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Abstract

This paper examines the expected utility effects of adding one risk to another. In
comparison to related works, it places fewer restrictions on utilities and more structure on
risky asset returns. The paper, entailing little loss of generality, uses discrete variables
defined on a common domain (hereafter standardized variables) to find sufficient conditions
for either of two (dependent or independent) variables to dominate their sum in the second
degree. It then finds (higher order) sufficient conditions for either of the variables to
dominate their sum in the third degree. While utilities are only restricted to be increasing
concave, the expected utility differences for the respective risk positions are the same as if
the investors were respectively proper or standard risk averse (Pratt-Zeckhauser [1987],
Kimball [1993]).

Presented to the 1994 Summer Meeting of the Econometric Society, Quebec City. This is
the second of two companion papers.



Standardized Variables, Risks, and Preference
Frank Milne and Edwin H. Neave
1. Introduction
1.1 Review of Literature

Properties of risky investment demand are usually established by restricting utilities.
For example, Pratt-Zeckhauser [1987] (hereafter PZ) and Kimball [1993] define classes of
utilities permitting them to characterize expected utility relations between a given variable
and the sum of two independent variables.

The PZ and Kimball results, like those to be presented below, are useful in insurance
and other applications. For example, suppose a client has insured against a given risk. If she
must then face an additional (independent or dependent) risk, will that increase the
insurance premium she is willing to pay? As a second example, if an exporter gains a second
export contract yielding the same rate of return as a first, will his unhedged risk, relative to
the contracts’ return, be viewed as greater or lesser?

Previously established results can be viewed as research aimed at explaining such
choices:

"Proper risk aversion is a descriptive property of a utility function with
important implications for behavior. If its normative appeal is accepted, it
should be useful in' refining the strategy that began by developing the von
Neumann-Morgenstern utility from axiomatic restrictions...." (PZ [1987, p.
153].)

However, Milne-Neave [1994b] observe that existing research has not yet examined how
investors might respond to further restriction of the variables themselves, and the present
paper addresses this question by examining how fewer restrictions on utilities, along with
additional structure on risks, can imply behavior similar to that in PZ and in Kimball. In so
doing, the paper both complements existing results and raises anew an old question:' is
observed behavior attributable to preferences or to probabilities?

1.2 Present Approach

This paper uses a method of standardized variables to obtain its results with only
minimal sacrifice of generality. The paper first finds new relations between dominance
criteria and conditions on random variables’ moments. Next, the paper analyzes the expected
utility effects of adding one variable to another, finding conditions sufficient for either of
two (dependent or independent) variables to be preferred to their sum by second degree

'See, for example, Ward Edwards [1953].
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stochastic dominance. This result establishes a closer connection between dominance and
proper risk aversion, and also finds results like those of PZ [1988], but for dependent as well
as independent variables.? In addition, the paper finds higher order sufficiency conditions
for either of two variables, dependent or independent, to be preferred to their sum by third
degree dominance. This result establishes a closer connection between standard risk aversion
and third degree dominance, and also extends some of Kimball’s [1993] results to dependent
as well as independent variables.

The paper is organized as follows. Section 2, after reviewing some of the properties
of standardized variables established in Milne-Neave ([1994a], [1994b]), offers new
interpretations of dominance criteria in terms of conditional moments. Section 3 finds
conditions on risks sufficient for any risk averter to regard them as if she were properly risk
averse, while Section 4 finds (higher order) conditions on risks sufficient for any decreasing
absolute risk averter to regard them as if his utility satisfied standard risk aversion. Section

5 concludes.
2. Interpreting Dominance Criteria

This section interprets dominance criteria in terms of conditional moments.
2.1 Preliminaries

If U is the class of strictly increasing strictly concave utilities, a random variable A
is said to be preferred to B by second degree stochastic dominance iff

E{ u(4) } = E{ u(B) },u € U. @.1)

If A and B are discrete variables, A stochastically dominates B in the second degree if and
only if’

F(e; < Y Fy(de, ; m € J, , 2.2)
k j=k

j=-

where Fy(j) is the distribution function of X, cf. Hadar-Russell [1969].

