
QED
Queen’s Economics Department Working Paper No. 936

The Size Distortion of Bootstrap Tests

Russell Davidson
GREQAM, Queen’s University

James G. MacKinnon
Queen’s University

Department of Economics
Queen’s University

94 University Avenue
Kingston, Ontario, Canada

K7L 3N6

08-1996



The Size Distortion of Bootstrap Tests

by

Russell Davidson

and

James G. MacKinnon

GREQAM
Centre de la Vieille Charité
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Abstract

Bootstrap tests are tests for which the significance level is calculated by some
sort of bootstrap procedure, which may be parametric or nonparametric. We provide
a theoretical framework in which to study the size distortions of bootstrap P values.
We show that, in many circumstances, the size distortion of a bootstrap test will be
one whole order of magnitude smaller than that of the corresponding asymptotic test.
We also show that, at least in the parametric case, the magnitude of the distortion
will depend on the shape of what we call the P value function. Monte Carlo results
are presented for the case of nonnested hypothesis tests. These results confirm and
illustrate the utility of our theoretical results, and they also suggest that bootstrap
tests may often work extremely well in practice.
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1. Introduction

Testing hypotheses is a central concern of classical econometrics. Sometimes
the hypotheses to be tested are suggested by economic theory, and sometimes they
are merely auxiliary hypotheses, such as homoskedasticity or serial independence,
that must hold for inferences to be valid. Whichever the case, we want the tests to
have the correct size and to have high power. Unfortunately, in the vast majority
of interesting cases, the distributions of the test statistics we use are known only
asymptotically. As a result, making inferences on the basis of them can be a risky
undertaking.

There are two approaches to solving this problem. From a theoretical point of
view, perhaps the most appealing is either to modify a test statistic analytically so
that it approaches its asymptotic distribution more rapidly, as in Attfield (1995), or
to modify the critical values so that the true size of the test approaches its nominal
value more rapidly, as in Rothenberg (1984). Unfortunately, this approach often
requires algebraic derivations that are very far from trivial, and in many cases it
seems to be infeasible.

An alternative approach that is starting to become popular in econometrics,
largely because of the dramatic increase in the speeds of computers in recent years,
is to employ some variant of the bootstrap. Although the statistical literature on
bootstrapping is large and growing rapidly, most of it concerns confidence intervals
or regions rather than test statistics; see, among many others, Efron and Tibshirani
(1993) and Hall (1992). Many authors consider this point of little importance. In
particular, Hall, in the only section of the book just cited in which he discusses hy-
pothesis testing at any length, points out that there “is a well-known and established
duality between confidence intervals and hypothesis testing.” On the other hand, in
a survey paper, Hinkley (1988) did briefly mention matters related to significance
tests and the bootstrap. More importantly, Beran (1986) drew a distinction between
the confidence region approach that has continued to be dominant in the statistical
literature, and what he called a test statistic approach. The distinction is valuable
in many econometric contexts, because conventional confidence intervals, based on
unrestricted estimation of the parameters with which the null hypothesis under test
is concerned, are dual only to Wald tests. It is well known that Wald tests have the
defect that they are not invariant under nonlinear reparametrizations of the restric-
tions under test; see Chapter 13 of Davidson and MacKinnon (1993) for a discussion
and references. In fact, not unexpectedly in view of the above-mentioned duality,
bootstrap percentile-t confidence intervals, although their properties are usually bet-
ter than those of other bootstrap-based confidence intervals, share this defect with
Wald tests; see Hall (1992).

It is perfectly possible to bootstrap any sort of test, not just Wald tests. The
basic idea of bootstrapping any test statistic is to draw a large number of “bootstrap
samples” from a distribution which obeys the null hypothesis and is constructed in
such a way that the bootstrap samples, as far as possible, resemble the real sample.
One then compares the observed test statistic with the ones calculated from the
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bootstrap samples. An important recent paper which advocates this approach is
Horowitz (1994).

In this paper, we point out that bootstrapping many of the commonly used test
statistics in econometrics leads to drastic improvements in the reliability of inference
compared with conventional asymptotic tests. In some cases, bootstrap inference is
exact, while in others it is very nearly so. In many cases, it is very easy to implement
what we shall call “bootstrap tests,” that is, tests for which the significance level is
calculated by some sort of bootstrap procedure. Despite this, there is little discussion
of bootstrap testing methodology in the econometrics literature. A noteworthy recent
exception is Hall and Horowitz (1996), in which bootstrap methods are described for
dynamic GMM models.

The bootstrap’s main virtue in hypothesis testing is that, when properly used,
it leads to asymptotic refinements in significance levels. This means that the error
in the P value given by a bootstrap test is of lower order in the sample size n than
the error given by a corresponding asymptotic test. For an asymptotic test, the error
in the P value is in general of order n−1/2. Depending on the circumstances, use of
the bootstrap can reduce this order to n−1, n−3/2, or even smaller values; see Hall
(1992) for a very full discussion, based on Edgeworth expansions, of the extent to
which asymptotic refinements are available in different contexts. In this paper, we
make no explicit use of Edgeworth expansions, and instead consider all test statistics
in approximate P value form. This device allows us to deal conveniently with all
the possible asymptotic distributions that test statistics may have, and thereby to
provide a unifying theoretical framework in which the determinants of the order of
refinements can be studied. This leads to the discovery of a new refinement which
will often be available in econometric applications.

Even when it is known theoretically that the bootstrap provides refinements of
a given order, the size distortions of bootstrap tests — the errors in the P values
it provides—may vary considerably in different circumstances. In this paper, we
provide an explanation of this phenomenon in terms of what we call “critical value
functions” or “P value functions.” We show how the slope and curvature of these
functions affects bootstrap size distortions, and we provide examples in which graphs
of the functions depict clearly those regions in the parameter space where the boot-
strap will behave more or less well. Inspection of such graphs can yield valuable
intuition concerning bootstrap tests.

In the next section, we explain our terminology and notation and introduce
several important concepts. The principal results of the paper are then proved in
Sections 3 and 4. In Section 5, we present Monte Carlo results, on the J test for
nonnested hypotheses, which confirm and illustrate the utility of our theoretical re-
sults.
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2. Basic Concepts and Notation

Suppose that we calculate a test statistic τ̂ from a sample of size n. The details
of how τ̂ is calculated need not concern us, but it is essential for the asymptotic
refinements of the bootstrap that τ̂ be asymptotically pivotal. In other words, the
asymptotic distribution of τ̂ under the null hypothesis must not depend on any un-
known parameters, or, more generally, on just which data-generating process (DGP)
belonging to the null hypothesis actually generated the data. This is a rather weak
assumption. All of the classical test statistics based on least squares, maximum
likelihood, GMM, or other forms of extremum estimation satisfy an even stronger
condition, since they actually have known asymptotic distributions. The impor-
tance of pivotalness in bootstrap methodology has been insisted on by many authors.
Hall (1992) gives extensive bibliographical notes on this point; see especially the ends
of his Chapters 1 and 3.

It is possible to use bootstrapping either to calculate a critical value for τ̂ or
to calculate the significance level, or P value, associated with it. We prefer the
latter approach, partly because knowing the P value associated with a test statistic
is more informative than simply knowing whether or not the test statistic exceeds
some critical value, and partly because this approach leads naturally to the analysis
of this paper.

