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Abstract

The traditional representative agent, consumption-based asset pricing model with iso-elastic utility has
not performed well empirically. Alternative specifications have focused on the rigidities implied by the
Von Neuman-Morgenstern axioms of choice under uncertainty, in particular the independence hypothesis,
and proposed some degree of generalisation. This has been achieved while retaining constant risk aversion
for the within-period utility function. The purpose of this paper is to present further flexibility through
the risk aversion specification, within the context of non-expected utility, through relaxation of the iso-
elasticity assumption. By allowing attitudes toward risk to reflect the information set used for the decision
process, risk aversion is no longer fixed, but responds to the evolution in the state of the world as well as
the distributional assumptions governing the state variables. The advantage is that the same individual
may be a risk-lover over certain states and distributions, while being risk averse over others. The model is
developed within a continuous-time setting for consumption and leverage choices. The closed form solution
for the risk aversion function gives results that are appealing on intuitive grounds. In particular, risk
aversion increases in the variance of the risky return, and falls in wealth and equity premium. Estimation
results are presented.
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1- INTRODUCTION

The consumption-based, representative agent asset pricing model has not performed well

. The standard specification, assuming Von-Neuman Morgen-

in empirical estimations
stern (VNM) preferences and iso-elastic utility has been unable to explain certain stylised
facts, such as the persistent large differential between equity and riskless returns, or the
dichotomy between consumption risk and differentials in expected returns on various risky
assets.

In response, a number of generalisations have been proposed. In an effort to reconcile
the axioms of choice under uncertainty with observed experimental behavior, the rigidities
implied by the linearity in probabilities axiom (independence) has been put forward as
possible explanation for the disappointing results of the standard model. Research has
concentrated on the development of a non-expected utility theory for choice over uncertain
prospects. One the main characteristics of this literature is that it retains the iso-elastic
specification for within-period utility, while allowing a more flexible representation of the
maximand. Hence, for instance, convex and concave transforms of the VNM index will be
allowed, such that probabilities may not enter linearly in the ob jective function.

The purpose of this paper is to take this generalisation a step further by relaxing
the iso-elasticity assumption. To be more precise, we let risk aversion depend on the
elements of the information set reflecting state variables and their corresponding distri-
butional processes. This allows us additional flexibility to the extent that risk aversion
becomes bi-dimensional. In a static setting, the individual can be a risk-lover for certain
problems, depending on his level of wealth and the distribution of the risk (e.g. for lotter-
ies) and risk-averse for other problems, such as with respect to fire insurance. In a dynamic

context, his level of risk aversion will change over time as the state variables evolve as well.

The rationale for relaxing constant preferences toward risk is simple. It appears

! Grossman and Shiller (1981), Mehra and Prescott (1985), Hansen and Singleton (1983), Grossman,
Melino and Shiller (1987).



counter-intuitive to consider that attitudes toward uncertainty remain fixed independently
of such factors as the wealth level, and the distribution of risk (such as expected return
(loss) and variance). In particular, we might expect a risk-averse individual to be more
tolerant toward uncertainty, the wealthier he is, or we could anticipate risk aversion to
increase as the distribution of returns to savings becomes more risky, in terms of a mean-
preserving spread.

This generalisation cannot take place within the VNM framework. The reason for this
is that by permitting the elasticity of utility to depend on the distribution of uncertainty,
we effectively recover a maximand which is non-linear in probabilities. It follows that the
independence axiom cannot be retained and that other axioms must be invoked. Formal
proof of the representation theorem necessary to link the axioms with an operative cardinal
index is not provided in the paper, and left for future research.

More general functional forms, such as Hyperbolic Absolute Risk Aversion (HARA)
relax fixed risk aversion, with Constant Absolute, and Constant Relative Risk Aversion,
treated as special cases. However, this added flexibility takes place at the expense of
parsimony, with two additional parameters to estimate. Furthermore, severe restrictions,
relating other preference parameters have to be imposed for HARA to yield sensible results
considering risk aversion.

The application of State-dependent Risk Aversion (SRA) is derived in the setting of a
continuous-time problem. An infinitely-lived agent must choose consumption and leverage
between a risky and a riskless asset so as to maximise the discounted present value of
future utility. The Arrow-Pratt absolute risk aversion index is specified as depending on
the state variable, i.e. wealth, as well as on the parameters of the distribution governing
the evolution of wealth.

The parametrisation that is used is derived from the first-order conditions, from the
perspective of an external observer who would not know the exact functional form. It

imposes risk aversion to be declining in equity premium, while increasing in the variance
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of the risky return. In addition, it is consistent with declining (increasing) absolute (rela-
tive) risk aversion in wealth, as postulated by Arrow (1984:153), Yaari (1969:320), Pratt
(1964:122-123), and Friedman and Savage (1948).

We demonstrate that given this particular functional form, the closed-form solutions
for optimal consumption and leverage choice exist. In addition, they satisfy regularity
conditions such as sufficiency, tranversality and dynamic consistency, while separation
results still hold.

The main advantage of specifying the risk aversion function is that it yields sensible
results concerning attitudes toward uncertainty, while allowing us to widen the admissible
range for risk aversion in Mehra and Prescott’s puzzle, by redefining relative risk aversion
over wealth. In other words, “unrealistically large” Arrow-Pratt relative indices would be
consistent with high aggregate wealth levels, and low discount factors, relative to the risk-
free rate of return. From another perspective, a high ratio of discounting over the risk-free
rate could reconcile large equity premiums with low levels of relative risk aversion.

The paper is organised as follows. §2 presents the general specification of preferences
in a static setting, relating State-Dependent Risk Aversion to other non-expected theories
of choice under uncertainty. We indicate in a heuristic manner, which alternative axioms
could be used in the theorem necessary for cardinal representation. §3 discusses SRA in an
intertemporal setting, with an application in continuous-time leverage and consumption
choices. §4 reviews aggregation issues and presents estimation results, while the conclusion

offers an overview of the main findings along with possible extensions.



2- SRA PREFERENCES AND NON-EXPECTED UTILITY.

In this section, we attempt to relate SRA to other theories of choice under uncertainty. It
is not intended as a formal axiomisation of State-Dependent Risk Aversion, which is left
for future research, but rather as a heuristic discussion of where SRA should be located
in the array of alternative representations of decision under risk. We begin by defining
the environment in which the agent is asked to express his preferences over lotteries, and
then define what is intended by SRA. Following this, we discuss which axioms could be
consistent with our specification, without referring to formal proofs.

Consider the compact set C, defined as the set of all prizes (outcomes), with P being
the set of all probability measures on C. Preferences over P are given by the binary
relation = which expresses the agent’s preferences on probability distributions. As usual,
>~ denotes strict preference and ~ denotes indifference.