Next, consider a family of discrete random variables, generically denoted X, with the
common domain J, = { -k, -k+1, ..., k }. In this case,

2PZ discuss extensions to dependent variables and to stochastic dominance, but do not
obtain the conditions for such extensions.

’To eliminate trivialities, (2.2) is assumed to hold strictly for at least one m € Ji.



EjEj'(j'])=1’

a property that simplifies the rest of the paper’s analysis. In particular, X can be described
by its probability vector x, where the components of x are indexed according to outcome
values, .

X= (Xposx ) = 0. 2.3)

In (2.3), ' denotes transpose, and e’x = 1, where e is a (2k+1)-dimensional vector of ones.
Then

y=Pr{X=j}j€E ], (2.4)

where Prmeans probability. Different variables need not have exactly the same outcomes:
if j is not a realizable value of X, x; = 0.

Assuming henceforth that 4 and B are both defined on J,, let
d=b-a 2.5)
Then
d=Pr{B=j}-Pr{Ad=j}j€EI,

and e'd = 0.
2.2 Second Degree Dominance

Dominance relations among variables defined on J, can be expressed by rewriting
(2.1) to show that A stochastically dominates B in the second degree if and only if (cf.

Milne-Neave [1994a], [1994b])

B=S5d=S(Sd =0, (2.6)
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where S is a (2k+1) x (2k+1) matrix with ones on and below its main diagonal, zeroes

above, while §? = SS. Examples of S and S? are

1000

1100
S =

1110

1111

and

1 000
S2=2100

3210

4 3 2 1

Inequality (2.6) means 8; = O for all j € J,, and 8; > O for at least one j € J,.
The system (2.6) can be solved to express d in terms of 8:*
d =S8 =(Bs,Bur1~2Bs,Busz-2Bsss + B oo Bi- 28es + Brz)’
where S? = (SS)” . Whether or not (2.6) is satisfied,
Bis = B, = E(4) - E(B),
cf. Milne-Neave [1994a]. Moreover since B,; = f8;,d, =- B, + Bis -

For any probability vector x, $°x is a vector whose j’th component is:
J

(§%); = Y G+1-dx, = [ (G+1) - EX < j}] Pr X < j},

i=-k

2.7

(2.8)

where E{ X < j } means expectation conditional on X achieving no outcome greater than
J,and Pr{X < j} is the probability that X achieves no outcome greater than Jj. Thus,

*The numbers d, j € J,, need not all be positive, but since both a and b are

probabilities a -d = b > 0, a condition satisfied by (2.9).



recalling (2.5), A dominates B in the second degree iff

($%d); =[G+ -EB <j1PrB <) 09
G+ -EU<pIPridsipa0jed,. '

Conditions (2.9) show that ranking by second degree dominance imposes restrictions
on successive conditional means. The applications of Section 3 and 4, considering dominance
relations between X, Y and Z = X + 7Y, find that related restrictions on the successive
conditional means of X, and further conditional on fixed values of Y, is sufficient for Z to
be dominated by Y in the second degree and in the third degree respectively.

2.3 Third Degree Dominance

Suppose R is the class of non-decreasing concave utilities whose third difference is
non-negative; i.e.,

uj+3 = 3uj+2 + 3uj+1 = uj 2 0, (2.10)

J € Jus ~ { je2 » Je1 » Ji }» where ~ means does not include. Then continuing to study
variables defined on J, , A dominates B by T.SD iff

E{ u(4) } = E{ u(B) }

for any u € R. Analogous to (2.6), A stochastically dominates B in the third degree if and
only if:

vy=8d=0
and’ 2.11)
[E(4) - EB)] = 0;

see Milne-Neave [1994a]. In (2.11) d = b - a as before. An example of $° is:

SWhitmore [1970] shows E(4) = E(B) is necessary if A is to dominate B by TSD.