Suppose that the data from which τ̂ was calculated were generated by a DGP
which actually satisfies the null hypothesis. We denote this DGP by µ0. Then, for a
one-tailed test, the P value we would ideally like to compute is

(1) p(τ̂) ≡ Prµ0(τ ≥ τ̂),

where τ denotes the random variable of which τ̂ is a realization. In general, the
probability in (1) depends on the sample size n and on the DGP µ0. Only if p(τ̂)
depends on neither of these will asymptotic theory give the right answer.

Since µ0 is unknown, we cannot compute (1). However, we can use the bootstrap
to estimate it. We will define the bootstrap P value as

(2) p∗(τ̂) ≡ Prµ̂(τ ≥ τ̂).

The only difference between (2) and (1) is that the former uses a DGP µ̂, which we
will call a bootstrap DGP, instead of the actual DGP µ0 to compute the probability.
The bootstrap DGP may be obtained from either a parametric or a nonparametric
bootstrap. In the former case, it is a DGP from the model itself, using a vector of
parameter estimates under the null, say θ̂. This approach is appropriate in the case of
a fully specified model, which we must have if we are using the method of maximum
likelihood. In the latter case, in order to avoid imposing overly strong distributional
assumptions, the bootstrap DGP will be based on something like the empirical dis-
tribution function of the data. This approach is appropriate if the model is not fully
specified, as in the case of GMM estimation. Actually, the term “nonparametric”
may be somewhat misleading since, as we shall see in Section 5, parameter estimates
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are often required to implement nonparametric bootstrap procedures. In either case,
the bootstrap DGP will depend on the sample used to obtain τ̂ .

In practice, the bootstrap P value (2) will be approximated by Monte Carlo
sampling from the bootstrap DGP µ̂. Since it is often feasible to make the approxi-
mation so good that the approximation error can safely be ignored, we shall in this
paper be concerned solely with theoretical bootstrap P values based on (2). Our
objective is to understand the relationship between p∗(τ̂) and p(τ̂).

One fundamental, and well-known, property of p∗(τ̂) is that, in the case of a
parametric bootstrap, it is equal to p(τ̂) when τ̂ is exactly pivotal, provided of course
that the parametric model is correct. In this case, the only difference between the
bootstrap DGP µ̂ and µ0 is that the former uses θ̂ and the latter uses the true
parameter vector θ0. But if τ is pivotal, its distribution is the same for all admissible
values of θ, and thus the same for both µ0 and µ̂. Therefore, in this special case,
p∗(τ̂) = p(τ̂).

Although this case is rather special, it has numerous applications in economet-
rics. For example, in univariate linear regression models with normal errors and
regressors that can be treated as fixed, any specification test that depends only on
the residuals and the regressors will be pivotal. This includes many tests for serial
correlation, ARCH errors and other forms of heteroskedasticity, skewness, and kurto-
sis, including the information matrix test; see, for instance, Davidson and MacKinnon
(1993, Chapter 16). Thus, provided the normality assumption is maintained, all of
these commonly used tests can be made exact by using the parametric bootstrap.

The special case in which τ̂ is pivotal makes it clear that it is only the fact that
µ̂ differs from µ0 which could cause bootstrap P values to be inaccurate. Thus, in
order to understand the properties of bootstrap P values, we need to specify how the
distribution of τ̂ depends on µ. Suppose, for simplicity, that we are concerned with
a one-tailed test which will reject the null hypothesis when τ̂ is in the upper tail. We
therefore define the critical value function, or CVF, Q(α, µ), by the equation

(3) Prµ

(
τ̂ ≥ Q(α, µ)

)
= α.

Q(α, µ) is thus the true level-α critical value for a one-tailed test based on the statistic
τ̂ if the DGP is µ. In other words, it is the 1 − α quantile of the distribution of τ̂
under µ. The rejection region for the bootstrap test of nominal size α is defined by

(4) τ̂ ≥ Q(α, µ̂),

and the true size of the bootstrap test is simply the probability, under the DGP µ0,
of the event (4). This probability clearly depends only on the joint distribution under
µ0 of τ̂ and the scalar quantity Q(α, µ̂). We shall make much use of this fact in the
next two sections. Of course, we can easily redefine Q(α, µ) to handle two-tailed tests
or one-tailed tests with a rejection region in the lower tail, or, as we do shortly, to
handle tests based on approximate P values.

– 4 –



In the parametric case, the DGP µ will belong to a parametric model and will be
completely characterized by a parameter vector θ. Thus we can, at least in principle,
graph the CVF as a function of θ. As an illustration, Figure 1 shows the CVF for a
particular test (a two-tailed J test; see Section 5) with DGP characterized by a single
parameter θ for α = .05. From (4), the size of the bootstrap test is the probability,
under θ0, that τ̂ ≥ Q(α, θ̂). This inequality defines a rejection region in the space of
θ̂ and τ̂ , namely, the region above the graph of the CVF. If the realized (θ̂, τ̂) falls
into this region, the bootstrap test rejects.

The rectangle above the horizontal line marked Q(.05, 1) in the figure shows all
(τ̂ , θ̂) pairs that should lead to rejection at the .05 level when θ0 = 1. In contrast,
the area above the CVF shows all pairs that actually will lead to rejection using a
bootstrap test. How different these are will depend on the joint distribution of τ̂ and
θ̂. For comparison, the rectangles above the two dotted lines show all pairs that will
lead to rejection using the asymptotic critical value Q∞(.05) = 1.96 and using the
critical value Q22(.05) = 2.074 based on the t(22) distribution. Clearly, the bootstrap
test will work much better than either of these approximate tests.

From the figure, we see that when θ0 = 1, the bootstrap test will overreject
somewhat when θ̂ > 1 and when θ̂ < −1. For those values of θ, the CVF is below
Q(.05, 1), and the bootstrap critical value will consequently be too small. By a similar
argument, the bootstrap test will underreject when −1 < θ̂ < 1. If θ̂ is approximately
unbiased and not very variable, these two types of errors should tend to offset each
other, since the CVF is approximately linear near θ = 1. Thus, on average, we might
expect the bootstrap test to work very well indeed in this case. This argument will
be made much more precise in Section 4. In fact, as we shall see in Section 5, the
bootstrap J test does work very well.

Suppose that the asymptotic distribution of τ̂ has c.d.f. F . The one-tailed
asymptotic test based on τ̂ rejects at nominal level α if 1 − F (τ̂) ≤ α. In finite
samples, of course, the event (1−F (τ̂) ≤ α) will rarely have probability precisely α.
Consequently, we introduce the P value function, or PVF, defined as follows:

(5) S(α, µ) ≡ Prµ

(
1− F (τ̂) ≤ α

)
.

The notation S signifies that the function measures the (true) size of the test at
nominal level α. The difference between S(α, µ) and α will be referred to as the
P value discrepancy function (for the asymptotic test). It is implicitly defined by the
equation

(6) S(α, µ) = α + n−l/2s(α, µ),

where the integer l ≥ 1 is defined so that s(α, µ) will be O(1). In the most general
case, we expect that l = 1, but there are many exceptions. The most important
of these is probably the case of a two-sided test based on an asymptotically N(0, 1)
statistic, or else an asymptotically chi-squared statistic. In this case, as Hall (1992)
shows in Section 3.5.5, l = 2. Where no ambiguity is possible, we will often refer to
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the function s itself as the P value discrepancy function. Note that s(α, µ) will be
independent of the DGP µ if and only if τ̂ is pivotal.

