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Abstract
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1. Introduction

While modern business-cycle theory has been used to answer various quantitative
questions about cyclical fluctuations, it typically takes cycles themselves as given. Re-
searchers generally study macroeconomic time series which have been detrended in some
way (for example by linear detrending, calculation of growth rates, or application of the
Hodrick-Prescott filter). Thus the model is not used to measure or define the business-
cycle component of the series. This study offers an example of using business cycle theory
for this purpose. ‘

Many macroeconomists would argue that a cycle-trend decomposition should follow
from a theoretical model which includes growth trends. But in practice much research
focuses on fluctuations at business-cycle frequencies only, and many models deal with
cycles without modeling growth. It seems reasonable to avoid arbitrariness in measuring
those fluctuations, and using the cycle model under study to measure cycles is one way
of doing this. For example, an important feature of regular fluctuations is the differential
variability of inputs, output and its components; the statistical definition of cycles can be
based on this feature.

Another view is that detrending is not a central issue as long as many researchers use
the same detrending method. From this perspective, detrending is indeed arbitrary (as
opposed to being based on a growth model) but business-cycle statistics are defined around
some trend in a way which is consistent across studies. In practice, though, models are
modified in response to discrepancies between theoretical moments and historical moments
constructed from detrended data. Canova (1991), Cogley and Nason (1992a), and King
and Rebelo (1993) have shown that these discrepancies may be very different, depending
on the detrending method used. Two researchers might reach quite different conclusions
about the same model, though each has studied well-defined statistics, because they use
different detrending methods.

The main illustrative example in this paper calculates the trend or low-frequency com-
ponent which minimizes the discrepancies (using a standard method-of-moments metric)
between the properties of detrended, historical data and those of a business-cycle model.
We estimate the trend which is optimal in this sense, and compare it to some conventional
methods. We also use the calculated trend to measure postwar U.S. business cycles.

This method of detrending may be contrasted with methods which identify trends by
restricting their correlation with cycles. To clarify the distinction, we suppose that a time
series log(X:) is decomposed additively as follows:

log(X:) = XE + z, (1.1)

where XC is the trend or secular component and z; is the cycle component. Often these
components are identified by assuming something about their correlation. Some statistical
models adopt a correlation of unity, as in Beveridge and Nelson (1981) and Stock and
Watson (1988). Many others assume that the correlation is zero. In many cases these
assumptions are unrelated to an economic model. For example, one might estimate the
trend by least squares in:

log(X:) = a+ B -t + p log(Xe-1) + 21, (1.2)
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where a, (8, and p are unknown parameters. One criticism of this procedure is that there
may be no economic reason to believe that local change in a trend is uncorrelated with the
business cycle (see Zarnowitz (1992, chapter 6)). A second criticism is that this procedure
chooses a trend to minimize the variance of the residual (cycle) component; here the trend
would be defined as the linear combination of a time trend and lagged value which best
explains the variation in log(X;). In contrast, the estimator we propose seeks to leave
exactly as much variability in the cycle component as is predicted by a business-cycle
model, and it also allows for correlation between the cycle and the trend. It does not treat
the growth component X as the conditional expectation of log(Xy).

Consider a (n x 1) vector time series X¢, t = 1,...,T of macroeconomic variables
such as output, consumption, and investment. Business-cycle research focuses on a trans-
formation of these data which induces stationarity but may also filter certain frequencies.
For simplicity we shall call this detrending, even though inducing stationarity may not be
the only aim. Denote by z; = f(X¢,0) the detrended series, where 0 € © parametrizes a
family of detrending filters. Investigators typically compare the moments of z; with the
population moments from a theoretical model. Denote the historical moments by Wr(6),
where the notation reflects the dependence of the historical, business-cycle properties on
the detrending method. Denote by W the g x 1 vector of population moments, for example
from a numerically calibrated, stationary business-cycle model.