The ordering = is assumed to satisfy completeness and transitivity?. In addition,
following Gul (1991) and Chew, Epstein and Segal (1991), we postulate continuity, i.e.:
VF € P, the sets {G € P|G > F} and {G € P | F = G} are closed.

In the simplest case where risk aversion is independent of the prizes themselves, what
is implied by SRA is the following mappings:

7y:P->R
U:CxR—-R (1)
V:P->R.

Here, we are assuming that > can be represented by V(F), such that:
FrG < V()= [Ven(FlaFQ 2 V(6) = [Ulen(@lds), (@)

for ¢ € C and F,G € P. In this notation, v refers to the risk aversion index, i.e. the
relative concavity of Ulc,]. Given (1), the problem is to define the additional axioms such

that (2) will be verified.

2 For lotteries F,G,H€EP, completeness implies that F>G, or G>F while transitivity can be expressed
as: F>G, and G-H=F>H.



It can be seen from (1) and (2) that the dependence of the concavity factor of the
utility index, v, on the distributional parameters implies that the expected value of U [ ],
will be nonlinear in probabilities. As such, the independence axiom cannot be retained with
the consequence that the maximand V(-) corresponds to a non-expected utility setting.
This translates to the fact that the iso-expected-utility curves in the three-case probability
simplex will be nonlinear and could display fanning-out or fanning-in properties.

As an example, consider the quasi-concave case, with simple probability measures,
where an expected-utility maximiser would have his relative risk aversion increase in mean-

preserving spreads:

Y(F) =7 + 7P +73Ps
Ule,y(F)] = =7 (3)

V(F) = PuU[e1,¥(F)] + (1 — Py — P3)U[ca,¥(F)] + P3Ulcs, v(F)).

where, ¢; < ¢z < ¢3. Then, for 71,73 > 0, increased risk aversion as we move to the north-
east in the probability simplex, (i.e. reduce P;) would reflect itself in convex indifference
curves, i.e. as the probability of the central prize is reduced in favor of the tail outcomes,
the tolerance to risk falls. This simple example nests the standard linear case (71,73 =0),
fanning-out (y1 < 0,73 > 0) and fanning-in (y; > 0,73 < 0).

The nonlinearity of the indifference curves also implies that certain generalisations
of the independence axiom such as betweenness cannot be invoked. As such, our func-
tional cannot be associated to weighted utility [Chew (1983)] and disappointment-aversion
[Gul (1990)], which allow fanning-out and fanning-in but impose linear iso-expected-utility
curves. Given this, the preference ordering we are postulating bears closer resemblance to
Chew, Epstein and Segal’s (1991) mixture symmetry which yields non-linear indifference

curves in the probability simplex3.

3 More precisely, for lotteries F,G,H€P, and for a€[0,1], we have independence if:
F~G=aF+(1—a)H~aG+(1—a)H,
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However, mixture symmetry may not be imposed since, given a distribution F, the
resulting V' must be quadratic in probabilitiest. In particular, convex transformations of

the usual VNM index such as:

V(F) = ( / U(c)dF(c))2 + / W (e)dF(c)

for some concave W(-) will be admissible, whereas conditioning the concavity of U (+) on
F' implies that probabilities do not enter quadratically in the maximand V(-). For this
reason, an alternative axiom allowing nonlinear indifference curves without imposing ex-
ante quasi-concavity or quasi-convexity will be necessary.

An important additional property of (1) and (2) is that the risk premium will in general
not be linear in the variance of the gamble. As is well known, in an expected utility setting,
with constant risk aversion, the risk premium is proportional to the variance of the risk®.
The development of non-expected utility, such as rank-dependent utility, has permitted
alternative specifications in which the premium is proportional to the standard error rather
than the variance (First-Order Risk Avérsion)®. The implications are considered important
In an asset pricing model, in which the relative smoothness of consumption implies a low
degree of volatility, because the standard error will be larger than the variance’. In our
case, the risk premium is not restricted to be linear in volatility. Hence, in §3, risk aversion
is proportional to the variance of the risky return, such that the risk premium would be

quadratic in volatility. This translates itself into added sensitivity of risk aversion to the

whereas betweenness implies:
F~G=>aF+(1—a)G~F,

and mixture symmetry means that Va€(0,1), 38€(4,1), such that:
F~G=aF+(1-a)G~BF+(1-8)G,

Chew, Epstein and Segal (1991:142).

Chew, Epstein and Segal, Theorem 5, (1991:149).
Pratt (1964:126).

Epstein and Zin (1990).

Epstein and Zin (1990:389)
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underlying generating process for uncertainty. As such, the individual will be much more
responsive to increases in risk, such as mean-preserving spreads, and will respond in the
form of a lower certainty equivalence. In other words, for a given expected outcome,
increasing risk will augment the concavity of the utility function, such that the agent will

be willing to pay a higher premium to avoid having to face the uncertainty.



3- INTERTEMPORAL CHOICE UNDER UNCERTAINTY

3.1 The Risk Aversion Function

We now specialise the structure of the risk aversion function for a continuous-time prob-
lem of consumption and leverage choices under uncertainty. The model we use closely
follows Merton’s (1990) work, modified to incorporate state-dependent risk aversion. For
tractability, we assume that absolute risk aversion is a function of the state variables
and the distribution associated to the diffusion process, but where the functional form is
unknown to the external observer.

Consider the following infinitely-lived consumer who allocates wealth, A(t), by choos-
ing consumption, C(t), and leverage w(t), so as to maximise the present value of his
expected future utility:

oo —pt
jmax E(0) /0 P (8 dt 4)

subject to his budget constraint and:

A(t) = I?jccc(g) -

where the expectation is taken over the support of F', which represents the CDF governing

7A®), Fl,  ~(t) >0, (3)

the evolution of wealth.
Following Merton (1990:97-101), the consumer’s budget constraint is given by a two-
asset geometric Brownian diffusion process. The cum-dividends price of the risky asset,

P¢(t) is assumed to be governed by the law of motion:

dPe(t)
Pe(t)

= adt + 0dZ (),
such that the diffusion for wealth is obtained as:
dA(t) = {[w(t)a + (1 —w(t))r] A(t) — C(t)} dt + w(t)oA(t)dZ(t) (6)

with A(0) given, and where w(t) is the share of total savings allocated to the risky asset;

o is the constant expected rate of return on the risky asset; r is the riskless rate of return,
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with @ > r, and p # r; and o? is the variance of the risky asset’s return. Finally, the
uncertainty comes from a Wiener process Z(t), where dZ(t) ~ N.I.D. (0, dt).
From It6’s lemma, the problem can be expressed as a dynamic programming schedule
where the Bellman equation is given by:
0= g, SPEIOCD 50y 1 740) oo - r) 4 1) At) - 0(0) .

