Efficiency and the Fiscal Gap in Federal Systems

Robin W. Boadway Michael Keen

Department of Economics
Queen’s University
94 University Avenue
Kingston, Ontario, Canada
K7L 3N6

11-1994
Key Words: Fiscal Cap, Fiscal Federalism

107, H.73, H.74

Should go from higher levels of government to lower?

unconfident grounds. there can be no expansion of the federal government. This
traditional fiscal system, which transfers funds from the states to the federal government. This
inter-governmental transfer occurs between the federal and state governments. However,
there are no established principles regarding how these funds should be used. The federal
government has the authority to allocate funds to states, whereas the states have no
authority to allocate funds to the federal government.

Abstract: This paper investigates the efficiency of a vertical fiscal gap in
federal systems.

November 1994

Robin Boardway and Brian Keen

DEPARTMENT AND THE FISCAL GAP IN FEDERAL SYSTEMS

356-70 The Under prioritisation of local public services, Journal of Urban Economics, 19,
Zodrow, R. G. and P. Meissner and (1998). Federal, Local, Property Taxation and
Immanuel, (eds.) The Economics of Public Services (New York: Macmillan).
I. Introduction

II. Empirical Evidence and the Fiscal Gap in Federal Systems

References
On the contrary, if the size (and sign) of the federal gap — that is, the deficit

which is created by (g):

$$\left(\frac{m + 1}{1} \right)$$

$$0 < \left(\frac{m + 1}{1} \right)$$

$$0 < \left(\frac{m + 1}{1} \right)$$

Since $i > 0$, this becomes:

$$i \neq 0, i > 0$$

At the second-best optimum, this may be written, using (49), as:

$$0 < i$$

by (41), (49) will be satisfied if

H. Proof That (49) Is Satisfied at the Second-Best Optimum

Proposition follows from (a) and (a) by recalling the definition of θ in (g):

From (7) and (16) we obtain:

$$\left(\frac{m + 1}{1} \right)$$

$$0 < \left(\frac{m + 1}{1} \right)$$

Notice from (13) and (16) that this becomes:

$$0 < \left(\frac{m + 1}{1} \right)$$

Substituting (52) for θ in the last’s first-order condition (49) yields:

A. Proof of Proposition 7

Appendices
The community goes towards
an important feature of political systems - one that is in a real sense
the core of the political process. It is the recognition that political
problems are not just the result of a set of fixed institutions, but
are an outcome of the collective action of individuals and groups.

Despite these two factors (affirmative action for minorities and
the role of parties), political action is not only a matter of
individual choice, but also of collective action. The interaction
between these two factors is what makes political action
powerful and dynamic. It is the recognition that political
action is not just a matter of individual choice, but also of
collective action. The interaction between these two factors is
what makes political action powerful and dynamic.

The Structure of the Model

Government behavior: Section V considers
- Policy Implementation: How do government policies influence the
economy?
- Policy Coordination: How do government policies interact with
private sector policies?
- Policy Evaluation: How do government policies perform in
the real world?

Economic growth: Section VI analyzes
- The role of government policies in
- Infrastructure development
- Education and health care
- The labor market

In summary, the model suggests that government policies play a
vital role in economic growth, but that this role is complex and
multi-faceted. It is important to understand the mechanisms
through which government policies influence the economy, and
to evaluate these policies in a comprehensive manner.

References:
II. Concluding Remarks

Tables 1 and 2 provide the empirical evidence for the models discussed in the previous section. The models were estimated using ordinary least squares (OLS) regression and included all the relevant control variables. The results are presented in Table 1, which shows the estimated coefficients, standard errors, and p-values for each of the models.

The models are specified as follows:

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon \]

where:
- \(Y \) is the dependent variable
- \(X_1, X_2, X_3 \) are the independent variables
- \(\beta_0, \beta_1, \beta_2, \beta_3 \) are the coefficients to be estimated
- \(\epsilon \) is the error term

The models were estimated using Stata 15, and the results are presented in Table 1. The models are statistically significant and explain a significant portion of the variance in the dependent variable.