The relation between the PVF S and the CVF Q can be expressed as

(7) S
(
1− F (Q(α, µ)), µ

)
= α,

a result which follows from evaluating (5) at α = 1 − F (Q(α, µ)), rearranging, and
using the definition (3) of Q(α, µ).

The relation (7) becomes more transparent if τ̂ , rather than being a general
statistic, is a statistic in approximate P value form. In the present instance, the
original τ̂ would be replaced by the asymptotic P value 1 − F (τ̂), of which the
asymptotic distribution is uniform on [0, 1]. If τ is thus redefined, (3) should be
modified to take account of the fact that one usually rejects when a P value is less,
rather than greater, than a given value. Thus, for statistics that are asymptotic
P values,

(8) Prµ

(
τ̂ ≤ Q(α, µ)

)
= α.

It is clear that Q(α, µ) is now the α quantile of the distribution of τ̂ under µ. Similarly,
the definition (5) of S simplifies in this case to

S(α, µ) ≡ Prµ(τ̂ ≤ α).

so that, for fixed µ, S(α, µ) is just the c.d.f. of τ̂ evaluated at α. In addition, (7)
becomes simply

(9) S
(
Q(α, µ), µ

)
= α,

and so the CVF Q(α, µ) can in this case be thought of as the inverse of the P value
function S(α, µ). From (9) we also obtain

Q
(
S(α, µ), µ

)
= α,

since both S and Q are increasing in their first arguments. Analogously to (6), we
will have

(10) Q(α, µ) = α + n−l/2q(α, µ),

with the function q of order unity. The integer l will be the same as the l in (6).
Figure 2 graphs the PVF S(.05, θ) and its inverse Q(.05, θ) for exactly the same
one-parameter case as the CVF in Figure 1, after the original test statistic has been
converted to an asymptotic P value. Both functions evidently convey essentially the
same information.

Many of the basic ideas of this paper can be understood from Figures 1 and 2.
Whenever a test is not pivotal, the CVF for the test, and hence also its inverse the
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PVF, will not be flat. As a consequence, a bootstrap test, because it is based on
the bootstrap DGP µ̂, will almost never have exactly the right size. However, as
we demonstrate in the next section, there are good reasons to believe that bootstrap
tests will very often have almost the right size. It is clear from the figures that the size
of a bootstrap test based on a test statistic τ must depend on the joint distribution
of τ and µ̂. It is the need to deal analytically with this dependence that makes the
analysis of the next two sections a little bit difficult.

Before we move on to the next section, we present the standard analysis of why
bootstrap tests based on pivotal test statistics perform better than asymptotic tests.
To the best of our knowledge, this analysis first appeared in Beran (1988) for the case
of the parametric bootstrap, which we discuss first. Suppose that the DGP µ is fully
characterized by a parameter vector θ, so that the P value function can be written
as S(α, θ). From (6), the difference between the probability that τ̂ ≤ α according to
the bootstrap DGP and the true probability is

(11) S(α, θ̂)− S(α, θ0) = n−l/2
(
s(α, θ̂)− s(α, θ0)

)
.

By Taylor expanding s around θ0, we obtain

(12) S(α, θ̂)− S(α, θ0)
a= n−l/2sθ

>(α, θ0)(θ̂ − θ0),

where sθ(α, θ0) is the vector of first derivatives of s(α, θ) with respect to θ, evaluated
at θ0. If θ̂ is root-n consistent, the quantity on the right-hand side of (12) is of order
n−(l+1)/2. Thus the bootstrap approximation to the distribution of τ̂ is in error only
at order n−(l+1)/2, better than the error of the asymptotic uniform distribution by a
factor of n−1/2.

In the case of the nonparametric bootstrap, Hall has shown that, in most cases,
pivotal test statistics with an asymptotically standard normal distribution allow
Edgeworth expansions of their distribution functions, equally well for the asymptotic
statistic and for its bootstrap counterpart. Since the coefficients in such Edgeworth
expansions are functions of the moments of the data generated by a DGP µ, and since
sample moments, generated by µ̂, are root-n consistent estimators of the population
moments, generated by µ0, it follows that s(α, µ̂)− s(α, µ0) is once more at most of
order n−(l+1)/2. The most convenient reference for this result is Hall (1992).

The above arguments are perfectly correct as far as they go, but they do not
exploit the fact that τ̂ and µ̂ have a joint distribution. As we shall see in the next
section, when this is taken into account, it turns out that the bootstrap test may
perform even better, in many frequently encountered cases, than the simple analysis
above suggests.
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3. The Size of Bootstrap Tests

In this section, we obtain approximate expressions for the P value discrepancy
function for bootstrap tests. These expressions usually have clear intuitive inter-
pretations, based on the joint distribution of the test statistic τ̂ and the bootstrap
DGP µ̂. We do not explicitly make use of Edgeworth expansions in our development,
and so our results apply in a context at once more general and more specific than
that treated in, for instance, Hall and Titterington (1989) and Hall (1992), where
the results are based on Edgeworth expansions of statistics that are asymptotically
standard normal or chi-squared. The generality of our results is that they apply to
all sorts of hypothesis testing situations, and their specificity is that they apply only
to hypothesis tests, rather than to confidence intervals. The duality between testing
and confidence intervals presumably means that our results have counterparts in the
confidence interval approach, but we will not pursue that issue here.

When it applies, the Edgeworth expansion approach is usually complementary
to ours. Edgeworth expansions are usually effective for determining the order of
asymptotic refinements in a given situation, and, if recast in our notation, they can
provide analytical expressions for many of the quantities we study below.

Because test statistics may have a wide variety of asymptotic distributions, and
tests may be either one-tailed or two-tailed, it will be convenient for our analysis to
convert any statistic into a corresponding approximate P value, as we did in the last
section. The bootstrap critical value for τ̂ , Q(α, µ̂), is then a random variable which
will be asymptotically nonrandom and equal to α. In finite samples, its value should
generally be close to Q(α, µ0) for two reasons. The first reason is that, if τ̂ is nearly
pivotal, then Q(α, µ) does not depend much on µ. The second reason is that µ̂ will
generally be close to µ0. It is therefore convenient to define a new random variable γ,
of order unity as n →∞, as follows:

(13) Q(α, µ̂) = Q(α, µ0) + n−k/2σγγ,

where σγ is independent of n and is chosen so that γ has variance unity asymptoti-
cally, and where k is an integer chosen to make (13) true.