JA;(t) wZ(t)JZAZ (t),

+

where J(t) = J(A(2)) is the current value function, with J4(¢) and Ja(t) respectively
first and second derivatives with respect to current wealth.

In order to identify the risk aversion function, consider the following postulates:

i) Declining absolute risk aversion (Arrow (1984:153)).
i) Increasing relative risk aversion (Arrow (1984:153)).
111) For a risk averter [lover], non-decreasing [increasing] risk aversion for mean-preserving
spreads.
w) Non-increasing risk aversion in equity premium.

The first two hypotheses were considered to be realistic representations of observed
behavior by Arrow. The third and fourth constitute a reinterpretation of the well-known
result that a risk averter will be willing to pay a non-negative premium to avoid taking
a risk. In our case, the size of the premium will not only depend on the distributional
parameters, given a fixed level of risk tolerance, but also on the interaction between the
distribution of the risk and the degree of concavity of the utility function. It seems rea-
sonable to suppose that a risk averter will not be made more tolerant for a fixed expected
loss if the variance of the incurred risk is augmented. Conversely, a reduction in expected
loss for a given variability should not make the risk more repulsive to him, other things
being equal. At the very least, his level of risk aversion should remain unaffected in both
cases.

Returning to the intertemporal problem, the corresponding first-order equations yield

9



the optimal consumption and leverage rules:

C*(t) = %)@ (8)
and
sy - —Ja(®)(e—1)
0= 7, Ho7AD ®)

which are substituted back into the objective function (7), such that we obtain a nonlinear

second-order differential equation in J(¢):

J(?) ' Ja(t) (a—r)?
0= (t) ~y (L —log(Ja(t)] = p5—5 2 A - J;(t) 202

(10)

Consider a trial solution J(t) such that:
J@)
PTa®)

Upon integrating both sides, it is readily apparent that the objective function will be of

= rA(t).

the form:
J(t) = [A@) (11)
with constants of integration omitted. Substituting back into the Bellman equation gives

the maximised value function:

0=— (t)[l log(J4)] — S 4 Ja (a=r)? (12)

J Jaa 202

Therefore, for trial solution (10), the closed-form solution for risk aversion that is consistent

with this candidate is obtained as:

y(t) = zfi)z L [1 ~log (£) + (1;—”) log(A)] (13)

for p #r.

We therefore recover, conditional on (11), an absolute risk aversion function which is
consistent with postulates i), iii), and iv). In particular, absolute risk aversion is explicitely
declining in wealth and squared equity premium. Furthermore, we show in §3.3 that
relative risk aversion increases in wealth. In the next section, we solve for the closed-form
solutions for optimal consumption and leverage, and demonstrate that (11) constitutes a

valid candidate satisfying the regularity conditions of sufficiency and transversality.
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3.2 The consumer’s problem

In the preceding section, we obtained the risk aversion function form the perspective of an
external observer. We now turn our attention to the consumer’s solution of the intertem-
poral problem, given the functional form for preferences that was recovered.

For the infinitely-lived consumer maximising (4), subject to (6) and (13), the inde-
pendence of the risk aversion function from the control variables allow us to obtain the
same first-order conditions (8) and (9), and maximised value function (10). Given this,

the closed-form solutions for consumption and leverage are easily obtained by substituting

for trial (11) in (8) and (9) as:

wipy - (l@— ) rA@) | —log(2) + (32) log(A(t))
¢t = 202 r—p { 1 —log (&) + (=2) log(A(2)) } (14)

c0=(5)(555),  e#n (15)

The next step is to show that (14) and (15), which are conditional on candidate (11), satisfy

and,

regularity conditions for interior solutions, in terms of sufficiency and transversality.

Proposition. The solutions (14) and (15) satisfy sufficiency of the first-order conditions,

as well as transversality requirements.

Proof. By assumption, p # r. Yet, for feasibility, i. e. for nonnegative consumption, we
must impose that p < r. This condition is sufficient to guarantee that the trial function
(11) is concave in wealth. Merton (1972:382) uses Arrow’s (1968) generalisation of the
Mangasarian (1966) sufficiency condition for optimality, to show that concavity of the
maximised value function, with respect to the state variables, is sufficient to guarantee
that the first-order conditions are optimal®.

We now show that for our candidate solution (11) of the second-order differential

equation, transversality is obtained unconditionally. From the optimal consumption rule

8 Fora proof of Arrow’ (1968) and Mangasarian’s (1966) result, see Seierstad and Sydsaeter (1977).
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(14), we can see that consumption is asymptotically linear in wealth, the reason being that

the term inside the brackets asymptotically goes to 1, at rate depending on p —r, such that

the diffusion rule for wealth (6), when evaluated at the optimal controls, can be written

in the limit as:

dA(t) = aA(t)dt + bA(t)dZ(t),

{75) )
’= (rip) (a;r).

where,

a

and

From the geometric Brownian motion process, a solution for wealth is given by?®:

A(t) = A(0)exp [(a — 1/2)t + b2 ()]

Substituting into our candidate, we obtain:

J(t) = A(0)*/" exp { [_ (r L p)2 (012—‘7;)2 + p] t+ (r £ p) (a ; r) Z(t)} :

In the absence of a bequest function, the transversality condition can be written as:

Jm E(0) exp(—pt)J(t) =0,

which becomes:

e |- (755) T o {(:£5) 5220}

Because Z(t) is stationary, the limit goes to 0 unconditionally?®.

Noticing that the risk function (14) effectively means that preferences will not be

stationary in an intertemporal framework naturally raises the issue of time consistency. It

% Kamien and Schwartz (1981:245)

10 1t should be noted that other solutions for (10), exist, but that these candidates will not simultane-

ously satisfy sufficiency and transversality requirements.
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1s well known that constant tastes are sufficient to guarantee that optimal plans will be
time consistent in the sense of Johnsen and Donaldson (1985)'!. As such, additively time
and state separable utilities, with stationary risk preferences used in computing the VNM
index are sufficient to guarantee that optimal choices will be time consistent, i.e. an agent
will not renege on past decisions. However, as Johnsen and Donaldsen (1985:1454) have

shown, expected utility is not necessary for time consistency.