1000
3 - 2100 2.12)
310
10 6 3 1

More generally, the elements of $° can be written in the form qk, 2) = k!/(k-2)!2! and
q(, k) = 0ifj <k. Also as in Section 2.2,

d = S3‘Y = (Yo -3v0+71 3o 3vi+2 “Yo+3v-3v:+ys5 s “Yes T3V 3Vis +v) .

Moreover,

Yer = Ye2 ¥ Ber» Ve = Ve + B (2.13)

and since by (2.8) 8, = B, ,

Yez = 2V + v = 0.

Finally,

j
3 = i+2-0G+1-1 , =
(8%), i;k[(] 2-0)(+1-9)21x, 2.14)

[ (G%+3j+2)/2 ) - ( 2j+3)/2 )E X < j} + (1/2)EX? < j} 1PrX < jb.

where E{ X* < j} is the second moment about zero, conditional on X achieving no
outcome greater than j.

Conditions (2.14) interpret the necessary and sufficient conditions for ranking by third
degree dominance as restrictions on the first and second conditional moments. The
application of Section 4, considering dominance relations between X, Yand Z = X + Y,
finds a restriction on the conditional means of X that is sufficient for Z to be dominated by
Y in the third degree. As would be expected upon noting that the utility assumptions for
third degree dominance are more restrictive than for second degree dominance, the new
restriction on risks is similar to but less stringent than those sufficient for second degree
dominance. :



3. Proper Risk Aversion and Second Degree Dominance

This section reviews the notion of proper risk aversion, develops notation for jointly
distributed random variables, and then finds sufficiency conditions for dominance of the sum
of two variables by one of its summands.

3.1 Preliminaries

Given a von Neumann - Morgenstern utility u, deterministic wealth w and
independent random variables X and Y, u is said to be fixed wealth® proper (cf. PZ [1988])
if

E{uw +2) } <E{uw +X) }
where Z = X + Y, whenever
E{ uw +X) } < E{ uw) } | @G.1)
and
E{uw +7Y) } < E{ uw) }. 3.2)

The PZ results for proper risk aversion are based on restricting utilities. This paper’s results
are based on further restrictions of discrete variables defined on J, .

A necessary condition for (3.1) is Pr {X = j} > O for at least one outcome j < 0.
Similarly, a necessary condition for (3.2)is Pr{ ¥ =j } > O for at least one outcome j < 0.
If (3.1) and (3.2) are required to hold for all u € U, it is also necessary that E(X) < 0and

EY) < 0.

Lemma 3.1 next shows that if X and Y are independent random variables which
satisfy (3.1) and (3.2) for all ¥ € U, then X dominates Z by SSD.

Lemma 3.1: Let X and Y be independent random variables such that E(X) < 0. Then Y
stochastically dominates Z in the second degree.

SSince the signs of derivatives and therefore such properties as concavity are preserved
under expectation, it suffices here to consider fixed rather than random wealth (cf. Kimball
[1993]). Some properties such as decreasing absolute risk aversion are also preserved under
both maximization and expectation, a characteristic Kimball refers to as heritability.
Although he does not use the term, Neave [1971] obtains heritability results for the Arrow-
Pratt indices, preceding the sources cited by Kimball.
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Proof: Let u € U. By the definition of Z, the independence of X and Y, and by concavity,
E{fuw +Z|Y =j) } =E{fu(w+X +j)} < uw + EX) +j).
Then employing the law of iterated expectations
E(Euw+Z|Y=))}} < E{utw+EQ)+)} < Efumw+j)} = Efutw + 1))
foranyu € U R

Corollary: If X and Y are independent random variables such that E(Y) < 0, then X
stochastically dominates Z in the second degree.

Lemma 3.2: When they hold for any u € U, (3.1) and (3.2) are necessary as well as
sufficient for SSD.

Proof: See Hadar-Russell [1969]; Milne-Neave [1994a].
3.2 Standardizations for Two Random Variables

This section’s principal theorem will be established using the standardized variables
developed in Section 2. To represent sums as standardized random variables, note that for

any X and Y defined on J,, Z is defined on J, . Thus it is convenient to define X and Y on
J, by assigning a probability of zero to unattainable outcomes. For example,

= (0-2/(’ ceey O-k-l-' y-k’ y-k+1 ) seey yk ) 0k+1’ cesy 021‘),

is now regarded as a probability vector of dimension 4k+ 1, with the subscripts on the zeroes
indicating outcomes which always have probability zero.