In the case of the parametric bootstrap based on root-n consistent estimates, we
find, by the standard argument given at the end of the last section, that k = l + 1.
This is also true for the nonparametric bootstrap in those cases for which Hall’s
Edgeworth expansion theory applies. Recall from (12) that the difference between
S(α, µ̂) and S(α, µ0) in these cases is O(n−(l+1)/2). Since Q(α, µ) is just the inverse
of S(α, µ), Q(α, µ̂)−Q(α, µ0) must also be O(n−(l+1)/2). Thus, since l ≥ 1, we can
be confident that k ≥ 2 in most cases of interest. Clearly, what is needed is that
we should be able to write (10) not only for µ strictly satisfying the null hypothesis,
but also for the discrete-valued DGPs µ̂ that are used as nonparametric bootstrap
distributions. Then, provided that µ̂− µ0 = O(n−1/2), as will normally be the case
for any sensible nonparametric bootstrap, it is clear that Q(α, µ̂)−Q(α, µ0) will be
O(n−(l+1)/2).
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The P value function S(α, µ), defined in (5), can be interpreted as the c.d.f.
of τ̂ under µ. In order to describe the joint distribution of τ̂ and γ, we also need
the distribution of γ conditional on τ̂ . Let us denote by g(γ | τ) the density of γ
conditional on τ̂ = τ under the DGP µ0. Since g(γ | τ) is a density,

(14)
∫ ∞

−∞
g(γ | τ) dγ = 1 for all τ ∈ [0, 1].

With this specification, we can compute the true size of the bootstrap test as the
probability under µ0 that τ̂ ≤ Q(α, µ̂). By (13), this true size is

(15)
∫ ∞

−∞
dγ

∫ Q+n−k/2σγγ

0

dS(τ) g(γ | τ),

where, for ease of notation, we have set Q = Q(α, µ0) and S(τ) = S(τ, µ0).
The integral over τ in (15) can be split into two parts, as follows:

(16)

∫ Q

0

dS(τ)
∫ ∞

−∞
dγ g(γ | τ)

+
∫ ∞

−∞
dγ

∫ n−k/2σγγ

0

dτ S′(Q + τ) g(γ | Q + τ),

where S′ is the derivative of S(τ). Because of (14), the integral over γ in the first
term of (16) equals 1, and so the whole first term equals α, by (9). Since the nominal
size of the bootstrap test is α, the size discrepancy for the test is given by the second
term in (16), which is clearly of order no more than n−k/2.

This last point is the result of Beran (1988) for asymptotically pivotal test stat-
istics. However, we have gone beyond his analysis by giving an explicit expression
for the order n−k/2 size discrepancy. Our subsequent results will follow from an
examination of this explicit expression.

The P value discrepancy of the bootstrap test at nominal size α is the second
term in (16), which, if g is smooth enough, we may write as

(17) n−k/2σγ

∫ ∞

−∞
dγ γ

(
g(γ | α) + O(n−k/2)

)(
1 + O(n−l/2)

)
,

since, by (10), Q ≡ Q(α, µ0) = α + O(n−l/2), and this, along with (6), gives S′(Q) =
1 + O(n−l/2).

If we consider only the leading-order term in (17), we see that it has a simple
interpretation. It is the expectation, conditional on τ̂ = α, of Q(α, µ̂) − Q(α, µ0).
Thus it is the bias, conditional on τ̂ = α, of the bootstrap estimate of the size-α
critical value. When this bias is nonzero, it is responsible for the size distortion of the
bootstrap test to leading order. On the other hand, when this bias is O(n−(k+1)/2) or
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lower, the term in (17) of order n−k/2 vanishes, and the size distortion of the bootstrap
test is of lower order than otherwise. In that case, those µ̂ which overestimate the
size-α critical value will on average be balanced to leading order by those µ̂ which
underestimate it. Specifically, if

∫ ∞

−∞
dγ γ g(γ | α) = O(n−i/2),

for i ≤ k, the P value discrepancy (17) is of order n−(k+i)/2.
The simplicity of the interpretation of the leading-order term in (17) arises from

the fact that we expressed the test statistic in approximate P value form. Any bias in
the bootstrap estimate of the true quantile of such a P value is thus by construction
the P value discrepancy to leading order — to leading order only, because the test
statistic is only an approximate P value. It is natural as well that what is needed is
the bias conditional on the test statistic taking on a value at the margin of rejection
at level α. A bias of the bootstrap quantile away from this margin will have no effect
on the rejection probability of the test at this level.

The actual value of k in specific testing situations can often be found in the exist-
ing literature on bootstrap confidence intervals, because the limits of these intervals
are defined in terms of quantiles of the bootstrap distribution, which is precisely
what Q(α, µ̂) is. For instance, in Section 3.6 of Hall (1992), it is shown that, for a
symmetric confidence interval based on an asymptotically standard normal statistic,
the exact and bootstrap critical values differ only at order n−3/2. In hypothesis test-
ing terms, the critical values for a two-tailed test based on such a statistic computed
from the true DGP and from the bootstrap DGP differ only at that order; in other
words, k = 3. (This result is plainly unaffected by our use of statistics in approx-
imate P value form rather than approximately standard normal form.) Hall goes
on to show that the coverage error of a bootstrap confidence interval is of still lower
order, namely, n−2 in general. This translates as a P value discrepancy of that order.
Examination of Hall’s derivation of this result reveals that the additional refinement
is due, as (17) would suggest, precisely to the fact that the bias, or expectation of
the difference between the true and bootstrap critical values, is of lower order than
the difference itself.

It is in fact quite easy to see why, in this case of a symmetric two-tailed test, what
appears to be the leading-order term in (17), namely, the expectation of γ conditional
on τ̂ = α, vanishes at the leading order. The condition that the approximate P value
τ̂ take on the value α corresponds, in terms of the asymptotically standard normal
statistic, to one of two possibilities: The latter statistic can be equal either to the
higher, positive, critical point, or to its negative. Under the null, because the test
is symmetric, both of these events are equally probable, at least to leading order. If
γ and the asymptotically standard normal statistic have an approximate bivariate
normal distribution, as they do in Hall’s demonstration, then the expectations of
γ conditional on the two critical values, positive and negative, will be equal and
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opposite in sign. Thus the expectation of γ conditional on τ̂ = α vanishes to leading
order.

In general, without any requirement of a symmetric two-sided test, the hypo-
thesis testing context enables us to strengthen (17) if a further condition is satisfied.
This condition is that γ and τ̂ should be asymptotically independent. We show in a
moment that this condition leads to a further asymptotic refinement.

The asymptotic independence of γ and τ̂ can often be achieved by using the
fact that parameter estimates under the null are asymptotically independent of the
statistics associated with tests of that null. This last fact can be illustrated most
simply in the context of a linear regression model. Consider the null hypothesis that
β2 = 0 in the regression

y = X1β1 + X2β2 + u,

where X1 is n× k1 and X2 is n× k2. The F statistic for this hypothesis is (see, for
instance, Davidson and MacKinnon (1993), Chapter 3):

n− k

r

‖PM1X2M1y‖2
‖MM1X2M1y‖2 ,

where M1 ≡ I−X1(X1
>X1)−1X1

> is the orthogonal projection on to the orthogonal
complement of the span of the k1 columns of X1, and PM1X2 and MM1X2 respectively
project orthogonally on to and off the span of the columns of M1X2. Thus the
F statistic depends only on the components of the error vector u that are orthogonal
to the columns of X1. On the other hand, the error in the OLS estimate of β1 under
the null is (X1

>X1)−1X1
>u, which depends only on the components of u that are in

the span of the columns of X1. Under normality, this implies the independence of
the estimate of β1 under the null and the F statistic. Without normality, it implies
their asymptotic independence.

More generally, if θ̂ is an extremum estimator that satisfies first-order conditions
in the interior of the parameter space of the null hypothesis, the vector n1/2(θ̂− θ0)
will be asymptotically independent of any classical test statistic. For the case of the
classical test statistics based on maximum likelihood estimation, a detailed proof of
this may be found in Davidson and MacKinnon (1987). The proof can be extended
in regular cases to NLS, GMM, and other forms of extremum estimation.