In our context the mapping of the risk aversion function from the state space to
the risk tolerance factor means that risk aversion will evolve as state variables (notably
wealth) change. Yet, time consistency will be maintained to the extent that this evolution
is predictable and fully taken into account by the utility maximiser. It is in this sense that
preferences remain constant even though risk attitudes are non-stationary. The consumer
will not renege on past decisions as his level of risk aversion changes to the extent that this
evolution was anticipated at the time of his decision. In other words, the agent evaluates
the desirability of elements of the choice set knowing that each alternative yields a different
path for his attitudes toward risk. The optimal set of controls will be consistent with utility
maximisation over a path for risk tolerance and thus utility index. This means that in
discrete time, we can break an optimal sequence {Cs,Ct,...,CF, ..., } and an alternative
{Co,C1,...,Ch, ..., } that both agree with state vector x7 and F' at any T > 0 and find
that {CF,CF,y,...} will still be preferred to {C%, Ch.,,...}!2. The reason for this is
that our preferences satisfy weak independence across states. What this implies is that
we maintain state and time separability, such that V(F) can be written as a monotone

function where each state-contingent utility enters separately.
In §3.3, we compare optimal rules for consumption and leverage as well as risk aversion
functions evaluated at the optimum for various utility functionals. We demonstrate that

only Hyperbolic Absolute Risk Aversion and State-Dependent Risk Aversion classes satisfy

11 Epstein (1990:25).
12 Fpstein (1990:24).
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postulates i) to iv). However, in the case of HARA, this is achieved at the expense of two
additional parameters that have to be estimated, and stringent restrictions that have to

be imposed.

3.3 Comparative static results.

The following tables give the optimal decision rules as well as the risk aversion indices
evaluated at the optimum for Constant Absolute Risk, Constant Relative and Hyperbolic
Absolute Risk Aversion classes. The optimal values have been derived for the two-asset

case, using the same diffusion process and distributional assumptions 13.

Table 1: Optimal Decision Rules

U(C(t),7(?) C*(2) w*(t)
exp(—+C a—r a—r
CARA P—(_"Y,Y—(t)—)' + (2‘, .(Y),.)+(rA(t) a24TA(t)
exp(—=7(£)C(t)) (cv:—r)2 —log( £)+(=72)log(4) _r_ ) (ezr
SRA BTG T 1-log( £)+( %52 ) log(4) (,_,,) (%)
Cc(t)—7 a—r)? T a—r
CRRA (1t+,1' {s - (1 - 7) [(2027)2 + ;] } A(t) o2y
=bA(t), 5>0
BC(t) 1-v 1—7) [ (a—71)2 —r (a—r
HARA ﬁ (T + 17) % { ( =X [(2—02%- + 7'] - ‘Y} = 5 Tt pz-azA(l)
—r)? T
+{£_(1_7) [(;6 7) +;]}A(t)
=a+bA(t), >0

With respect to the decision rules, we observe first that Samuelson’s (1969) separation
theorem remains valid for SRA utility, as is the case for CARA, CRRA and HARA classes.
In fact, separation is verified bilaterally for consumption as well as for leverage choice, i.e.
consumption is independent of the portfolio decision and vice versa.

The second important result is that SRA utility yields a non-linear consumption sched-
ule with respect to the wealth parameter, but that this nonlinearity disappears rapidly as

wealth increases. In fact, consumption will be convex at low levels of wealth and linear

13 The CARA, CRRA and HARA decision rules are from Merton (1990: ch. 5, 6).
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at higher net worth. As is seen next, this feature does raise some problems for exact
aggregation.

This characteristic is not observed in the leverage rule which is expressed as a constant,
just as in the CRRA case. As such, it no longer displays the counter-intuitive results that
the share of savings invested in a risky asset should fall in wealth as for the CARA and
HARA case, while retaining the familiar declining in variance and increasing in premium
predictions.

The next step is to discuss the risk functions evaluated at the optimal rules. For this
purpose, both Arrow-Pratt indices were evaluated at the maximising control values for the

various utility functionals. Table 2 presents the resulting risk functions.

Table 2: Optimal Risk Aversion Functions

U(C(t),(1) R(2) ()
—~yC —r —r)?
CARA  =E 7 2+ G5 4 AQ)
SRA _exp(——:((i;))C(t)) ‘(a'z'_Lff) rr;p [1 —log( $)+( '—:E) IOS(A)] - log( -E)-i—( r—:ﬂ)log(A)
CRRA g .
{o-a-n G+ JA0 !

vB(a+bA(t))

_y_ (BC®) =7 5 _yB(a+bA(t)
HARA ( > +n) m B(a+bA®))+n

1—v
In §3.2, we suggested four postulates concerning risk aversion functions: declining
absolute risk aversion and increasing relative risk aversion in wealth, increasing in variance
and falling in equity premium. Bearing these considerations in mind, the first important
result to be noted is that for the State-Dependent Risk Aversion case, risk tolerance is no
longer expressed as a constant preference parameter, as in the CARA and CRRA cases,
but is allowed instead to vary with the state variables of the model. As such, both the
absolute and relative indices depend on the state and distributional variables, just as is
the case under the general HARA specification.
Risk preferences can be considered as local to the maximisation problem, to the extent

that they are functions of the structural and distributional assumptions of the model. The
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direct implications of this are twofold:
i) the current state of the world directly affects tolerance to risk at the time of decision,
and,
#1) the evolution of the state variables will have an impact on future preferences.

Under rational expectations, this non-stationarity of preferences is fully taken into
account by the individual in assessing the optimality of alternative consumption - savings
paths. In other words, under Bellman’s principle of optimality, the individual selects
optimal consumption and leverage rules given a state-dependent level of risk tolerance,
computing its anticipated evolution which will in turn depend on the choices he will make.

Considering first the relation with wealth, we find that, under the maintained hy-
pothesis of risk aversion only SRA and HARA utility functions agree with the first two
conjectures. CARA utility will admit increasing relative risk aversion but imposes a fixed
preference parameter to the absolute index. On the other hand, the CRRA form forces
the elasticity of absolute risk aversion, with respect to wealth to be equal to -1 over the
marginal propensity to consume.

Both SRA and HARA are less restrictive on this aspect. For the SRA specification,
with respect to the absolute risk aversion parameter, notice that it will be nonnegative,
decreasing and convex in current wealth. Therefore, risk aversion is maintained in absolute
terms throughout the consumption and wealth ranges, even though a higher level of wealth
will be translated into a greater tolerance toward risk. Furthermore, we do not impose the
CRRA restriction relating absolute risk aversion to marginal propensity to consume.

Considering the relations with variance and equity premium, we find that for the
CARA utility, the relative index displays the counter-intuitive results of increasing in pre-
mium and decreasing in variance. For the CRRA case, the relative risk aversion parameter
v has to be sufficiently high, i.e. greater than 1 for hypotheses iii. and iv. to hold with
respect to the absolute index. This is not the case for the SRA which maintains the

two conjectures for the absolute index, whereas the relative measure is unaffected by the
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changes in the distribution. This suggest a different interpretation of the Tobin (1985b)
and Markowitz (1959) mean-variance analysis. More precisely, it can be seen that the
iso-risk preference curves will be linear in variance, squared-spread space, suggesting a
homogenous trade-off relation between risk and squared net return of the risky asset with
respect to risk tolerance.