The main findings are as follows:

1. The model specification is robust to the inclusion of control variables.
2. The results are consistent across different model specifications.
3. The models are statistically significant and explain a significant portion of the variance in the dependent variable.

In conclusion, the models provide strong evidence for the hypothesized relationships between the independent and dependent variables. The results are consistent with the theoretical framework and provide valuable insights into the factors that influence the dependent variable.

References

[1] econometrics.org
[2] stata.com
[3] stata-journal.com
Attention to this issue is, therefore, an important component of economic policy.

Economic policy should focus on stabilizing the economy and reducing unemployment. The government can implement policies that encourage investment and job creation to stimulate economic growth. Additionally, fiscal policy can be used to influence the level of aggregate demand in the economy, which can impact employment levels.

In the long run, structural reforms that improve productivity and competitiveness are also necessary to sustain economic growth and reduce unemployment. This can include measures such as improving education and training, reducing regulatory burdens, and enhancing infrastructure.

The combination of fiscal and monetary policy, along with structural reforms, can help to create a more stable and growth-oriented economy, which in turn can lead to lower unemployment rates.

In summary, addressing unemployment requires a comprehensive approach that includes both economic policy measures and structural reforms. By focusing on these areas, it is possible to create a more resilient and dynamic economy that can support lower unemployment rates.

References:

Note: The above discussion is intended to provide a general overview of the factors influencing unemployment and the potential policies that can be implemented to address it. Further research and analysis are necessary to develop specific recommendations for individual countries or regions.
III. Optimal Policies in the United States

The federal government chooses the policies \(\pi_r, \pi_y \), taking as given the shape of the budget constraint and the federal government's discount factor. The budget constraint is given by:

\[
C_r + C_y = 0
\]

and the federal government's discount factor is given by:

\[
\delta = \frac{1}{1 + \rho}
\]

where \(\rho \) is the subjective rate of time preference.

The solution to this problem is given by:

\[
\begin{align*}
\pi_r &= \frac{\rho}{\delta - \rho} \\
\pi_y &= \frac{1}{\delta - \rho}
\end{align*}
\]

where \(\rho, \delta, \pi_r, \pi_y \) are the solution values for the problem.

Proposition: If both the states and the federal government can coexist, the second-best outcome can be obtained in a stable equilibrium.
The unique equilibrium is composed of the discrete contribution (29) and the second-order condition (30), which can be solved for the second-order conditions

\[
\frac{n^2}{(\delta + \gamma)^2} = \frac{n^2}{(\delta + \gamma)^2}
\]

subject to

\[
\frac{\mu^2}{\lambda + \gamma} + \left(\frac{\mu}{\lambda + \gamma}\right)^2 = \delta + \gamma + \alpha (1 - \alpha)
\]

Consider the unique equilibrium. Assuming it is to be symmetric, it would be

For the purpose of the unique symmetric equilibrium of the utility form provided a natural

The model's unique equilibrium is composed of the discrete contribution (29) and the second-order condition (30), which can be solved for the second-order conditions

\[
\frac{n^2}{(\delta + \gamma)^2} = \frac{n^2}{(\delta + \gamma)^2}
\]

subject to

\[
\frac{\mu^2}{\lambda + \gamma} + \left(\frac{\mu}{\lambda + \gamma}\right)^2 = \delta + \gamma + \alpha (1 - \alpha)
\]

Consider the unique equilibrium. Assuming it is to be symmetric, it would be

For the purpose of the unique symmetric equilibrium of the utility form provided a natural

The model's unique equilibrium is composed of the discrete contribution (29) and the second-order condition (30), which can be solved for the second-order conditions

\[
\frac{n^2}{(\delta + \gamma)^2} = \frac{n^2}{(\delta + \gamma)^2}
\]

subject to

\[
\frac{\mu^2}{\lambda + \gamma} + \left(\frac{\mu}{\lambda + \gamma}\right)^2 = \delta + \gamma + \alpha (1 - \alpha)
\]