This means that, for the parametric bootstrap, the condition of asymptotic inde-
pendence of τ̂ and γ will always be satisfied, provided the parameters are estimated
under the null and have the usual asymptotic properties. This is because Q(α, µ̂),
and hence γ, is simply a function of the vector of parameter estimates, and is thus
asymptotically independent of the test statistic τ̂ . This argument clearly also ap-
plies to cases in which only a conditional model for the dependent variable is fully
parametric.

Asymptotic independence can often be achieved with little trouble for the non-
parametric bootstrap as well. As one example, consider bootstrapping a test statistic
in a linear regression model that includes a constant term by resampling from the
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residuals. Here, in order to achieve asymptotic independence, the bootstrap DGP
would be based on estimating the model under the null. The bootstrap regression
function would be given by the fitted values, which, as before, are asymptotically
independent of any classical test statistic, and the bootstrap error terms would be
independent drawings from the empirical distribution function of the residuals. Now
consider a t statistic on a variable not included under the null. Asymptotically, it
will be a linear combination of the residuals, and so not independent of the bootstrap
distribution of the error terms. To leading order asymptotically, it will have the form

(18) n−1/2
n∑

t=1

xtut, where
n∑

t=1

xt = 0 and
n∑

t=1

x2
t = 1.

But all we need is asymptotic independence of the statistic and the quantiles of the
bootstrap distribution. For linear regression models with a constant term, Hall (1992,
section 4.3.3) shows that the leading-order random term in the bootstrap quantiles
of such a t statistic is proportional to the leading-order random term in the skewness
of the residuals, which can be expressed as an expression of the form

(19) n−1/2
n∑

t=1

f(ut), with E
(
f(ut)

)
= 0.

It is immediate that (18) and (19) are both asymptotically normal with zero mean,
and that their covariance is zero. They are therefore asymptotically independent, as
desired. This type of result undoubtedly holds more generally for the nonparametric
bootstrap applied to regression models. In addition, as this example shows, in the
frequently encountered case of asymptotic normality, all that is needed is a zero
asymptotic covariance.

Let us now demonstrate that, if we assume that γ and τ̂ are asymptotically
independent, there is an asymptotic refinement in the P value discrepancy. Under
that assumption, we may write

(20) g(γ | τ) = g(γ)
(
1 + n−j/2f(γ, τ)

)
,

where g(γ) is the asymptotic marginal distribution of γ, j ≥ 1 is a suitable integer,
and f(γ, τ) is of order unity as n →∞.

For any valid bootstrap procedure, µ̂ must be a consistent estimator of µ0.
Therefore, Q(α, µ̂) must be a consistent estimator of Q(α, µ0), and we have that

∫ ∞

−∞
dγ γ g(γ) = 0,

for otherwise Q(α, µ̂) would be biased at leading order and thus not consistent. Thus
(17) becomes

(21) n−(k+j)/2σγ

∫ ∞

−∞
dγ γ g(γ) f(γ, α) + O(n−(k+j+1)/2).

– 12 –



The interpretation of (21) is the same as that of (17). The first term is the bias,
conditional on τ̂ = α, of the size-α critical value based on the bootstrap DGP µ̂.
When k = 2 and j = 1, this term will be O(n−3/2).

Rather than attempting to state a formal theorem, let us summarize the results
of this section. The first determinant of size distortion is the order of the discrepancy
between the bootstrap critical value and the true critical value. In (13), we specified
that it was O(n−k/2). In most cases, with root-n consistency of parameter estimates
for the parametric bootstrap, or with root-n consistency of the nonparametric boot-
strap distribution, k = l + 1 with l ≥ 1. Provided an asymptotically pivotal statistic
is used, l = 1 and k = 2 in the worst case. In (17), we see that the bootstrap P value
will be incorrect only at O(n−k/2) at most, in accord with the standard result cited
at the end of the last section.

More interestingly, we showed that the errors in bootstrap P values will often be
of smaller order than this. First of all, when the bootstrap critical value is unbiased
to highest order, the bootstrap P value will be incorrect only at O(n−(k+i)/2), where
n−i/2 is the order of the bias of the bootstrap critical value. Secondly, when the dis-
crepancy is asymptotically independent of the test statistic τ̂ , the bootstrap P value
will be incorrect only at O(n−(k+j)/2), where j/2 is the highest order at which the
conditional distribution of the bootstrap critical value differs from its asymptotic
marginal distribution. This second case always holds for the parametric bootstrap
if it is based on a regular extremum estimator under the null, and it also holds for
many nonparametric bootstrap procedures in regression models. In cases with no
specific sources of refinements, with l = 1, k = 2, and j = 1, we thus have two,
potentially quite common, situations in which the error in the bootstrap P value will
be O(n−3/2) when the error in the asymptotic P value is O(n−1/2). By focusing on
the bias of the bootstrap critical value for a statistic in approximately P value form,
we have thus provided a unifying framework for understanding a variety of seemingly
unrelated results in the statistical literature.

4. The One-Parameter Case

In this section, we derive, to highest order, the P value discrepancy function for
a parametric bootstrap test when the DGP µ depends only on a single parameter θ.
This result turns out to be easily interpretable and very useful in understanding the
behavior of bootstrap tests, even nonparametric ones.

We assume that θ̂ is a root-n consistent, asymptotically normal, estimator of
the parameter θ0. In this simple case, the bootstrap distribution µ̂ is just the DGP
characterized by θ̂. Since we are considering only one parameter under the null, we
suppose that it has been subjected to a variance-stabilizing transformation such that,
under θ0,

e ≡ n1/2(θ̂ − θ0)
a∼ N(0, 1).

It will be convenient to work with the random variable e instead of θ̂. As we saw in
Section 3, it is reasonable to assume that τ is asymptotically pivotal and that τ and
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e are asymptotically independent. Then the joint density of τ and e can be written
as

(22) S′(τ, θ0)φ(e)
(
1 + n−1/2a(e, τ)

)
.

Here, as in Section 3, S′ denotes the derivative of S with respect to its first argument,
and as usual, φ(·) denotes the density of the N(0, 1) distribution. We require that
a(e, τ) = O(1). In principle, we could have n−j/2 instead of n−1/2 in (22), as we did
in (20). However, it simplifies the result considerably to assume that j = 1.

What we wish to do now is to obtain explicit expressions for the factors that
appear in the general result (21) for the P value discrepancy function of the boot-
strap test, and then substitute them into that expression. Because the details of
the derivation are somewhat tedious, they are relegated to the Appendix. The final
result is quite simple, however. The P value discrepancy for the bootstrap test at
size α is

(23) −n−(l+2)/2

(
sθ(α, θ)

∫ ∞

−∞
e φ(e) a(e, α) de + 1−

2
sθθ(α, θ)

)
+ O(n−(l+3)/2),

where sθ and sθθ denote the first and second derivatives of s(α, θ) with respect to θ.
For given α, (23) is simply a function of θ.