The results for the HARA specification are less clear as they depend on the bliss point
n which can be either positive or negative, subject to the restriction that marginal utility
remain nonnegative.

Summarising these findings, we find that at the optimum, CARA utility should be re-
jected when considering relations to wealth, variance and equity premium, whereas CRRA
functions yield counter-intuitive results, considering the influence of variance and equity
premium at low levels of risk aversion. HARA utility gives ambigous results that depend
crucially on the bliss point. As such, we could conclude that both CARA and CRRA
are too restrictive in imposing constant preferences with respect to risk, which leads to
counter-intuitive results at the optimum, whereas HARA utility is too general to allow for
realistic predictions unless restricted further. By comparison, SRA has the advantage of
being more parsimonious, with 3 parameters less to estimate than HARA, and 1 less than
CRRA and CARA, while giving clear predictions which make economic sense, with the
only restrictions imposed, being that r be greater than p, for transversality and sufficiency,

and that « be greater than r, for feasibility of the leverage schedule.
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4- AGGREGATION AND ESTIMATION

4.1 Aggregation

Despite their shortcomings, constant risk preferences specifications remain widely used
in the literature. An important reason explaining this popularity relates to their quasi-
homotheticity. This translates itself into the fact that the resulting consumption and
leverage rules will be linear in wealth, as was shown by Merton (1971;391). It follows
that linear aggregation will be made possible, such that the maximisation program may
be applied to a single representative consumer. This feature is particularly important to
the extent that aggregate time-series data can then be used at the estimation stage.

Generalising the risk aversion parameter immediately raises the question of aggre-
gation. This can be seen from the standard CARA optimal consumption and portfolio
choices. If, under the alternative hypothesis, the risk tolerance parameter v depends on
current wealth, then a test for state-dependency becomes a joint test for state- and dis-
tributional dependency as well as aggregation. Indeed, the constant term will vary with
wealth, such that a redistribution of total wealth will affect aggregate demand.

The model derived thus far has been applied to a single consumer, without address-
ing the issue of his representativeness. In our derivation, it can be seen that, for optimal
consumption, exact Gorman aggregation is no longer holding. In fact, by allowing risk pref-
erences to depend on current wealth, we are effectively moving away from the Hyperbolic
Absolute Risk Aversion class utility. In our case, we recover a consumption demand func-
tion which is not linear in wealth (although the leverage decision still is) such that exact
linear aggregation which would yield the representative agent result cannot be invoked.

The reason for this is that the marginal propensity to consume becomes a function of
wealth to the extent that the curvature of the utility function depends on current wealth.
Therefore, the indirect utility function’s curvature as well will be affected by the wealth

level and will not be of the general linear Gorman form. From Roy’s identity, the derived
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Marshallian demand will therefore not be affine in wealth!4.

Yet, the problem is not as acute is it may seem in our case, because the nonlinearity
of the Engel curve dissipates very rapidly, being manifest only in the lower ranges of
wealth'®. Bearing these considerations in mind, several alternatives are possible. First, we
could assume that individual wealth levels are sufficient to guarantee that aggregation over
all agents will take place over the linear range. Considering that wealth will be defined
as the sum of tangible assets, including durable goods, it might not seem unreasonable to
suppose that net worth for the poorest individuals is still sufficiently high that consumption
is homogeneous in wealth. A second option would be to restrict aggregation to the highest
wealth levels. Hence, for instance, we could postulate that individual agents invest in
risky assets through institutional organisations such as mutual funds, whose combined
assets is sufficiently high. A third possibility could be to restrict individual preferences
to be identical across agents, and to use an average agent, given per capita wealth as the
consumer solving the intertemporal problem. Finally, because leverage choice is linear
in wealth, estimation could take place for optimal portfolio choice only. This approach
would however have the disadvantage of losing the information contained in the form of
cross-equations restrictions.

In the next section, we present estimation results for three options, i.e., we start by
estimating an “average” agent’s consumption and leverage rule, where per-capita consump-
tion is regressed on per-capita wealth. We then restrict estimation over the linear range, by
regressing a linearised version of the consumption rule. Finally, we estimate the model for
the leverage rule, which does satisfy conditions for exact linear aggregation/representative
agent.

Using the linear approximation is unlikely to result in serious bias in estimated pa-

14 This objection does not hold for the optimal leverage choice which is expressed as a constant. Fur-
thermore, using cross-sectional data for estimation obviously eliminates the need to address the
aggregation issue.

15 The reason for this is that the marginal contribution of the term term in bracket goes to 0, such that
the dominating effect of wealth on consumption is linear.
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rameters, as can be seen by rewriting optimal consumption (14) for individual i, where
¢ = 1...n is ranked according to increasing levels of wealth:

PoAid(A;), fori=1...1
doA;, fori=1+1...n,

(16)

where,

()E(oz—r)2 r

202 r—p

and,

1—log (£) + (%52 log(4:)

In this representation, we assume that for some criteria, the Engel curve can be considered

a8 G |

as linear after the first ! poorest individuals.
Summing over the n individuals, we can define aggregate consumption, € in function

of aggregate wealth A as:
-_— I . —
C =0 ) ($(A:) — 1)A; + poA. (17)
i=1

This means that at the estimation stage, the consumption equation becomes:
C = $oA(d — 1) + doA +¢, (18)

with ¢ being I x 1, ¢ being ! X 1 unit vector and A, T x [. If individual data on consumption
and wealth are not available, then the estimated equation proceeds by omitting the relevant
first regressor A, such that @, the estimator of $o will in general be biased. In fact, the

linearisation bias is easily obtained as:
E(fo — ¢0) = $oE[(A'A)7 A" A(¢ — 0)]. (19)

It follows that, since the individual ¢(A4;) are less than 1, and because, by definition, A
is positively correlated with A, o will underestimate the true #o. Yet, the estimator will

still be consistent because, as time evolves, individual wealth is increasing. If the first [
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individuals’ wealth is growing at the same rate as the rest of the population’s, this means
that / must be falling at rate equal to the growth rate of wealth, for a given non-linearity
criterion. In the case of a worsening distribution of wealth, the correlation between A and
A is falling as well. It follows that estimated bias will fall asymptotically.

We present estimation results in §4.2, discussing first the data sources.