Continuing to assume that all vectors are defined to have dimension 4k + I, a
necessary and sufficient condition for Y to dominate Z by SSD is, by (2.6),

S[z-y] =0, (3.3)

where z is the probability vector of Z and S is understood to have dimension (4k+1) x
(4k+1). A representation using joint probabilities will make it easier to interpret (3.3). Let

M= |zl i,j€E€
where

z; =Pr{X=iY=j}



Then
Pr{Z =m} =2+ Zymiss * oot Zimsi = Zun (3.4
m=i+ji€l. ,j€J.
Next, let
Pr{Z=m} =e[D,®M Je.
where D,, is a matrix of zeroes except for ones on the positively sloped diagonal whose

outcomes add to m € J, . The symbol ® indicates element-by-element multiplication of
matrices. To illustrate, if ¥k = 3 and j = -2 then

0O o 0 0 1 o0 O

0O 0 0 1 0 o0 O

0O 0 1 0 0o o0 O
D, = 0 1.0 0 0 O O

1 0 0 0 o O O

0 0 0.0 O o0 O

0O 0 0 O o o o.
Similarly,

Pr{Y=j}=e[COM]Je

where C; is a matrix of zeroes, with ones in the column corresponding to outcome j. If
J € Ju ~ Ji, C; = 0. Again for illustration, still taking ¥ = 3 but now letting j = I,

0

|
Ocoooocoo
oOooooooo
ocoocoooooo0o
Ooooooo
FRRPRRERR
oOoooooo
coooocoo

To denote weighted conditional means, let
E{X|Y=j}Pr{Y=j} =eK-COMe (3.5)

where K is a matrix with the vector ( -k, ..., k )’ composing its main diagonal, and zeroes
everywhere else.

Next rewrite the dominance condition (3.3) in terms of individual rows; i.e.,
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{S[z-y]} =0) € Jy. (3.6)
To find sufficiency conditions which satisfy inequalities (3.6), rewrite them as
{Sz-y]} =el (T -U )®M Je; j € Iy
where |
J
Tjeig;k (+1-i)D,

and

j-k
U=Y (+1-k-iC; .

i=-2k

For example taking k = 3 and j = -2 as before,

|
N
1
(&
(8]

Il
corNWAWM
CoOOoORNW
CoOO0OoORNW
coococorN
coocoococor
Ooooocoo
Ooooooo

|
(SESE NSNS ESEN]
RPRRERRBRRP
coooooo0o
cocoooooo
Ocoooooo
ocoooooo
Ooooococoo

Next, define the cumulative sums of conditional means as

J
F=K) C,.
i=-2k

Define matrices 7; using the following two steps. First, let the upper left hand corner

element equal j + 2k + I, the elements on the adjacent second diagonal (elements (1,2)and
(2,1)) equal j + 2k, and so on. Second, set all the elements in columns j + I, ..., k equal
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to zero. By construction, T; = max{ T, 0 }, where the maximization is understood as being

taken on an element by element basis. Continuing the previous example for k = 3,j = -2,

(cNoloNeNoNeoNo

|

N

|

(=]

N

]
FORNMDWSWM
| .
NEHEORKNDWD
Ooocoooo
coococooo
Ocoococooo
coooooo
ocooooooo

[
NN N
RPRPBRR R R
ocooocooo
oOoooooo0o
ocoocoooo
ocooocooo

It follows immediately that 7', - U, = -F,, and in a similar fashion 7, - U, = -F; ,j € J, .
We can now establish
Theorem 3.3: If
LE{X|Y =j}Pr{Y =j} =e[F, ®M Je < 0;] € Jy,

then
{S°[z-y]}; =e[(T;-U)OM Je = 0;j € Jy.