There are two leading order terms in expression (23), and these are of order at
most n−3/2, as we would expect from (21). Neither of these terms depends on the
level of s, the P value discrepancy function for the asymptotic test. Instead, they
depend on sθ, the slope of s, and on sθθ, which is a measure of the curvature of s.
There is thus no reason to believe that the performance of the bootstrap test will
necessarily be worse for asymptotic tests that perform poorly than for asymptotic
tests that perform well. At one extreme, the asymptotic test may be pivotal, in which
case s will be flat, and (23) will then be zero no matter how poorly the asymptotic
test performs. At the other extreme, there may well be cases in which s happens to
be zero for a particular value of θ, so that the asymptotic test performs perfectly,
and yet the bootstrap test will almost certainly not perform perfectly.

Let us now consider the two leading-order terms in (23). The first term is
proportional to sθ. The integral in it can readily be seen to be proportional to the
bias of the estimator θ̂, conditional on α; recall (22). When this bias is nonzero, the
bootstrap will, on average, be evaluating Q(α, θ) at the wrong point. That will not
matter if S(α, θ) is flat, in which case sθ = 0, and the first term vanishes. However,
it will matter if S is not flat. Suppose, for concreteness, that sθ > 0 and E(θ̂) > θ0,
so that the first term in (23) is negative. In this case, the average of the Q(α, θ̂)
over the θ̂ will be less than Q(α, θ0); remember that Q is the inverse of S, and recall
Figure 2. This means that the bootstrap test will not reject often enough, and its P
value discrepancy must therefore be negative.

Even if θ̂ is unbiased, when S is nonlinear, so that its graph is curved and sθθ

is nonzero, then the curvature will lead to the average of the Q(α, θ̂) being different
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from Q(α, θ0). For example, if sθθ is negative, then qθθ will be positive, and the
average of the Q(α, θ̂) will consequently be too large. This means that, in this case,
the bootstrap test will reject too often, and its P value discrepancy will be positive.

Notice that if θ̂ is unbiased, at least to highest order, and if S is linear, then both
the leading terms in (23) will vanish, and the bootstrap test will work perfectly, at
least through O(n−3/2). Even though the rejection region of the bootstrap test will
be different from the true theoretical one whenever sθ is not zero, as much probability
mass will be gained on one side as is lost on the other in going from one region to
the other; see Figure 1.

What have we learned in this section? We already knew, from the results of
Section 3, and in particular (21), that the size distortion of the bootstrap test is, under
plausible circumstances, a full order of magnitude smaller than the size distortion of
the asymptotic test. What we have learned from (23) is that the size distortion of the
bootstrap test depends in a particular way on the shape of the P value discrepancy
function for the asymptotic test. If the bootstrap is based on unbiased parameter
estimates, then only the curvature of this function matters. If it is based on biased
parameter estimates, then the slope matters as well. In contrast, the level of the
P value discrepancy function for the asymptotic test never matters. Although (23)
applies only to the one-parameter case, these results must evidently be true more
generally.

5. Bootstrap J Tests

In this section, we present some simulation results which are designed to see
whether the theoretical results of Sections 3 and 4 are useful in practice. They concern
the J test of nonnested hypotheses. There are numerous procedures for testing
nonnested regression models; for an introduction to the literature, see Davidson and
MacKinnon (1993, Chapter 11). One of the simplest and most widely used is the
J test proposed in Davidson and MacKinnon (1981). Like most nonnested hypothesis
tests, this test is not exact in finite samples. Indeed, its finite-sample distribution
can be very far from its asymptotic one; see, among others, Godfrey and Pesaran
(1983). It therefore seems natural to bootstrap the J test, and we are not the first to
suggest doing so; see Fan and Li (1995) and Godfrey (1996). However, our simulations
provide much more precise results than those in earlier papers, and they do so in the
context of the analysis of Sections 3 and 4.

For simplicity, we consider only the case of nonnested, linear regression models
with i.i.d. normal errors. Suppose the two models are

H1 : y = Xβ + u1, u1 ∼ N(0, σ2
1 I), and

H2 : y = Zγ + u2, u2 ∼ N(0, σ2
2 I),
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where y, u1, and u2 are n × 1, X and Z are n × k1 and n × k2, respectively, β is
k1 × 1, and γ is k2 × 1. The J test statistic is the ordinary t statistic for α = 0 in
the artificial regression

(24) y = Xb + αPZy + residuals,

where PZ = Z(Z>Z)−1Z>. Thus PZy is the vector of fitted values from least squares
estimation of the H2 model.

To bootstrap the J test, we first calculate the test statistic, which as before
we denote by τ̂ , by running regression (24) after obtaining the fitted values from
the H2 model. Then we draw B sets of bootstrap error terms u∗j and use them
along with the parameter estimates β̂ from H1 to generate B bootstrap samples y∗j ,
j = 1, . . . , B, according to the equation

y∗j = Xβ̂ + u∗j .

There are numerous ways in which the error terms u∗j can be drawn, four of which
will be described below. Using each of these bootstrap samples, we calculate a test
statistic τ∗j , and we then compute the estimated bootstrap P value as

p̂∗(τ̂) =
1
B

B∑

j=1

I(|τ∗j | ≥ |τ̂ |),

where I(·) is an indicator function, equal to 1 if its argument is true and equal to zero
otherwise. The absolute values are needed here because the J test is a two-tailed
test.

We consider four different ways of generating the u∗j . For the parametric boot-
strap, which we will call b0, they are simply n-vectors of independent draws from
the N(0, s2) distribution, where s is the OLS estimate of σ from estimating H1. For
the simplest nonparametric bootstrap, which we will call b1, they are obtained by
resampling with replacement from the vector of residuals ût from H1. A slightly
more complicated form of nonparametric bootstrap, which we will call b2, generates
the u∗j by resampling with replacement from the vector with typical element

(
n/(n− k1)

)1/2
ût.

The first factor here is a degrees of freedom correction. For both b1 and b2, it is
assumed that there is a constant among the regressors. If there were not, the residuals
would have to be recentered and the consequent loss of one degree of freedom would
have to be corrected for. Finally, the most complicated variety of nonparametric
bootstrap, which we will call b3, generates the u∗j by resampling from the vector with
typical element ũt constructed as follows. First, divide each element of ût by the
square root of one minus the tth diagonal element of PX ≡ X(X>X)−1X>. Then
recenter the vector that results and rescale it so that it has variance s2. This type of
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procedure has been advocated by Weber (1984) for bootstrapping regression models.
In principle, it should reproduce the distribution of the original error terms more
accurately than either b1 or b2.

If ś denotes the estimated standard error from regression (24), the J test statistic
can be written as

(25)
y>PZMXy

ś(y>PZMXPZy)1/2
,

where MX ≡ I − PX . It is straightforward to show that, under H1, the statistic
(25) depends on both β and σ1, but only through the ratio β/σ1. Thus, if we choose
a fixed vector β∗ and let β = δβ∗, the statistic will depend on a single parameter
θ ≡ δ/σ1. As we shall see in a moment, the finite-sample behavior of the test depends
strongly on θ.

Our experiments were not intended to provide a comprehensive examination of
the performance of the bootstrap J test. Instead, we deliberately chose a case for
which the ordinary J test works badly, at least for some values of θ. We chose a simple
scheme for generating X and Z. Each of the columns of X, except for the constant
term, was made up of i.i.d. normal random variables, was independent of the other
columns, and was normalized to have length n. Each column of Z was correlated
with one of the columns of X, with squared correlation 0.5 in the experiments we
report. All elements of β∗ were equal.