We suggest choosing a trend model by varying 6 to minimize the distance between
Wt and W. Thus X
6 = argmin |Wr(6) — W], (1.3)
6

where the asymptotic distribution of the estimator will depend on the norm. We use the L?
norm and GMM, surveyed by Ogaki (1992) and Davidson and MacKinnon (1993, chapter
17). This setup is quite general, and includes OLS estimation in (1.2) as a special case. In
that case (with n = 1) Wr(f) is:

{Ef‘zl T Yiey Tt t Yy ¢t log(Xe-1) } (1.4)

T ’ T T

Equating these to W = 0 exactly identifies the three parameters. In contrast, if a business-
cycle model is used to measure cycles then W will include moments such as the variance
of output, investment, and consumption, and the covariance of consumption and invest-
ment with output. These moments may be calculated from a business-cycle model which
has been fully calibrated and hence has no free parameters. Some researchers apply the
transformation or filter f to the series from the business cycle model; we treat the trans-
formation mainly as a detrending method and hence study the unfiltered implications of
the model.

Section 2 applies this method using a standard, real business cycle model. It provides
examples of cycle measurement using various moments and various parametric models of
the growth component, X. Section 3 measures cycles using factor utilization rates which
are stationary indicators of business cycles. Section 4 provides some simulation evidence
on the properties of the procedure in various environments. Section 5 briefly concludes.
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2. Measuring Cycles with a Real Business Cycle Model
2.1 Theoretical Model

The theoretical model used in the example is the baseline, one-sector real business
cycle model of King, Plosser, and Rebelo (1988). Key features of the model include addi-
tively separable, logarithmic preferences, a Cobb-Douglas production function, a realistic
rate of depreciation of capital, and persistent technology shocks (with first-order autocorre-
lation coefficient 0.9). In their analysis a stochastic growth model is solved approximately
by linearizing first-order conditions around a steady-state path. The resulting difference
equations can be solved analytically to give population moments for the approximated
model. Those moments are listed completely in their Table 5, Panel B. A subset of them
(an example of W) is listed in the top panel of Table 2.0.

2.2 Filters and Identification

We illustrate measuring cycles with this model by using several different parametric
families of filters. The main filter family is:

z¢ = f(X¢,0) = log(X:) —a— B -t — p-log(Xi-1), (2.1)

where § = (a B p) is a n x 3 matrix. The filter thus includes as special cases: (1)
log-linear detrending, when p = 0; (ii) log first-differencing (approximate calculation of
growth rates), when 8 = 0 and p = 1. These detrending methods are widely used in
economics. Importantly, there is now a lengthy list of studies (including those by Canova
(1991), Blackburn and Ravn (1991) Cogley and Nason (1992a), and Harvey and Jaeger
(1993)) which show that ‘stylized facts’ may vary with the detrending procedure used.
That suggests that cycle models — which restrict those facts — will succeed in identifying
the parameters 6 of detrending filters.

In this family the parameter vector § has 3n elements. Typically W consists of vari-
ances and of covariances with output, as well as zero-mean restrictions on z (G=1,...,n).
In that case W has ¢ = n + 2n — 1 distinct elements. A necessary condition for identi-
fication is that ¢ be at least as great as the number of parameters estimated. Thus some
restrictions on the parameters are needed, or else further moments (such as autocorrela-
tions) must be added.

In the present application 8 and p are constrained to be the same across time series.
Common trends across the n series might be included as a balanced-growth requirement,
or simply as a restriction which aids identification and allows a richer family of transforma-
tions, given a small dimension of W. Cochrane (1994) also uses a common stochastic trend
in consumption and output to decompose output into permanent and temporary compo-
nents. It also might be possible to include cointegration restrictions in the multivariate
filter used here.