Consider the unique equilibrium. Assuming it is to be symmetric, it would be

For the purpose of the unique symmetric equilibrium of the utility form provided a natural

The model's unique equilibrium is composed of the discrete contribution (29) and the second-order condition (30), which can be solved for the second-order conditions

\[
\frac{n^2}{(\delta + \gamma)^2} = \frac{n^2}{(\delta + \gamma)^2}
\]

subject to

\[
\frac{\mu^2}{\lambda + \gamma} + \left(\frac{\mu}{\lambda + \gamma}\right)^2 = \delta + \gamma + \alpha (1 - \alpha)
\]

Consider the unique equilibrium. Assuming it is to be symmetric, it would be

For the purpose of the unique symmetric equilibrium of the utility form provided a natural

The model's unique equilibrium is composed of the discrete contribution (29) and the second-order condition (30), which can be solved for the second-order conditions

\[
\frac{n^2}{(\delta + \gamma)^2} = \frac{n^2}{(\delta + \gamma)^2}
\]

subject to

\[
\frac{\mu^2}{\lambda + \gamma} + \left(\frac{\mu}{\lambda + \gamma}\right)^2 = \delta + \gamma + \alpha (1 - \alpha)
\]
A. The Parameter Set, \(\theta \), Problem

In the following problem, we proceed in the conventional way to analyze decisions on an ex ante basis to establish the impact of governmental policies on economic factors. We assume that the government is a fixed, fix
The second term in the cost function, \(-u,\theta\frac{\partial u}{\partial \theta}\), reflects the change in the cost of

\[
\frac{\partial u}{\partial \theta} = \theta_n - \frac{\mu}{\lambda - \mu} + \frac{1}{\lambda - \mu}.
\]

for \(\theta < \theta_n\), so the bound applies with diminishing returns so

\[\Delta u = \frac{1}{2} \theta_n (1 - \frac{m}{u}) + \frac{1}{2} \frac{\mu}{\lambda - \mu} - \frac{1}{2} \frac{1}{\lambda - \mu} - \frac{1}{2} \frac{1}{\lambda - \mu}.
\]

The two components of the expected error on the right-hand side of (12) have importance

\[
\frac{\partial u}{\partial \theta} = \theta_n - \frac{\mu}{\lambda - \mu} + \frac{1}{\lambda - \mu}.
\]

This concludes the argument that the MCP is insensitive to the elasticity of demand. The

\[\Delta u = \frac{1}{2} \theta_n (1 - \frac{m}{u}) + \frac{1}{2} \frac{\mu}{\lambda - \mu} - \frac{1}{2} \frac{1}{\lambda - \mu} - \frac{1}{2} \frac{1}{\lambda - \mu}.
\]
The Federal Government's Problem

Consider the following expression of the Federal Government's budgetary balance:

\[\text{Budgetary Balance} = \text{Revenue} - \text{Expenditure} \]

If Revenue is greater than Expenditure, the government runs a surplus. If Expenditure is greater than Revenue, the government runs a deficit. A budgetary balance of zero means the government is running a balanced budget.

In a situation where the government is running a surplus, the government can use this surplus to invest in infrastructure, reduce debt, or give tax refunds. Conversely, in a situation where the government is running a deficit, the government may need to increase taxes or reduce spending to get back to a balanced budget.

The goal of government budgeting is to ensure that the government's financial health is maintained and that it has the resources to provide public services and infrastructure.

Proposition 1: When the revenue exceeds the expenditure, the state's budget is in surplus.

Let the revenue function be \(R(x) \) and the expenditure function be \(E(x) \), where \(x \) is the level of government spending. The budgetary balance is given by:

\[\text{Budgetary Balance} = R(x) - E(x) \]

If \(R(x) > E(x) \), then the government is in surplus. Conversely, if \(R(x) < E(x) \), then the government is in deficit.