Figure 3 shows P value functions for various values of n when k1 = 3 and k2 = 6.
These are based on the t distribution with n−4 degrees of freedom. The J test works
relatively badly in this case, because there are 5 variables in Z that are not in X;
compare Figure 2, which is for the case with k1 = 2 and k2 = 4, for n = 25. For
the smaller sample sizes, the performance of the J test is rather poor, except for
quite large values of θ. For the larger sample sizes, the test generally performs much
better, except near θ = 0, where there is clearly a singularity. The usual asymptotic
theory for the J test does not hold at this point, and we should not expect the theory
of Section 3 to apply either.

On the basis of Figure 3, one might reasonably expect that the bootstrap J test
would work rather badly, because the PVF is very steep in many places and quite
sharply curved in others. The results in Figure 4 may therefore come as a surprise.
This figure shows the proportion of replications with P values less than .05, as a
function of the sample size n, for four values of θ and 21 different sample sizes: 8, 9,
10, 11, 12, 14, 16, 18, 20, and then all multiples of 5 up to 80. Each experiment used
100,000 replications, and there were B = 399 bootstrap samples for each replication.
The former number may seem rather large, but, as we shall see, the bootstrap test
works extremely well. Thus, in order to detect any pattern in the results, it was
necessary to use a very large number of replications. We chose not to use control
variates based on asymptotic theory. The benefit from doing so would have been very
small, partly because most of the experiments involve very small sample sizes, and
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partly because we are computing tail-area probabilities; see Davidson and MacKinnon
(1992).

For θ = 2, all the tests except b1 work essentially perfectly for n ≥ 10. The
reason b1 works less well is that it implicitly uses an estimate of σ1 that is biased
downwards or, equivalently, an estimate of θ that is biased away from zero. It is
easy to see from Figure 3 that this will cause the b1 test to overreject. For θ = 1,
b1 continues to perform poorly, but not quite as poorly, and the other tests continue
to perform well, but not quite as well, since they overreject slightly for very small
values of n. For θ = 0.5, b1 performs a bit better, and the other tests perform less
well, although still better than b1. The improvement of b1 probably occurs because,
as θ gets closer to zero, the PVF gets less steep, so the effect of bias diminishes. At
the same time, the curvature increases, and this makes all the tests perform less well.
Finally, for θ = 0.25, which is quite close to the singularity, all the tests overreject for
all values of n. Although this is very clear statistically, it is important to recognize
that the extent of the overrejection is very modest indeed. For example, when n = 25,
the b0 and b2 tests reject 5.38% and 5.37% of the time. In comparison, the t test
rejects 37.91% of the time.

One reason for the remarkably good performance of the J test is that θ is es-
timated quite precisely. By using the delta method, it is easy to show that the
asymptotic variance of θ̂ for the experimental design we used is 1

n (1 + 1
2θ2). From

this formula, it is apparent that, except for very small values of n and/or very large
values of θ, the standard error of θ̂ is always substantially less than 1. This means
that the curvature of the P value functions which is evident in Figure 3 has only a
modest effect on the performance of the bootstrap, even when θ is quite close to 0.

These results appear to provide strong support for the theory of Sections 3 and 4.
The bootstrap tests do not always work perfectly, but they do work extraordinarily
well, and when they do not work perfectly the reason can usually be seen by looking
at the PVF. Of course, we cannot claim on the basis of these results that bootstrap
J tests will always work well, even though the results of Fan and Li (1995) and God-
frey (1996) also provide no evidence to contradict such a claim. There undoubtedly
exist situations in which PVFs are even steeper or more sharply curved than the ones
in Figure 3, or in which the parameters on which the bootstrap distribution depends
are estimated less precisely, and for which bootstrap tests consequently work less
well. It is certainly necessary to stay away from situations in which the underlying
asymptotic theory does not hold, such as θ = 0 in Figure 3.

The result that the bootstrap J test works extremely well, even in very small
samples, is consistent with the results of Rayner (1990), who studied bootstrap tests
of the slope coefficient in an AR(1) model with a constant term. We also obtained
extremely good results, not reported here, when we studied a bootstrap test for
AR(1) errors in a regression model with a lagged dependent variable. Thus there
seems to be good reason to believe that bootstrap tests may often work extremely
well, at least for tests of regression models in regression directions. However, the
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results of Horowitz (1994), for the information matrix test in a probit model, suggest
that bootstrap tests may not always work quite as well in other cases.

6. Summary and Conclusion

In this paper, we have advocated the use of the bootstrap in many hypothesis
testing situations where exact tests are not available. In particular, we have advo-
cated the use of bootstrap P values, because P values are more informative than the
reject/do-not-reject results of tests with some pre-chosen size, and the actual calcu-
lation of bootstrap P values is, if anything, easier than the calculation of bootstrap
critical values. In addition, the theory of bootstrap P values, as presented in this
paper, is no more difficult than the theory of bootstrap critical values, and can indeed
make use of existing results on bootstrap critical values.

The bootstrap provides higher-order refinements, relative to asymptotic theory,
whenever the quantity bootstrapped is, asymptotically at least, pivotal. This is
the case for all commonly used test statistics in econometrics. As we discussed in
Section 3, a refinement of order n−1/2 is obtained whenever one computes the size
distortion of a test, of given nominal size, based on a bootstrap P value. A further
refinement, which in most cases will also be of order n−1/2, is obtained whenever the
test statistic is asymptotically independent of the bootstrap DGP, or, more specifi-
cally, of the appropriate quantile of the bootstrap distribution of the test statistic.
Since most test statistics are indeed asymptotically independent of the estimates of
the parameters of the null hypothesis produced by a wide class of extremum esti-
mators, such test statistics, when bootstrapped using the parametric bootstrap, will
benefit from this further degree of refinement. Thus bootstrap tests will, in many
circumstances, be more accurate than asymptotic tests by a full order of n−1.

The quantity which determines the order of the discrepancy between bootstrap
and true critical values, denoted by k in Section 3, is often greater than 2 in testing
situations that arise frequently in econometrics. The case of two-sided tests based on
asymptotically standard normal statistics, or of asymptotically chi-squared statistics,
has already been mentioned. In addition, in the context of linear regression models
with constant terms, Hall (1992) shows that there is a refinement associated with
bootstrap inference on the slope coefficients, one which, taken in conjunction with
that afforded by two-sided tests, can lead to a value of 3 for k in many circumstances.
It seems likely that the excellent performance of the bootstrapped J test described
in Section 5 is due to such specific additional refinements.

The results of Section 3 can be applied to any bootstrap test of level α when-
ever we know the order of magnitude of the bias of the α quantile of the bootstrap
distribution of the statistic considered as an estimator of the α quantile of the true
distribution of the statistic. In Section 4, we obtained more detailed results, which,
strictly speaking, apply only to the case of the parametric bootstrap applied to a fully
specified model. However, even “nonparametric” bootstrap distributions usually de-
pend on estimated parameters, and they apparently give results indistinguishable
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from those of the parametric bootstrap in some circumstances, as with the example
studied in detail in Section 5. Thus the analysis of the determinants of size distortion
of tests based on the parametric bootstrap is of general utility for judging when a
bootstrap test is likely to behave badly.