The second filter involves a simple modification to the one in equation (2.1). The
deterministic trend is now segmented in 1973:I, using a dummy variable D;. That break
point was suggested by Perron (1989). The filter is:

2y = f(Xt,0) = log(Xs) —a— (B—6-Dy) -t — p-log(Xe-1) (2.2)
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with D; = 0 for t < 1973:I and D; = 1 for t > 1973:1. This example is quite simple, and
various extensions involving unknown breakpoints are possible. However, the method-of-
moments framework does rule out filters with which we cannot define GMM residuals.
Examples include the segmented trends model of Balke and Fomby (1991) and other trend
models which are based on unobserved secular components such as those described by

Watson (1986).

Filters may be applied to isolate business-cycle fluctuations, and not simply to induce
stationarity. With this aim, many researchers use filters which smooth X; with (possi-
bly infinite) two-sided moving averages. Examples include the Kuznets filter studied by
Howrey (1968) and Sargent (1987), the exponential smoothing filter adopted by Friedman
(1957) and Lucas (1980) and studied by King and Rebelo (1993), and the Hodrick-Prescott
(HP) (1980) filter studied by Singleton (1988), King and Rebelo (1993), Cogley (1990),
Séderlind (1991), Cogley and Nason (1992a), and Harvey and Jaeger (1993). These filters
typically are restricted so that their weights sum to one (which ensures that the filter has
unit gain at the zero frequency and hence that the original series and the trend component
have a common stochastic trend) and sometimes further restricted to be symmetric.

Our third filter is a simple, finite moving average with symmetric, geometrically de-
clining weights. This allows for some smoothing, while identifying a small number of
parameters in the time domain. For each X the filter family is:

- ;
2o = log(Xje) — o — B -t — po{ log(Xut) + Y ptllog(Xjt+e) +log(Xje—p)]}  (2:3)
k=1

This filter does not include (2.1) as a special case, because it is two-sided.

Finally, we also estimate by GMM the single parameter in the HP filter. In the
literature on nonparametric smoothing this filter is known as the Whittaker-Henderson

method, and its parameter has been estimated by cross validation (see Buja, Hastie, and
Tibshirani (1989)).

2.3 Results

The estimation uses U.S. output (¥), consumption (C), and investment (I) for 1947:1
- 1991:3, quarterly, so that n = 3. All series are drawn from the CITIBASE database and
are described at the end of the paper. Output is real GNP, consumption is expenditure
on nondurables and services, investment is gross fixed investment. All three are quarterly,
real, seasonally adjusted, and expressed in per capita terms by dividing by the total civilian
non-institutional population 16 years of age and older. These series have been filtered with
(approximately) a two-sided moving average: X-11.

In cases with overidentification, weights in the GMM minimization will affect the
estimates. The instrument set is a constant, so as to match unconditional moments, as in
the theory. The GMM estimator weights moments in inverse proportion to their sampling
variability. We use the Hansen-Heaton-Ogaki GMM code, with Durbin’s method used
(where necessary) to calculate the weighting matrix.
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The sample moments are:

T T
Wwr(8) =Y w(f(X:,6)] = > w(@e). (2.4)

For standard distribution theory to be used it is necessary that X; be stationary so that
w[f(X:,0)] is stationary for all admissible values © of § and not just for the true values
6o. While time trends can be estimated by GMM (see Eichenbaum and Hansen (1990)
and Andrews and McDermott (1993)), and the point estimates below generally yield de-
terministic trends, integrated nonstationarity precludes standard inference. Because z¢ is
nonstationary for certain parameter values, so is w;.

Moreover, asymptotic inference might be misleading because of the small sample sizes
used. Andrews (1991) has shown, for example, that none of the HAC estimators he consid-
ers is'reliable with less than 250 observations, when the GMM error terms have first-order
autocorrelation of 0.9, which is almost exactly the case for the business-cycle terms z; here.
For these reasons, we view the method as providing consistent estimates (given an appro-
priate family of filters) regardless of the estimating environment, but suggest repeated
simulation with fitted parameter values in order to gauge sampling variability.