4.2 Estimation

The estimation proceeds with discrete-time approximations of the diffusion processes for
equity and the risk-free asset, as well as the two optimal rules, which are estimated as a

bivariate system. As such, we have four equations to estimate:

Pg — Pt
% = a + €, €e,t ™~ NID(O" 02)’ (20)
P,

for the risky asset,

P/ - P}
't—P}$l =r+e€pt, e~ 1.1.D.(0,0%), (1)
t—1

for the risk-less asset, and

(@ =1)? rdy { —log (2) + (%32) log(4:)

C! =
*T T o | Tolos (2) + (52) og(a)

} + €c,t, ec,t ~ I.1.D.(0,0%),
(22)

for consumption, and,

w; = ( r > (a _ 7') + €w,ty €u,t IID(O, 0'3), (23)

r—p o?
for leverage. Due to the presence of cross-equations restrictions, the most efficient estimator
will to be estimate (20)-(23) jointly.
Having recourse to discrete-time estimation will imply that we are using an approxi-
mation to the continuous-time process. This follows for the diffusion processes for wealth
(6), as well as for the riskless and risky assets, for which integrals appear on the right-

hand sides, when changes in the state variables are computed over finite time intervals®.

16 This problem is known as the temporal aggregation issue, Grossman, Melino and Shiller (1987).
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However, the importance of this problem is likely to be minimal, assuming continuity

17 Furthermore, discrete-time approximation can be justified

of the diffusion processes
by asuming that the agent’s decisions are taken at the same periodicity as the available

datal®.

4.2.1 Data

The series used in the estimation process were obtained from the City Bank, and the
International Financial Statistics databases. The series are US quarterly observations for
the period 1957:4 to 1992:4.

Wealth We use IFS-11110172, Fixed assets / real estate as a proxy for total wealth, A;.
The original series consists of monthly observations form 1957:1 to 1993:3, which were re-
organised into quarterly data to replicate the periodicity of the other series. We also divide
by total population (CITI92-GPOP) and the implicit price index for consumer nondurables
(CITI92-GDCN) to obtain real per-capita assets.

This proxy could however underestimate the true wealth, to the extent that no provi-
sions have been made for other components, such as consumer durables, claims to pension
and insurance plans as well as social security wealth. 1°
Consumption The consumption series, C; consists of real per-capita expenditures on non-
durables, with aggregate consumption given by CITI92-GCN.

Leverage Following Chou, Engle and Kane (1992:214), we proxy the share of total wealth
allocated to equity, w;, by dividing corporate profits (CITI92-GPBT) by GNP (CITI92-
GNP). The argument put forward by Chou et al is that the income flow from stock own-

ership can be approximated from corporate profits, whereas income from total wealth is

17 Chan et al (1992:1213).
18 Melino (1991:9).

19° A more comprehensive wealth series has been computed by Wolff (1989), which includes estimates of
total assets and liabilities. Unfortunately, the series, which is annual, is incomplete, with 18 estimates
over the 1900-1983 period. Rather than interpolating the missing data points, we prefer to use the
complete IFS series.
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National Income. Assuming both series are integrated of order 1, and for identical dis-
counting, w; can be represented by their ratio.
Returns We use Standard and Poor’s Common Stock price indices (CITI92-FSPCOM) and
dividend yield (CITI92-FSDXP) to calculate the rate of return for the risky asset. The real
return, «, is obtained by subtracting the rate of inflation calculated from the nondurables
deflator. The real rate of return on the riskless asset is proxied from the 90-days T-Bills
series (CITI92-FYGM3), minus the inflation rate.

Table 3 presents summary statistics for the series used in estimation. In addition, we

present the correlation matrix.

Table 3: Preliminary Statistics, Correlation Matriz.

SERIES MEAN VAR. wy C; Ay AP P] |
wy 0.086 0.35E-5

C; 3713 30E+4 -0.60

A, 9511 81E+5 -0.77 0.77

APf/P] 0.021 28E-4 -0.10 0.006 0.10

APE/Pf 0.071 0.079 -0.12 -0.07 0.07 0.14

Notice that the equity premium is evaluated at 5%, and that we obtain a strong
correlation between the consumption, wealth and leverage data, which is mainly due to the
non-sfationa.rity present in these series. We now present the estimation results, followed

by the imputed risk aversion. We close the section by model specification inference, in

which SRA is tested against CARA and CRRA specifications.
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4.2.2 Estimation results

Tables 4.1 and 4.2 present estimation results, for the four estimated parameters, a, o2, r,
and p, with White’s Heteroscedasticity-Consistent standard errors in parentheses. The first
reported results in 4.1 concern the non-linear consumption. 4.2 reports estimated param-
eters for the linearised consumption, i.e. using the asymptotic approximation, where the

term in brackets is set equal to 1. The estimation procedure is by Multivariate Maximum

Likelihood.

Table 4.1: Estimation Results, Non-linear Consumption.

EQUATIONS. a o2 r p LLF

(20),(21) .0703 0784 .0207 297
(.031) (.010) (.45E-02)

(22),(23) .0199 -1630

(.75E-02)

§2og,g21 : .0858 0735 .0200 .0186

22),(23 (.75E-02)  (.50E-02)  (.98E-02)  (.47E-02)

(20),(21),(22) 1459 0607 0222 0167 -840
(.031) (99E-02)  (45E-02)  (.53E-02)

(20),(21),(23) .0703 0784 0207 0192 -206
(.031) (.010) (45E-02)  (.42E-02)

Table 4.2: Estimation Results, Linear Consumption.

EQUATIONS. a o2 r p LLF
(22),(23) .0199 -1727
(.19E-04)
(20),(21),(22) 0781 0796 0225 0214 -832
(.031) (.010) (45E-02)  (44E-02)
ézog,ézlg, 4245 -.0734 0185 T4T8 -661
22),(23 (.029) (.010) (.45E-02) (.216)

We first obtain starting values by separating the full system, (20) to (23), into two
sub-systems: prices [(20), (21)], and optimal rules [(22), (23)]. From the prices system,

we obtain a, 02, and r, which are then substituted back into the optimal rules to obtain
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an estimate of p. The four estimated parameters are then used as starting values for the
Gaussian optimisation procedure®’. The starting values thus obtained appear consistent
with standard results, with an estimated discount factor of .0199, which corresponds to a
discrete-time analog of # = e~” of .98.

The initial parameters, however, failed to yield convergence for the full system (20)-
(23). The presence of logs, in the non-linear part of consumption, impaired the search
procedure, by affecting the calculation of residuals. For this reason, we used instead a
Minimum-Distance estimator, which fixes the contemporaneous covariance matrix at its
initial estimate, obtained from the starting values. Evidently, the reported standard errors
will not be valid. In this case, convergence was achieved very rapidly (3 iterations) and
the result retained their consistency, even though a appears slightly biased upward, with
respect to the unconditional mean of the risky rate of return.