Proof: By construction of T,
e[ (T, -U; )®M Je z'e'[ (T; -U; )J®M Je = -e'[ F; ®M Je.
Since by hypothesis
e[ F, @M Je > 0;] € Jy,
the desired conclusion follows. l

Remark: Appendix I shows how combined matrices can be set up to prove the Theorem for
all j simultaneously.

Remark: The sufficiency conditions of Theorem 3.3 rule out certain forms of negative
correlation between X and Y. To see this, let Y be such that Pr{Y = -j} = Pr{Y =j} >0
for all j € J,, thus implying that E{ Y } = 0. Take X = -Y. Then X and Y are perfectly
negative correlated, Z = 0 and Z dominates Y in the second degree. There is, however, no
contradiction of the theorem: the example frustrates the conditions of Theorem 3. 3 since,
for example, Y can be specified so that E{f X|Y = -k } > 0.

Finally, while the conditions of Theorem 3.3 are only sufficient, they do have an
intuitive appeal. Moreover, the examples of Appendices I and II suggest that finding
necessary conditions is not a straightforward task.
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4. Standard Risk Aversion and Third Degree Dominance

This section first reviews the concept of standard risk aversion, then considers
relations between standard risk aversion and third degree dominance for either dependent
or independent variables.

4.1 Preliminaries

Given a von Neumann - Morgenstern utility u, deterministic wealth w and
independent random variables X and Y, u is said to be standard risk averse (Kimball [1993])
if

E{uw +2) } <E{f uw +X) } 4.1)
whenever
E{ u'w +X) } 2 E{ u'w) } (4.2)
and
E{ uw +7Y) } < E{ uw) }. (4.3)

A necessary condition for (4.2) is that Pr{ X =j } > 0 for some outcome j < 0. Similarly
it is necessary for (4.3) that Pr{ Y = j } > O for some outcome j < 0. As before, E(Y) < 0
is also necessary if (4.3), the same condition as (3.2), is to hold for all u € U.

The rest of this section considers utility functions u € U*, the set of strictly
increasing strictly concave utilities with u''’ = 0. As is well known, ¥ € U* implies that u
exhibits decreasing absolute risk aversion.

Lemma 4.1: Condition (4.2) holds for every u € U* iff E(X) < O.

Proof (Sufficiency): Suppose E(X) < 0. For any u € U*, convexity of u’ implies that
E{u'w+X) } =u'(w+EX) = u'(w).

Proof (Necessity): Suppose i) E(X) > Oand ii) E{ (u'(w+X) } = u'(w) for some u € U*.

Letu'(t) =1+&,¢t<wu'w=I,and u'(t) =1-&,t > w. But then i) and the form of u

imply that u'{ w + E(X) } <u'(w), contradicting ii). l

If X satisfies (4.2) and the conditions of Lemma 4.1, it also satisfies (3.1). Moreover,
if Y satisfies (4.3), the same condition as (3.2), then Lemmas 4.1and 3.1 together imply that
X dominates Z by SSD, and Y dominates Z by SSD. That is, when X and Y are independent
the risks analogous to standard risk aversion are also analogous to proper risk aversion; in
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the setting of this paper the only role played by restricting u to U* is to permit using (4.2)
instead of (3.1).

4.2 Third Degree Dominance

Theorem 4.2 establishes that for u € U* we can find variables which, when summed,
are regarded as if the investors assuming the combined risks were standard risk averse. That
is, Theorem 4.2 establishes sufficiency conditions such that X and Y dominate Z by TSD.
Since TSD can rank some variables that cannot be ranked by SSD, the sufficiency conditions
of Theorem 3.3imply the sufficiency conditions of Theorem 4.2,but the converse is not true.

Theorem 4.2: Let X and Y be random variables such that E(X) = E(Y). Then
E{ uw +X) } = E{ uiw +Y) } for every u € U*iff S’(y -x) = 0.

Proof: See Milne-Neave [1994a].