We begin with the baseline filter family of equation (2.1) and illustrate measuring
cycles with two sets of moment conditions W. Method I uses the three means, three
variances, and two covariances with output, shown in Table 2.0. Thus there are 3 over-
identifying restrictions. Parameter estimates are shown in Table 2.1. The implied moments
of measured cycles (in percent deviations from trend, 100 - z;¢) are shown in the bottom
panel of Table 2.0.

For comparison, Method II uses the orthogonality conditions of OLS (1.4). These give
0 moment restrictions so that there are 4 over-identifying restrictions because a common
trend is imposed. The estimates are shown in Table 2.2.

The two decompositions are strikingly different. The least-squares estimator (method
IT) finds a unit root in the series, whereas the cycle-theory estimator suggests a linear
time trend. This trend is similar to the trend used by King, Plosser, and Rebelo (1988)
and reported in their Table 6. The three over-identifying restrictions arise from the use
of a common trend in all three variables. A test of these restrictions is a test of balanced
growth, for if they hold then log(C:) — log(Y:) and log(I;) — log(Y:) will be stationary as
long as |p| < 1. If p = 1 then this restriction is necessary for balanced growth but not
sufficient, for the three series might not be cointegrated.

The rejection of these restrictions by the J-test in Table 2.1 seems to contradict the
findings of King, Plosser, Stock, and Watson (1991) and Neusser (1991). Those authors
found in trivariate systems (for output, consumption, and investment in the U.S.) that
the consumption-income and investment-income ratios were stationary, an implication of
balanced growth. However, the conflict is only apparent because King, Plosser, Stock, and
Watson (1991) also found that the dynamics of these three series were not consistent with
the predictions of one-sector real business cycle models. Our estimated trend is constructed
so that the moments of the residual, cycle components resemble those of the real business
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cycle model as closely as possible. Thus any inadequacies of the model may show up in the
trends rather than in the cycles. As in that study, we find that this model cannot explain
both trends and cycles. Of course, rejections also could be due to the parametric filter
used or to the use of the x? distribution. Section 4 provides some simulation evidence on
the distribution of the J-test statistic in this environment.

We also investigate the effect of using different sets of moments from the business-cycle
model. For example, matching correlations instead of covariances gives slightly different
results. It also seems sensible to include autocorrelation information from the theoretical
model, in addition to the moments shown in Table 2.0 and used in Table 2.1. The the-
oretical first and second-order autocorrelations of output are 0.93 and 0.86. With these
additional moment restrictions the estimates are very similar to those in Table 2.1.

Next we use the same 8 moments W from Table 2.0, but adopt the filter in equation
(2.2), which allows for segmented trend. In this case § = 0.00114, with an estimated
standard error of 0.00147, so that the segmentation appears to be insignificant. Breaking
the trend in 1973 does not make cycles before and after that time jointly resemble the
theoretical cycles. Thus there is no evidence of a break, from the perspective of this
business-cycle theory.

Finally, the linear trend is the only element filtered out by the family of filters in
equation (2.3), which allows for a two-sided moving average in the secular component.
The additional parameters po and p; are zero to two decimal places and not different from
zero at conventional significance levels. The results are essentially those of Table 2.1, a
finding which is not surprising given findings of King and Rebelo (1993, section 1.2). For
the HP filter they find that removing a two-sided moving average once data have been
linearly detrended does not leave a cyclical component that resembles a business cycle (for
example the first-order autocorrelation of output is 0.09). We use a simpler filter, but also
let the estimation procedure choose whether or not a linear trend is significant. The same
finding occurs when we estimate the parameter in the HP filter by GMM. The estimated
growth component is the limiting case of a deterministic, linear time trend.