We then segmented the optimal rules sub-system and estimated successively prices and
consumption, followed by prices and leverage. In the case of consumption the upward bias
on o becomes more apparent, whereas for leverage, the result are similar to the starting
values.

As suggested in §4.1, a potential answer to the aggregation bias could be to restrict
optimal consumption to its asymptotically linear form. For this purpose, the term insides
the brackets is restricted to 1, such that consumption becomes affine in wealth. We present
the results for the linear model in Table 4.2, first for starting values and then, for the full
system, to be followed by the 3-equations system of asset prices and consumption.

The Maximum-Likelihood estimators for the initial p from the joint linear consump-
tion/leverage system is very similar to its nonlinear counterpart. However, when the full

system is estimated, the results are clearly biased, with an excessive a and negative o2 21,

20 The reported error for the discount factor is not valid, as it fails to take into account the fact that
the rates of return and variance have been estimated ex-ante.

21 1t should be noted that the variance was estimated from a separate scedastic function, subject to the
estimated o
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Yet, for the consumption sub-system, the estimated parameters appear more acceptable.

We conclude that the cross equations restrictions implied by SRA appear too strin-
gent to jointly explain consumption and leverage. The fault seems to be stemming from
consumption, with linear approximation doing little to improve performance. On the other
hand, leverage results are much more acceptable, and have the advantage of allowing for
exact aggregation. We therefore continue our analysis of model specification based on
the portfolio sub-system [(20), (21), (23)]. Our first task is to test the independence as-
sumption concerning the error term, and then to test sufficiency and transversality, i.e.
a > r > p. Following this, we compare SRA results for the leverage' sub-system, with its
CRRA and CARA counterparts?2.

The testing procedure used here is based on artificial regression, or Gauss-Newton re-
gression (GNR) for multivariate models?®. The GNR merely expresses orthogonality condi-
tions from the maximisation procedure between the residuals and the matrix of derivatives
with respect to the parameters in regression form. It can be used for various specification
tests, including serial correlation, and non-nested hypotheses testing. More specifically,

for the general m-equations nonlinear multivariate case,
Y = x¢(0) + Uy, EUU; =3,
with upper-tringular weighting matrix 1, where
Yy’ =271,

with i’th column denoted v; the GNR can be run in stacked form as:
y —x(8)ys Y X0
: = b + residuals, (24)
Y —%(0)m Yy Xi(0)s,m

22 Unfortunately, the HARA specification cannot be tested for the portfolio system, due to the inclusion
of two additional parameters which can be identified only through the full system.

23 Davidson and MacKinnon (1993:313-15).
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where X;() is the n x k matrix of derivatives evaluated with respect to the k parameters,
at the estimated values, in the j’th equation.

The specification tests results are summarised in Tables 5.1 and 5.2. The first table
presents tests results for the leverage sub-system, with State-Dependent Risk Aversion,

whereas 5.2 gives results for specification tests against CARA, and CRRA models.

Table 5.1: Specification tests, SRA, Leverage sub-system.

TEST RESULTS
GNR T Xa X2 X, X, Uisr Uiy Uy Upy
26E-03 -.21E-02 .21 -.29E-02 0.0 .22 -.01 .05 .03
(11E-02) (03) (-76) (:01) (0.0) (109) (.05) (05)  (.05)
ARCH(4) const. T UZ_, Uz, Uz, Uz,
1.13 -.5TE-03 22E-02 .55E-02 -.01 -.19E-02
(41)  (16E-02)  (.04) (.04) (.04) (.04)
a>r>p X{2) P-value (2-tails)
2.73 .25

We start by testing for serial correlation, in the form of an AR(4) process, common
to the 3 equations. Re-organised in stacked form, the residuals from the three equations
are regressed on the derivatives with respect to the parameters, using the appropriate
weightting structure, and lagged residuals. We also included a simple trend component
to test for deterministic nonstationarity of the error terms. Under the assumption that
an optimum has been achieved, the derivatives should have no explanatory power, from
first-order conditions, and under the null of serially independent errors, the coefficients on
the lagged residuals should be 0.

As can be seen from the GNR results, no derivative is significant, indicating that an
optimum has been obtained?%. The addition of a time trend, 7', did not improve the fit
significantly. Furthermore, the null of no AR(4) process is not rejected, with only the first

lagged residual being significant.

24 Notice the coefficient on the derivative w.r.t. the discount factor which is exactly 0, indicating perfect
collinearity in the matrix of derivatives, due to the multiplicative structure.
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We also test for Autoregressive Conditional Heteroscedasticity (ARCH) in the form of
an ARCH(4) process. The scedastic function is obtained by expressing squared residuals
on a constant, time trend, and lagged squared errors, up to lag 4. Again, no violations
from the spherical errors assumption were detected.

Finally, we test model adequacy, in the form of sufficiency, transversality, and feasi-
bility. It will be recalled from §3.2 that sufficiency and transversality conditions can be
expressed as a test that p < r, whereas feasibility of leverage plans requires that o > r.
We therefore tested the two assumptions jointly, through a Wald test which yielded a two
tails marginal value of .25, indicating that the null is not rejected.

These results lead us to conclude that the SRA specification performs reasonably
well, in terms of explaining leverage choices. The next step is to test SRA against the
other utility specifications. In order to be consistent, we restrict estimation to portfolio
rules only. This forces us to abandon estimation of HARA specifications, for identifiability
reasons. We therefore turn our attention to CRRA and CARA. We start by estimating the
leverage sub-systems for both alternative specifications, and then perform straightforward
restrictions tests, in the case of CRRA, and non-nested hypothesis testing for CARA. Full
results are presented in Table 5.2.

Testing for SRA against CRRA can be implemented easily as a nonlinear restriction

that:

r —
y=—£, (25)

in which case CRRA reduces to SRA, if estimation is restricted to the leverage sub-system.
This test was performed in two steps, first by regressing the SRA model, and by fixing the
7 parameter, estimated from the CRRA model, and secondly, by inversing the procedure,
i.e., by holding a, 02, and p fixed, and using the estimate -y, along with its standard error.

Testing for SRA against is somewhat more complicated due to the impossibility of
nesting the two hypotheses within a single test equation. In this case, we use artificial

nesting, through multivariate stacked GNR. The P test used here is simply devised a ¢
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statistic on the parameter on the differences in predicted values between the two models,
added to the stacked GNR introduced earlier?>. To simplify, consider the univariate case,

with two competing hypotheses, H;, and H,:
H;: y=z(B)+w
H, : = 2(¢) + u2

The two hypotheses may be nested within a more general model:
He:  y=na(f)+(1—m(()+u,

such that when 7 = 0, we recover H;, and when 7 = 1, we recover H;. To test H; against

Hc, we simply use the ¢ statistic on a in the artificial regression:
y —& = Xb+ a(3 — 2) + residuals,

whereas to test H, against Hc, we reverse the procedure as:
y—3=7Zc+ a(& — 2) + residuals.