Using Theorem 4.2, we now establish conditions for TSD similar to the SSD
conditions of Theorem 3.3.Let

Wo = To Wy =Wy + T, ,j € Jp ~ {2k }.
In this case W, has a one in the upper left hand corner and zeroes everywhere else, W, .,
has a three in the top left corner, 1’sin the two positions on the adjacent second diagonal,
and so on. Finally, W, has the element g(4k+2, 2) in the upper left-hand corner, the
elements g(4k+1, 2) along the second diagonal adjacent to the upper left hand comer, ...

, (2, 2) along the last of the successive second diagonals. The binomial coefficients q(j, k)
are defined immediately following (2.12).

Next, let
Oy = Uy,Q = o T Uj—ltj € Jy ~ { -2k }.
Then

Q =0,j€E {2, ..., k1}.
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For j € {-k, ..., 2k}, the Q, have the vectors
qk+j+2,2)-(-1, ..., 1)’

qk+j+1,2)-(-1, ..., 1)’,

q(G+2, 2)(-1, ..., 1)’

forming the first j + k& + I columns, and zeroes in any remaining columns. In particular, the
first column of @, is a constant (2k+1)-vector whose components all equal g(3k+2, 2), the
second column a vector with components q(3k+1, 2), and the last column a vector with

components q(k+2, 2).

For example taking k = 3,j = 0,

28 21 1510 6 3 1 10 6 3 1 0 0 O
211510 6 3 1 O 10 6 3 1 0 0 O
1510 6 3 1 0 O 10 6 3 1 0 0 O
Wo = Q = 10 6 3 1. 0 0 0 -10 6 3 1 0 0 O
6 3 1 0 0 0 O 10 6 3 1 0 0 O
310 0 0 0 O 10 6 3 1 0 0 O
10 0 0 0 O O 10 6 3 1 0 0 oO.

Finally, let
Gy =Fy,G =Gy +F,,j€Jy~ {2k}

Next, define the matrices W; according to the following two steps. First, subtract the
vector

(qk+1,2),q(k, 2), ...,q92,2),0,0,q(2,2), ..., qk,2))’

from each of the first £ +j + 1 columns of W, Second, set all the elements in columns j
+ 1, ..., k equal to zero. By construction, W, = W, , and it follows that W - Q, = -G; .
Continuing the previous example for k = 3,j = 0,

2215 910 0 O O 10 6 3 1 0 0 O
18 12 7 6 0 O O 10 6 3 1 0 o0 O
14 9 5 3 0 0 O 10 6 3 1 0 o0 O
Wg = Qp = 10 ¢ 3 1. 0 0 O -10 6 3 1 O O O
6 3 1 0 0 o0 O 10 6 3 1 0 o0 O
2 0-1-1 0 0 O 10 6 3 1 0 0 O
-2 -3 -3-3 0 0 O 10 6 3 1 0 o0 oO.
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Noting that

J
Y G+1-DE( Xjy=i }PriY=i) ; jeJ,

i=-k
= e'[(G)®M]e; j € J,,

we can establish
Theorem 4.3: If

J

Y G+1-DE( X1¥=i }Pr{Y=i} < 0; jeJ, . (2.16)

i=—k
then

{S[z-y]} =€ (W,-Q0)®OM Je = 0;j € Jy.
Proof: By construction of W,
e[ (W, -Q )®M Je = e'[ (W;-Q, )OM Je = -e'[ G; QM |Je.
Since by hypothesis
e[ G ®M Je = 0;j € Jy,
the desired conclusion follows. l

Remark: Appendix II shows how combined matrices can be set up to prove the Theorem
for all j simultaneously.

While the conditions of Theorem 4.3are only sufficient, they have an intuitive appeal
similar to those of Theorem 3.3.Moreover, they permit comparing analogues to proper and
to standard risk aversion in a manner similar to the comparisons of Kimball [1993].