2.4 Discussion

These examples use the real business cycle model to measure cycles. In a sense this
method may make it more difficult to test business-cycle models. If cycles are defined by
varying 0 to match empirical and theoretical moments then the closeness of the match
cannot be used as a test. A test requires some overidentification restrictions (more mo-
ments than parameters), which constrain the coefficients in the filter. However, typical
models make predictions for many moments, and so would allow both measurement and
testing. Some implications of a theory may be used to isolate business cycles and then
remaining differences between theory and evidence may be used to reformulate the theory,
in confidence that these mismatches are not artefacts of the detrending procedure.

Ideally, the theoretical model is a distillation of evidence from past cycles (possibly in
several countries). To serve as a measurement device, it must be quantitative, stationary,
and not derived or calibrated after assuming some arbitrary trend. The examples use
a model with no free parameters. But some real, business-cycle models are calibrated
by assuming some form of trend, say parametrizing a technology shock process to mimic
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detrended Solow residuals. Moreover, King, Plosser, and Rebelo (1988) and Cogley and
Nason (1992b) have shown that this model has little propagation; most of the output
dynamics arise from shock dynamics. Persistence in shocks also affects relative volatilities
in this model, and so may be identifiable. It would be conceptually straightforward (though
computationally burdensome) to be agnostic about parameters of the shock process, such
as its first-order autocorrelation, and estimate them jointly with those of the detrending
filter using the X;; alone. Other free parameters also could be estimated, although jointly
identifying the parameters of the filter and of the model may be challenging. Smith (1993)
provides a simple example of such joint estimation.

The theoretical model described in section 2.1 is that of King, Plosser, and Rebelo
(1988), which is consistent with trend-stationary time series behaviour for output, con-
sumption, and investment. However, there is no circularity involved in using the moments
from this model to estimate trends and then in finding a linear trend. As those authors
note, the moments from a detrended growing version of the model (as in Table 2.0) are the
same as those from a non-growing version with slightly different depreciation and discount
rates.

While our illustration of measuring cycles with a real business cycle model may be
new, the underlying idea is not. Koopmans (1947) argued precisely for using economic
theory to help define business cycles. Lippi and Reichlin (1994) identify trend components
as having S-shaped impulse response functions which they attribute to the diffusion of
technical change. Recent studies which measure cycles using economic models of the cycle
include those of Eichenbaum, Hansen, and Singleton (1988) (who use Euler equations to
detrend), Cochrane (1994) (who uses the permanent-income hypothesis), and Laxton and
Tetlow (1992) and Kuttner (1993) (who use Okun’s Law and the Phillips Curve). The
same principle has been applied to decompositions into seasonal and cyclical components,
where parameters of an economic model and of a seasonal filter have been estimated jointly.

3. Measuring Cycles with Cycle Indicators

An alternative to adopting an economic model in order to define cycles is to restrict
their correlation with business cycle indicators. This method fits in the same method-of-
moments framework. Indicators which are themselves trending could be used to detrend
output, by choosing filter parameters to maximize the correlations between the cyclical
components. This section illustrates a simpler method, which is to use stationary indicators
to measure cycles in output.

The indicators adopted are the rate of capacity utilization in U.S. manufacturing and
the U.S. rate of unemployment. Both series are quarterly, 1948:1-1991:III and seasonally
adjusted. The capacity utilization rate is that for manufacturing because it is available
for the period beginning in 1948 and because it is based substantially on survey evidence.
Raddock (1990) discusses the construction of this measure, while Shapiro (1989) outlines
some of its shortcomings. We ignore issues arising from changes over time in the mea-
surement of unemployment rates. Figure 3A shows these two stationary business cycle
indicators, demeaned.



The filter used is again (1.2) but applied to output only:
log(Y;) = oy + B -t + plog(Yi-1) + ye. (3.1)

We consider several sets of moment conditions to estimate the three parameters in equation
(3.1). First, as a benchmark we use the OLS conditions. Second, we set the mean of y;
to zero, maximize the correlation between the output cycle y; and the capacity utilization
rate, and minimize (make close to —1) the correlation between y; and the unemployment
rate. Third, we combine these two sets of moment conditions so that there are two over-
identifying restrictions. The three rows of Table 3 list the results of estimation with these
three sets of moments.