Keeping in mind that these tests may have poor finite sample properties, we present
specification tests results for SRA, first against CRRA, and subsequently against CARA

in the following table.

25 Davidson and MacKinnon (1993:381-88).
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Table 5.2: Specification tests, CRRA and CARA, Leverage sub-systems.

MODEL/TEST RESULTS
CRRA a o? r vy LLF
.0704 .0748 .0207 .1354 662
(.030) (.010) (45E-02) (.087)
CARA a o? r 0% LLF
.0722 .0806 .0204 .0422 706
(.030) (.010) (.45E-02) (.087)
Hy : SRA X%l) P-value
1.07 30
H, : CRRA X%1) P-value
.049 .82
GNR T X, X,2 X, X, y° - 9¢
Ho : SRA .35E-03 -.42E-02 -.08 -.39E-02 0.0 .52
(15E-02)  (.039) (.98) (.02) 0.0 (2.92)
GNR T Xq X, X Xy y¢ -y°
Ho : CARA -42E-03 .010 23E-02 .50E-02 0.0 .15
(16E-02)  (.04) (.07) (.02) 0.0 (.09)

Considering first the relevance of CRRA as an alternative specification, we can see
from the Wald tests of the nonlinear restriction (25) that we do not reject the null that
the SRA restriction is valid. Fixing v, we obtain a P-value of .30, for estimated a, o2, r
and p, whereas using the estimated relative risk aversion index, for fixed rates of return,
variance, and discount factor, yielded a P-value of .82. We conclude that SRA appears to
explain the leverage data better than CRRA.

Testing for SRA against CARA via artificial nesting also yielded results in favor of
SRA. Controlling for serial correlation (not reported), we find that both tests lend support
to State-Dependent Risk Aversion?®. In the first case, SRA is tested against the compound
alternative. The coefficient on the differences in predicted values, ¢ — ¥°, thus obtained
was .52, with a t statistic of .17, indicating that the null of SRA is not rejected. In the

second case, CARA is held as the null against the compound. We obtain a coefficient of

26 We also tested for ARCH(4) processes and could not reject the null of constant variance.
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.15, with a ¢ statistic of 1.52, which lends weak evidence against CARA, in favor of the
compound.
Summarising these results, we find the following:

1- SRA gives mixed results when estimated over the full system. In particular, the non-
linearities implied by the consumption schedule impair convergence. The problem can
be overcome by fixing the rates of return and variance and by estimating consump-
tion and leverage, separated from the diffusion processes for asset prices, or by using
a minimum-distance estimator, with fixed contemporaneous covariance matrix.

2- Estimating the leverage sub-system yields sensible results which favor SRA éver CARA
and CRRA alternatives. In particular, we find that the regularity conditions underly-
ing the model are verified, and that the leverage data used in the estimation is better

explained by SRA than other utility specifications.

4.2.3 Imputed Risk Aversion

The results presented in the preceding section have important implications for risk aver-
sion. In particular, they suggest that both relative and absolute risk aversion may not
be constant over the sample. This can be seen from the following figure which plots rel-
ative risk aversion against time. By substituting &, 62, #, and j, into the SRA relative
introduced in Table 2, we recover a relative measure of risk aversion which increases as
i)er-ca.pita wealth trends upward. This suggests that imposing constant risk preferences
might be inadequate in explaining consumption and leverage choices.

A natural extension to the model will be to consider the dual of the consumer’s
problem, i.e. to express SRA implications in prices space, rather than goods space, as
was done here. Only then will we be able to verify whether SRA improves the empirical
performance of the asset-pricing model in terms of observed paradoxes of the traditional
specifications. Yet, initial results suggest that allowing time-variant risk preferences might

be a step in the right direction.
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5- CONCLUSION

SRA appears to be a promising alternative to constant risk preferences. The idea of more
general utility functionals is not new, having been developed by Uzawa (1968) and more
recently by Bergman (1985) in the context of the discount factor, as well as by Nason
(1991) with respect to the bliss point. Yet, the crucial implications of time-dependent risk
aversion have not been explored. The objective of this paper was to show that alternative
risk preferences can yield sensible and tractable expressions which retain many of the
desirable features of the more standard models.

In our view, the main advantages of SRA are twofold. First, the added flexibility
provided by liberalising the risk preference parameter allows for an alternative set of re-
lations between the states, control and preference variables. This provides a new method
to look at certain problems associated with standard approaches such as the excessively
large equity premium.

Secondly, SRA suits well with the rational expectations hypothesis. In our application,
the individual not only uses all available information to determine optimal consumption
and diversification paths, given fixed utility parameters, but also uses it to assess his own
preferences, given a candidate solution to his maximising problem. In other words, with a
known distribution and wealth level, the level of risk tolerance is determined, knowing that
it will evolve across time as the opportunity set is modified. This non-stationarity is taken
into account when deciding upon alternative consumption and leverage schedules. This
translates itself into intertemporally consistent decision-making which uses all available
information to a greater extent than is the case with more standard approaches. What
this implies is that the agent adjusts his tolerance to risk, fully taking into account the
characteristics of the problem that he faces.

Our specification for the risk aversion function yields both intuitively and empirically
appealing results. By postulating absolute risk aversion to be declining in wealth and

equity premium, and to be increasing in variance, we were able to obtain better estimation
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results than CARA and CRRA specifications, in terms of explaining leverage choices.
Consumption, on the other hand proved more difficult to estimate, due to the presence of
nonlinearities in the parameter space, which impaired convergence.

As such, other applications can also be considered. In the demand for insurance
case, interesting moral hazard results could be obtained if the distributional parameters
are related to the control variables (such as preventive actions) and affect in return the
degree of risk aversion. For the real business cycles case, prolonged inertia at the end of
a recession could be related to the increased reluctance to take risks when state variables
are in an averse situation. Finally, within a static framework, Allais’ pa,ra,dc;x could be
associated to wealth effects on risk tolerance for almost-sure lotteries, in which the secure
prizes may effectively be counted as wealth by the individual. In this case, the demand
for the risky lottery could exhibit kinks over the distributional range indicating that once
a prize becomes sufficiently secure, it is treated as part of total wealth, with other prizes
ranked accordingly. Furthermore, SRA could be applied in the labor studies to analyse

the impact of changing state variables on the desire for union employment protection.
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