Since TSD requires signing the utilities’ first three derivatives, its preference
assumptions are more restrictive than those for SSD, which requires signing only the first
two. As a result, TSD permits comparing a larger class of random variables than SSD.
Accordingly, the sufficiency conditions established in Theorem 4.3 are less restrictive than
those established in Theorem 3.3.
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5. Conclusions

This paper used standardized variables to establish new portfolio theoretic results.
The paper extends both PZ and Kimball by finding classes of returns, for either dependent
or independent risky assets, to which investor attitudes are similar to those implied by
proper or by standard risk aversion. To do so, it defines one class of variables which can be
ranked in relation to their sums by second degree dominance, and a second class which can
be ranked in relation to their sums by third degree dominance.

By showing that restrictions on asset returns can imply investor attitudes similar to
those implied by restricting utilities, the paper raises a familiar question in descriptive
economics. Whenever the behaviors discussed here are encountered in practical contexts,
they may ultimately prove to be consequences of either preferences or probabilities.
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Combixied Coefficient Matrices for Theorem 3.3

Appendix I

Example for k& = 3.

o 0

11 10
10

12
11

13
12

10

11
10

10
10

10

10

10
10

10

-3

-3 -3 -3 -3 -3 -3
-2 -2 -2 -2

-3
-2

-2 =2

=2

=2

0O O
1 1

0
1

0O O
1 1

-1 -1 -1-1-1 -1 -1
0 0
1 1

o o

AN ™M

T-U+F

The last 2k+1 columns of the T matrix form 7, , the 2k+ columns beginning one
to the left of that form T.,, ,and so on for all remaining j. The construction is exactly the

same for the matrices U; and F; from U and F respectively.
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Appendix II: Combihed Coefficient Matrices for Theorem 4.4

Example for k = 3.

W
91 78 66 55 45 36 28 21 15 10 6 3 1 0O 0O O O O O
78 66 55 45 36. 28 21 15 10 6 3 1 0 0O O O O O O
66 55 45 36 28 21 15 10 6 3 1 0 0O 0O O O O O O
55 45 36 28 21 15 10 6 3 1 0 0O 0O O O O O O O
45 36 28 21 15 10 6 3 1 0 O O O O O O O O O
36 28 21 15 10 6 3 1 0O O O O O O O O O O O
28 21 15 10 6 3 1 O O O O O O O O O O O O
Q
55 45 36 28 21 15 10 6 3 1 0 0 O O O O O O O
55 45 36 28 21 15 10 6 3 1 0 0 O O O O O O O
55 45 36 28 21 15 10 6 3 1 0 0 O O O O O O O
55 45 36 28 21 15 10 6 3 1 0 0 O O O O O O O
55 45 36 28 21 15 10 6 3 1 0 0O O O O O O O O
55 45 36 28 21 15 10 6 3 1 0 0 O O O O O O O
55 45 36 28 21 15 10 6 3 1 0 0 O O O O O O O
G
-30 -27 -24 -21 -18 -15 -12 -9 -6 -3 0 0O O O O O O O O
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 0 O O O O O O O
-10 -9 -8 -7 -6 -5 -4 =3 =2 -1 0 O O O O O O O O
o o O O o o O O O O 0 0O 0O O O O O O0 O
10 9 8 7 6 5 4 3 2 1 0 0 0O O 0 O 0 O0 O
20 18 16 14 12 10 8 6 4 2 0 0 0O 0 O O O O O
30 27 24 21 18 15 12 9 6 3 0 0 0 O O O O 0 O
W=-0+G
6 6 6 6 6 6 6 6 6 6 6 3 1 0 0 0 0 0 O
3 3 3 3 3 3 3 3 3 3 3 1 0 0 0 0 0 0 O
i1 1 1 1 1 1 1 1 1 1 1 0 O O O O O O0 O
o o0 O O o o OoO OoO O 0 0 0 0O 0O O O O O O
o o0 O O o O O O O O 0 0 0 O O O O O0 O
i1 1 1 1 1 1 1 1 1 1 0 0 0O 0 0O 0O O O0 O
3 3 3 3 3 3 3 3 3 2 0 0 0 0 0 0 0 0 O

The last 2k+1 columns of the W matrix form W,, , the 2k+1 columns beginning one
to the left of that form W, ,and so on for all remaining j. The construction is exactly the
same for the matrices Q; and G; from Q and G respectively.