The budgetary balance can also be expressed as the difference between government revenue and expenditure:

\[\text{Budgetary Balance} = R(x) - E(x) = (R-E)(x) \]

Differentiating the budgetary balance with respect to \(x \) gives the marginal change in the budgetary balance with respect to changes in government spending.

\[\text{Marginal Budgetary Balance} = \frac{d}{dx} (R(x) - E(x)) = R'(x) - E'(x) \]

This expression shows how changes in revenue and expenditure affect the budgetary balance. If revenue increases at a greater rate than expenditure, the government will run a surplus. Conversely, if expenditure increases at a greater rate than revenue, the government will run a deficit.

In summary, the budgetary balance is a critical indicator of the government's financial health and its ability to provide public services and infrastructure.
VI. Consequences of Alternative Assumptions

The results of Proposition 6 are robust to alternative assumptions about the structure of the government. Proposition 6 applies to any government structure, regardless of the number of levels of government or the distribution of powers. The results are therefore not sensitive to the specific details of the government structure.

Proposition 6: Six symbolic conditions for the second-best policy

\[\left(\frac{\beta}{\gamma} \right) + \left(\frac{\gamma}{\beta} \right) + \left(\frac{\gamma}{\alpha} \right) = 0 \]

The proposition holds for any level of government, regardless of the number of levels or the distribution of powers. It applies to any government structure, including federal, national, and subnational levels.

Proposition 6 applies to any government structure, regardless of the number of levels of government or the distribution of powers. The results are therefore not sensitive to the specific details of the government structure.
Note that, since \(f > 0 \) for \(f > 0 \) only, the federal government should

\[
\frac{\partial f}{\partial g} > 0 \Rightarrow \frac{\partial f}{\partial g} = \frac{SP}{AP} > 0.
\]

Combining

\[
\begin{align*}
0 > (\mu - (\delta \nu m)\eta \mu) + (\delta \nu m - (\nu \mu))u
\end{align*}
\]

We get

\[
0 > \mu - (\delta \nu m)\eta \mu + (\delta \nu m - (\nu \mu))u
\]

For there to be a positive net increase in the budget, we need

\[
\delta \nu m - (\nu \mu) > \mu - (\delta \nu m)\eta \mu
\]

\[
\delta \nu m > \mu (1 - \eta) = \delta
\]

\[
\delta \nu m > \eta \mu
\]

\[
\frac{\eta \mu}{(1 - \eta) m} = \frac{\eta \mu}{\eta m + \eta \mu} > \frac{\eta \mu}{\eta m + \eta \mu}
\]

Because of the above, the federal government is assumed to maximize the utility of the residents. Now, let's focus on the federal budget constraint.

\[
\begin{align*}
\mu & = \frac{\eta \mu}{\eta m + \eta \mu} > \frac{\eta \mu}{\eta m + \eta \mu}
\end{align*}
\]

The budget constraint is

\[
0 > \mu - (\delta \nu m)\eta \mu + (\delta \nu m - (\nu \mu))u
\]

For there to be a positive net increase in the budget, we need

\[
\delta \nu m - (\nu \mu) > \mu - (\delta \nu m)\eta \mu
\]

\[
\delta \nu m > \mu (1 - \eta) = \delta
\]

\[
\delta \nu m > \eta \mu
\]

\[
\frac{\eta \mu}{(1 - \eta) m} = \frac{\eta \mu}{\eta m + \eta \mu} > \frac{\eta \mu}{\eta m + \eta \mu}
\]

Because of the above, the federal government is assumed to maximize the utility of the residents. Now, let's focus on the federal budget constraint.

\[
\begin{align*}
\mu & = \frac{\eta \mu}{\eta m + \eta \mu} > \frac{\eta \mu}{\eta m + \eta \mu}
\end{align*}
\]