The P value discrepancy function is central to the results of Section 4. For
given nominal size, this function measures, as a function of the actual DGP, the
extent to which the actual size differs from the nominal size. Our principal results
can be summarized, and understood intuitively, in terms of the properties of this
function. The key point is that the probability that a bootstrap test will reject the
null hypothesis for given nominal level α, whatever the actual DGP, is the probability,
under that DGP, of a certain region in the space of the test statistic τ̂ and the
estimates of the model parameters θ. This region, which can be characterized purely
in terms of the P value discrepancy function, is that in which the value of τ̂ is greater
than the level-α critical value of the DGP characterized by θ. It is thus just the region
on one side of a level surface of the function.

For a given DGP satisfying the null hypothesis, the level of the P value discrep-
ancy function is the size distortion of the asymptotic test. However, this level has
no impact on the size of the corresponding bootstrap test. This is clear for pivotal
statistics, for which the P value discrepancy function is constant, and the bootstrap
test is exact. Even the first derivatives of the function, or equivalently the slope of
its level surface, influence the size distortion of a bootstrap test, to leading order,
only if the estimates of the parameters of the null hypothesis are biased. If they
are not, then values of the estimates that would cause the bootstrap to overreject
are compensated, to leading order, by values which would cause it to underreject.
A bias in the parameter estimates would, however, cause one effect to dominate the
other, and thus lead to a size distortion. With unbiased parameter estimates, the
leading-order size distortion is determined by the second derivatives of the P value
discrepancy function, that is, by the curvature of its level surface. Such curvature
will once again cause values of the parameter estimates leading to overrejection to
have a greater or smaller impact than those leading to underrejection.

It is important to stress the fact that, although the size distortions of bootstrap
tests that we have studied in this paper are real, they seem to be remarkably small
compared with those of asymptotic tests. In our Monte Carlo study, we went out
of our way to seek situations in which the bootstrap might be ill-behaved. Even so,
it was necessary to perform experiments of more than the usual accuracy, for very
small sample sizes, in order to discern any evidence of misbehavior, so as to provide
confirmation of our theoretical results. Of course, we cannot claim that bootstrap
tests will always perform this well, especially for models that do not fit into the
regression framework.

It is also important to stress the fact that, for many of the tests econometricians
routinely use, the bootstrap is not, with modern computing technology, a very time-
consuming procedure. We would urge the developers of econometric software to
make the computation of bootstrap P values for such tests a standard feature of
their programs, so that use of bootstrap tests might become routine.
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Appendix

In this appendix, we derive expression (23) for the P value discrepancy of the
bootstrap test in the one-parameter case. First, the function Q is redefined to take
as second argument a parameter θ rather than a DGP µ. Thus γ, σγ , and k are
defined by

(A.01) n−k/2σγγ = Q(α, θ0 + n−1/2e)−Q(α, θ0)

and by the requirement that the variance of γ should asymptotically be unity; see
(13).

The relation between γ and e can be obtained to desired order from (A.01). We
use the analogue of (10) in order to define the integer l and the function q(α, θ), and
then obtain by Taylor expansion:

(A.02)
n−k/2σγγ = n−(l+1)/2 e qθ(α, θ0) + 1−

2
n−(l+2)/2e2qθθ(α, θ0)

+ O(n−(l+3)/2),

where qθ and qθθ denote the first and second derivatives of q(α, θ) with respect to θ.
Since the variance of e is 1 by assumption, we see directly from (A.02) that k = l+1,
and that

(A.03) σγ = |qθ(α, θ0)|.

We can also see from (A.02) that γ and e are equal to leading asymptotic order.
Thus the function h(γ) of (20) is just φ(γ). Note that it is enough to define σγ as in
(A.03) in such a way that γ has variance unity to leading order asymptotically, since
any discrepancy at lower order can be caught in the function f in (20).

Let us assume for simplicity that qθ(α, θ0) is positive. Then, after removing
unnecessary powers of n and using (A.03), (A.02) becomes

(A.04) γ = e + 1−
2
n−1/2e2 qθθ(α, θ0)

qθ(α, θ0)
+ O(n−1).

This relationship may be inverted so as to express e in terms of γ:

(A.05) e = γ − 1−
2
n−1/2γ2 qθθ(α, θ0)

qθ(α, θ0)
+ O(n−1).

In order to implement (21), we also need an expression for f(γ, α) valid at least
to leading order. For this, we must use the information in (A.05) over and above the
simple asymptotic equality of e and γ. We wish to find the density of γ conditional
on τ = α. The density of e conditional on τ is just the product of the last two factors
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in (22). Thus, since e and γ are related, without reference to τ , by (A.04) and (A.05),
the density of γ conditional on τ = α is just

(A.06) φ(e)
(
1 + n−1/2a(e, α)

) de

dγ
.

where e is related to γ by (A.05), from which we compute

de

dγ
= 1− n−1/2γ

qθθ(α, θ0)
qθ(α, θ0)

+ O(n−1).

Thus (A.06) becomes

(A.07)
φ
(
γ − 1−

2
n−1/2γ2 qθθ

qθ
+ O(n−1)

)(
1 + n−1/2a(γ, α) + O(n−1)

)

× (
1− n−1/2γ

qθθ

qθ
+ O(n−1)

)
,

where qθθ and qθ without explicit arguments are evaluated at (α, θ0). In order to
simplify this expression, note that

φ

(
γ − 1−

2
n−1/2γ2 qθθ

qθ
+ O(n−1)

)
= φ(γ)

(
1 + 1−

2
n−1/2γ3 qθθ

qθ
+ O(n−1)

)
.

Thus, to leading order, (A.07) simplifies to

(A.08) φ(γ)
(
1 + n−1/2 qθθ

qθ

( 1−
2
γ3 − γ) + n−1/2a(γ, α)

)
.

If we had not assumed that j = 1, the factor in front of the third term inside the
large parentheses would have been n−j/2, and this term would not have been of
leading order for j > 1. Comparing (A.08) with (20) shows that, in the latter of
these expressions,

f(γ, α) =
qθθ

qθ

( 1−
2
γ3 − γ) + a(γ, α).

We may finally return to (21), and substitute in all the results we have obtained
for this special case. The integral will be written with dummy variable e rather than
γ, since the two random variables e and γ are asymptotically equal, and since it is
clearer intuitively to reason in terms of e, which is n1/2 times the estimation error in
θ̂, rather than γ. The size distortion of the bootstrap test is then

n−(l+2)/2qθ

∫ ∞

−∞
de e φ(e)

(
qθθ

qθ

( 1−
2
e3 − e) + a(e, α)

)
+ O(n−(l+3)/2).
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Since the fourth moment of the standard normal distribution equals 3, the above
expression is

(A.09) n−(l+2)/2

(
1−
2
qθθ + qθ

∫ ∞

−∞
de e φ(e) a(e, α)

)
+ O(n−(l+3)/2).

Alternatively, (A.09) may be expressed in terms of the derivatives of the P value
discrepancy function s, evaluated at (α, θ0). Except for a sign change, the result is
essentially the same:

(A.10) −n−(l+2)/2

(
1−
2
sθθ + sθ

∫ ∞

−∞
de e φ(e) a(e, α)

)
+ O(n−(l+3)/2).

Expression (23) of the text is simply (A.10) rewritten slightly.
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