except for
quite small sample sizes. Note that more sophisticated bootstrap confidence intervals,
such as the ones proposed by Hansen (1999) and Davidson (2000), can be expected to
perform better in this case than either of the bootstrap intervals considered here.
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8. Conclusion
We have seen that, in many cases, using simulated distributions to perform tests and
construct confidence intervals is conceptually simple. This approach often yields in-
ferences that are substantially more accurate than ones based on asymptotic theory,
and it rarely yields inferences that are substantially less accurate. The extraordinarily
rapid development of computing technology over the past decade means that the com-
putational costs of using the bootstrap and other simulation-based procedures are often
negligible. Thus it is not surprising that these procedures have become a standard part
of the applied econometrician’s toolkit.
When the rather stringent conditions needed for a test statistic to be pivotal are satisfied,
a Monte Carlo test will always be exact. Under very much weaker conditions, bootstrap
tests will be asymptotically valid. Under the relatively weak conditions needed for a test
statistic to be asymptotically pivotal, bootstrap tests should, for large enough sample
sizes, perform better than asymptotic tests. However, they cannot be relied upon to
perform well in all cases. This is especially true when there is either serial correlation
or heteroskedasticity of unknown form. There are many ways to construct bootstrap
confidence intervals. These may or may not be more reliable than intervals based on
asymptotic theory, and their performance can sometimes be far from satisfactory.
For most econometric models, there is more than one reasonable way to generate boot-
strap samples. In any given situation, some of the applicable methods will undoubtedly
work better than others. Especially when the residuals show evidence of heteroskedas-
ticity or serial correlation of unknown form, the number of bootstrapping procedures
that can be used is generally very great. At the present time, however, we often do not
know which of them, if any, can be relied upon to yield reliable inferences in samples of
the size typically encountered in applied work.
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Figure 11. Coverage of .95 confidence intervals for heteroskedastic regression
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Figure 12. Coverage of .95 confidence intervals for AR(1) model
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