Table 3: Output Filter Parameters

Parameter
ay B p J
OLS 0.0137 0.00010 0.964
(0.00453) (0.000064) (0.0186)
Indicators 0.223 0.00437 -0.193
(0.294) (0.00117) (0.782)
Combination 0.268 0.00447 -0.292 55.98

(0.0242) (0.000199) (0.0729)  (0.00)

Parentheses contain standard errors for coefficients and the p-value for the J-statistic.

From the first row, the OLS conditions again suggest first-differencing. From the sec-
ond row, measuring cycles using correlations with cycle indicators leads to linear detrend-
ing. Unemployment may be a lagging indicator, but these estimates do not change very
much when we lead the unemployment rate by two or four quarters. Figure 3B shows the
cycles estimated in the first and second rows of Table 3. As in section 2, first-differencing
does not produce a series with the persistence (or differential volatility, or correlation with
cycle indicators) associated with business cycles.

The third row shows that combining the restrictions results in more precision, but the
overidentifying restrictions are rejected. The rejection implies that we cannot construct a
cyclical component of output which is uncorrelated with the secular component and at the
same time highly correlated with cycle indicators. ‘

The cycle estimated from the correlation conditions may not necessarily strike the
viewer of Figure 3B as the appropriate one in postwar U.S. history. That may be a
consequence of the restrictive filter in equation (3.1). More flexible trends could be fitted
using further moment conditions with these indicators. For example, we could match the
autocorrelation properties in the output cycles with those in the indicators. The other way
to add moment conditions would be to add indicators. Candidates include layoff rates, the
ratio of price to unit cost in manufacturing, rates of business failure, and spreads between
various interest rates. Indicators for the U.S. are described by Moore (1990), Frumkin
(1990), Darnay (1992), and Zarnowitz (1992).

8



4. Simulation Examples

The applications have used samples containing fewer than 200 observations. They
also involve a non-standard application of GMM to cases in which there potentially is a
unit root in the series. We next present some Monte Carlo evidence on the properties of
the procedure. The aim is to show some distributional properties of the estimators. We
also calculate the empirical size of the standard J-test of overidentifying restrictions.

One possibility here would be to solve and then repeatedly simulate several '
parametrizations of a model of cycles and growth. One could then see whether the method
correctly decomposed the nonstationary, simulated time series given various filters which
could capture the true growth component. Our experimental design is in this spirit, but
simpler.

We adopt a linear three-equation economy in which:
log(Xji) = aj + Bt + plog(Xji-1) +zje (4.1)

for 7 = 1,2,3. Also,
Tjt = AjTji-1 + Wijt, (4.2)

where wj; is serially uncorrelated and generated as pseudo-normal with zero mean. The
business-cycle components z;; have covariance matrix:

0.04262
¥, = [ 0.000953 0.02732
0.00384  0.001  0.09822

which involves the same variances and covariances with output as in the business-cycle
model used in section 2 (Table 2.0). These components also are persistent: A; = 0.9 for
each series.

We consider two versions of this DGP, which differ only in their trend characteristics.
And we consider two estimators: method I, which matches cycle moments from the the-
oretical model and method II which is multivariate OLS with a common trend. Version
A has parameter values suggested by the application of method I to the historical data.
That gives ay, ac, ai, §, and p. Version A thus involves a linear time trend in the three
series. The parameter values are listed in the top panel of Table 4A.

From version A we generate 1000 replications of length T' = 175, which is the same
as the number of quarterly observations. Then we estimate the filter parameters by the
two methods. In each method we correctly impose common values for § and p across
equations. Method I uses the three mean zero conditions, the three variances of the cycle
components, and the covariances between output and consumption and between output
and investment. The DGP is calibrated so that these conditions are satisfied given the
trend in the series. Method II is OLS with these cross-equation restrictions. It uses the 9
OLS conditions to estimate the five parameters. These methods are exactly those used in
the historical data in section 2.