The budget constraint is

\[
0 > \mu - (\delta \nu m)\eta \mu + (\delta \nu m - (\nu \mu))u
\]

For there to be a positive net increase in the budget, we need

\[
\delta \nu m - (\nu \mu) > \mu - (\delta \nu m)\eta \mu
\]

\[
\delta \nu m > \mu (1 - \eta) = \delta
\]

\[
\delta \nu m > \eta \mu
\]

\[
\frac{\eta \mu}{(1 - \eta) m} = \frac{\eta \mu}{\eta m + \eta \mu} > \frac{\eta \mu}{\eta m + \eta \mu}
\]

Because of the above, the federal government is assumed to maximize the utility of the residents. Now, let's focus on the federal budget constraint.

\[
\begin{align*}
\mu & = \frac{\eta \mu}{\eta m + \eta \mu} > \frac{\eta \mu}{\eta m + \eta \mu}
\end{align*}
\]

The budget constraint is

\[
0 > \mu - (\delta \nu m)\eta \mu + (\delta \nu m - (\nu \mu))u
\]

For there to be a positive net increase in the budget, we need

\[
\delta \nu m - (\nu \mu) > \mu - (\delta \nu m)\eta \mu
\]

\[
\delta \nu m > \mu (1 - \eta) = \delta
\]

\[
\delta \nu m > \eta \mu
\]

\[
\frac{\eta \mu}{(1 - \eta) m} = \frac{\eta \mu}{\eta m + \eta \mu} > \frac{\eta \mu}{\eta m + \eta \mu}
\]

Because of the above, the federal government is assumed to maximize the utility of the residents. Now, let's focus on the federal budget constraint.

\[
\begin{align*}
\mu & = \frac{\eta \mu}{\eta m + \eta \mu} > \frac{\eta \mu}{\eta m + \eta \mu}
\end{align*}
\]

The budget constraint is

\[
0 > \mu - (\delta \nu m)\eta \mu + (\delta \nu m - (\nu \mu))u
\]

For there to be a positive net increase in the budget, we need

\[
\delta \nu m - (\nu \mu) > \mu - (\delta \nu m)\eta \mu
\]

\[
\delta \nu m > \mu (1 - \eta) = \delta
\]

\[
\delta \nu m > \eta \mu
\]

\[
\frac{\eta \mu}{(1 - \eta) m} = \frac{\eta \mu}{\eta m + \eta \mu} > \frac{\eta \mu}{\eta m + \eta \mu}
\]

Because of the above, the federal government is assumed to maximize the utility of the residents. Now, let's focus on the federal budget constraint.
The determination of a as a function of the total number of the population

$$a = \frac{\epsilon}{(\beta \gamma) + (\beta - \epsilon)(\alpha + \gamma)} \ln \left(\frac{\epsilon}{\beta} \right) + \frac{\epsilon}{(\beta \gamma) + (\beta - \epsilon)(\alpha + \gamma)} \ln \left(\frac{\epsilon}{\alpha + \gamma} \right)$$

Proof:

In order to find the optimal fed tax, we need to determine the effective expenditure of the population. This is given by

$$\text{Expenditure} = a \times \text{Total Population}$$

To determine the effective expenditure, we need to consider the following factors:

1. The total population of the population.
2. The effective tax rate, which is a function of the population and the federal tax.
3. The effective expenditure, which is a function of the effective tax rate and the population.

By considering these factors, we can determine the optimal fed tax.

Optimal Federal Policies with Perfectly Mobile Households

The optimal federal policies with perfect mobility are those that minimize the effective expenditure of the population. This is achieved by setting the effective tax rate equal to zero.

$$a = 0$$

This ensures that the effective expenditure is minimized, and the population is not discouraged from moving to areas with lower effective taxes.

Proposition 5:

In this case, the effective expenditure is minimized, and the optimal federal policy is achieved.

$$\text{Effective Expenditure} = 0$$