Table 4.1 shows the results for estimates of 8 and p, their standard errors, and the
J-statistic. The first column of the table gives the mean of the statistic across replications
and the second column gives the standard error across replications.

Three general conclusions follow from Table 4.1. First, method I (BC) is consistent.
Second, method II (OLS) is inconsistent. In particular, it dramatically underestimates the
parameter on the time trend and overestimates the parameter on the lagged dependent
variable in the detrending filter. This yields results similar to those found in the historical
data and summarized in Table 2.2. Third, the asymptotic standard errors and critical
values used in method I are very misleading. For f the average estimated standard error
is 0.00017 while the Monte Carlo standard error is 0.00059. The J-test overrejects: its
average value (27.0) has a p-value of 0.00 in the asymptotic distribution.

However, the simulations may be used to approximate exact inference, because they
are calibrated to the estimates from Table 2.1. For example, the J-statistic in the applica-
tion (Table 2.1) of method I is 65.6. Locating this in the simulated empirical distribution
summarized in Table 4.1 gives a p-value of 0.175. Thus the business-cycle and common-
trend restrictions are not rejected at conventional levels of significance. Likewise, the Monte
Carlo experiment suggests that the standard errors in Table 2.1 be multiplied roughly by
four.

Next, version B of the DGP has parameters set at the values fitted for this filter by
method II in Table 2.2. The trend parameters in the DGP are listed in the top panel
of Table 4.2, and involve a common unit root. In this case method II also is consistent,
despite the autocorrelation in the residuals (cycles) because there is a unit root on the
lagged dependent variable (p = 1).

The main conclusion from this experiment is that there is some efficiency loss in
adopting method I rather than method II when the OLS orthogonality conditions hold.
However, while method II is more efficient, inferences from the two methods would be
identical.

The conditions used by the cycle-property estimator (method I) provide consistency
whether or not there is a stochastic trend in the growth component. In contrast, least-
squares (method II) tends to find near-unit-root behaviour when there is a linear trend.
When the orthogonality conditions imposed under least-squares are appropriate (as in ver-
sion B of the DGP) they provide only modest efficiency gains. This combination of findings
suggests omitting the least-squares orthogonality conditions (and perhaps constructing a
Durbin-Wu-Hausman test statistic).

Section 2.2 mentioned the possibility of using simulation methods for testing, given the
small sample sizes. We have done that here, using Monte Carlo methods at fitted values to
construct standard errors and critical values. Of course, moment restrictions do not imply
a unique DGP, so to use simulation to allow tests and to plot standard errors around
measured cycles requires that one specify a complete DGP, as we have done here. The
linear example here is simple, but the obvious choice is a complete business-cycle model.
However, if that is adopted for inference the information contained in it also should be
used for estimation. Maximum likelihood methods then could be used to estimate filter
parameters and free parameters of the economic model.
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5. Conclusion

This study has outlined a statistical method for defining or measuring cycles using
business-cycle theory, and given some applications. Further issues to be explored include
the effects on cycle measurement of using other business-cycle models and other parametric
filters (although some filters cannot be implemented by GMM).

The statistical distribution theory for the estimators when there is stochastic nonsta-
tionarity remains to be studied, although inference can be undertaken using simulation
around fitted values. Further over-identification could be established by requiring stability
of moments across subsamples. Likewise, tests of parameter constancy could be applied,
in addition to the J-test used here.

Sometimes detrending methods are criticized by showing that they may give mislead-
ing cycle properties if the true trend differs from that assumed in the detrending. An
objection to this criticism is that the true trend is unknown. An advantage of the method
described here is that it allows one to be agnostic (up to a parametric family) about the
true trend, and yet to study cycles. Thus we can weaken considerably the auxiliary as-
sumptions about trends which are made in studying cycle models. Of course, the method
also can be applied when a model includes both growth and cycles. One would expect
statistical efficiency gains in that case.

With overidentification, the cycle measurement may not be very sensitive to any one
moment restriction. Nevertheless, the definition of cycles will change with changes to the
cycle model. Though this seems natural to us, it contrasts with the program of confronting
various models with a fixed set of business-cycle ‘stylized facts’.

Data Sources

All series are drawn from the CITIBASE database. Output is real GNP, consumption is
expenditure on nondurables and services, investment is gross fixed investment. All three
are quarterly, real, seasonally adjusted, and expressed in per capita terms by dividing by
the total civilian non-institutional population 16 years of age and older.

Capacity utilization rate in U.S. manufacturing, quarterly, SA. Source: Federal Re-
serve Board of Governors. U.S. unemployment rate (all workers older than sixteen years)
SA. Source: Bureau of Labor Statistics.
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Table 2.0: Model Properties W
(King, Plosser, and Rebelo (1988), unfiltered population moments)

Series Std. Dev. Std. Dev./Std. Dev.(output) Correlation with Qutput
Output 4.26 1.00 1.00
Consumption 2.73 0.64 0.82
Investment 9.82 2.31 0.92

U.S. Data Properties Wr(9)
(detrended quarterly data 1948:1-1991:3)

Series Std. Dev. Std. Dev./Std. Dev.(output) Correlation with Output
Output 5.09 1.00 1.00
Consumption 4.09 0.80 0.82
Investment 7.56 1.48 0.66
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Table 2.1: Method I Parameter Estimates é

Parameter Estimate Standard Error
ay 0.187 0.0076

Q. -0.415 0.015

a; -1.632 0.0536

Bec 0.00360 0.000144

PBC 0.00995 0.033

J(3) 65.6 0.00

Table 2.2: Method II Parameter Estimates é

Parameter Estimate Standard Error
ay 0.00804 0.0024

ac -0.000512 0.0048

a; -0.0196 0.018

BoLs 0.0000335 0.000041

POLS 0.985 0.011

J(4) 5.75 0.22

Note: Method I uses business-cycle (BC) moments. Method II is multivariate ordinary least squares
(OLS). The last column gives the estimated standard errors of the filter parameters and the p-value of the

J-statistic from the X2 distribution.
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Table 4.1: Simulated Deterministic Trend

DGP Trend parameters: a, = 0.187 a. = —0.415 a; = —1.632 8 = 0.0036 p = 0.00.

Mean Standard Error
Method I
Bac 0.00397 0.00059
seg 0.00017 0.00010
pBC -0.10055 0.14380
se, 0.04170 0.01048
J(3) 27.00749 23.2366
Method I1
BoLs 0.000398 0.000105
seg 0.000106 0.000017
poLs 0.888948 0.029012
se, 0.029354 0.004872
J(4) 4.311382 2.820464

Note: Method I uses business-cycle (BC) moments. Method II is multivariate ordinary least squares

(OLS). The mean and standard error of each statistic are constructed from 1000 replications.
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Table 4.2: Simulated Unit Root

DGP Trend parameters: ay = 0.008 o = 0.00 o; = 0.00 8 = 0.00 p = 1.00.

Mean Standard Error
Method I
BBC 0.00000227 0.000374
seg 0.0000737 0.0000487
PBC 1.000076 0.0225
sep 0.00435 0.00411
J(3) 23.74 19.88
Method II
,BOLS -0.0000145 0.000239
seg 0.0000416 0.0000138
POLS 1.00081 0.00789
sep 0.00214 0.000839
J(4) 27.45 19.12

Note: Method I uses business-cycle (BC) moments. Method II is multivariate ordinary least squares

(OLS). The mean and standard error of each statistic are constructed from 1000 replications.
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