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ABSTRACT

Hamilton’s (1989) nonlinear Markovian filter is extended to allow state
transitions to be duration dependent. Restrictions are imposed on the state
transition matrix associated with a t-order Markov system such that the
corresponding first-order conditional transition probabilities are functions
of both the inferred current state and also the number of periods the process
has been in that state. High-order structure is parsimoniously summarized by
the inferred duration variable. Applied to U.S. post-war real GNP growth
rates, we obtain evidence in support of nonlinearity, asymmetry between
recessions and expansions, as well as strong duration dependence for

recessions but not for expansions.

KEY WORDS: Time-varying transition probabilities; Regime-switches;
Nonlinear asymmetric cycles.



1. INTRODUCTION

In recent years there has been a growing interest in the econometric
modelling of nonlinear temporal dependence in time series data. Indeed the
possible nonlinearity and asymmetry of business cycles is an old topic in
economics. For example, Terasvirta and Anderson (1991) reference Keynes
(1936) who argued that contractions are more violent but also more
short-lived than expansions. The possibility of asymmetric nonlinear
cyclical processes raises important issues for econometric estimation and
testing.

Cyclical processes such as GNP have traditionally been modelled as
linear stationary processes. This approach includes ARMA processes around a
deterministic time trend [for example, Nelson and Plosser (1982) and Campbell
and Mankiw (1987)], linear unobserved components models [for example, Harvey
(1985) and Watson (1986)], and cointegration specifications [for example,
King, Plosser, Stock and Watson (1991)]. Obviously, linear models impose
restrictions on the conditional densities of the variable in question. An
interesting question is whether or not such restrictions are at odds with the
data in particular applications.

One approach to answering this question has been to test a linear
process against a nonspecified nonlinear alternative. For example, the
Brock, Dechert and Scheinkman (1987) statistic (hereafter referred to as the
BDS statistic) can be used to test the null hypothesis that a time series is
i.i.d. against a variety of alternatives which exhibit non-random structure.
Although such structure could be linear or nonlinear, the test does have
power against nonlinear alternatives [Brock, Hsieh and Lebaron (1991)] in
contrast to some traditional tests for persistence.

Alternatively, many authors have proceeded in various directions from

the null of linearity by characterizing particular features of the



potentially nonlinear dynamics. In the context of modelling business cycle
indicators, these approaches to testing for and/or modelling potential
nonlinearities and asymmetries have included: nonparametric tests for
steepness of contractions versus expansions [Neftci (1984)]; nonparametric or
semi-nonparametric approaches to evaluating asymmetry in the conditional
distributions of GNP growth rates and employment [Brunner (1992), Hussey
(1992)]; chaos models [Brock and Sayers (1988), Frank, Gencay and Stengos
(1988)]; threshold autoregressive (TAR) models [Potter (1991)]; smooth
transition autoregressive (STAR) models [Terasvirta and Anderson (1991)];
regime-switching models with constant transition probabilities [Hamilton
(1989), Hansen (1991a), Lam (1990)]; regime-switching models with time-varying
transition probabilities [Diebold, Lee and Weinbach (1992), Filardo (1992),
Ghysels (1992)]; duration models [Diebold and Rudebusch (1990), Diebold,
Rudebusch and Sichel (1991), Sichel (1991)]; and duration models with seasonal
hazard rates [De Toldi, Gourieroux and Monfort (1992)].

This paper extends Hamilton’s (1989) model to allow state transitions to
be duration dependent. In particular, we impose restrictions on the state
transition matrix associated with a T-order system such that the
corresponding first-order conditional (time-varying) transition probabilities
are functions of both the inferred current state and also the number of
periods the process has been in that state. Since any effects of long lags
of the Markov states are summarized by the inferred duration variable, this
structure exploits information concerning state temporal dependence but is
much more parsimonious than an unrestricted high-order Markov process. It
may be useful to note that our model is a particular parameterization of a
semi-Markov process. In the latter, one collapses the higher-order structure
into a conditional holding time distribution.

Our nonlinear filter and smoother extends that of Hamilton (1989) to



allow duration dependence. We are grateful to a referee for noting that this
technical advance is related to that of Lam (1990) who generalizes the
Hamilton (1989) filter to allow for an AR process without a unit root so that
the Markov trend specification can be applied to GNP data in levels. In Lam’s
(1990) algorithm, dependence of GNP levels on all past lags of Markov states
is captured by an additional Markovian state variable which is the sum of past
Markov states since the beginning of the sample. In our case, high-order
dependence of states is summarized by the duration variable. However, in
Lam’s (1990) algorithm the transition probabilities are constant whereas ours
are duration dependent.

Quasi-maximum likelihood estimation (QMLE) allows inference concerning
nonlinearity, asymmetry and state dependence of parameters associated with the
first two conditional moments for various business cycle indicators.

Applied to duration dependence, our approach complements recent papers which
use a hazard function approach. For example, Diebold and Rudebusch (1990),
use nonparametric tests of the conformity of half-cycle and full-cycle
lengths to the exponential distribution which would be implied by a constant
hazard or no duration dependence. Sichel (1991) employs a parametric hazard
function which nests the constant hazard; Diebold, Rudebusch and Sichel
(1991) utilize an exponential-quadratic hazard which is propesed to balance
parsimony and flexibility.

Our extension of Hamilton’s (1989) constant transition probability Markov
switching model to allow duration dependent transition probabilities, can also
be compared (see Section 2 below) with the recent literature which extends
the Hamilton model by allowing observable economic fundamentals [Diebold, Lee
and Weinbach (1992), Filardo (1992a,b)] or seasonal indicators [Ghysels
(1992)] to affect the state transition probabilities.

Comparing these Markov switching nonlinear models with a linear



autoregressive (AR) null involves some non-standard conditions which affect
the asymptotic distributions of typical tests. In particular, the transition
probabilities are not identified under the null and the scores associated with
parameters of interest under the alternative may be identically zero under the
null. Model comparison under these non-standard conditions has been analysed
by several recent papers [for example, Davies (1987), Garcia (1992a,b) and
Hansen (1991a,b)]. Using the critical values in Garcia (1992b), which are
based on the distribution theory in Hansen (1991b), our evidence suggests
that, for this sample, the linear specification of real GNP growth rates can
be rejected in favor of our Markov switching alternative which has duration
dependent transition probabilities.

Allowing regime switches between two states for the mean growth rate, as
in Hamilton (1989), our results provide evidence in support of asymmetry
between contractions and expansions. This is indicated by the difference in
the transition probabilities associated with these states and strong evidence
of duration dependence associated with post-war recessions but not for
expansions. Therefore, we reject the first-order Markov specification with
constant transition probabilities in favor of a Markov switching specification
with duration dependent state transition probabilities.

As discussed by Hamilton (1989), exploiting any nonlinear structure can
be particularly important for optimal forecasts. In the case of the nonlinear
Markov filter, the estimated parameters can be used in conjunction with the
observable series to infer the probability of being in a particular state at a
specific time. As emphasized by Hamilton (1989), this output (either smoothed
or conditional on current information) can be used to indicate turning-points
in the cycle. As such, this model could contribute to the range of tools
being used in the leading indicators literature [see the collection of papers

in Lahiri and Moore (1991) for examples of recent advances in this areal]. We



compare our predictor of business cycle turning-points with the NBER dating of
U.S. business cycle peaks and troughs. We also plot the expected half-cycle
durations implied by our estimated model.

In Section 2 we discuss our extensions to the Hamilton (1989) model. The
appendix provides technical details, including a description of the
unconditional probabilities and the associated transition matrix, the filter
we use to estimate the nonlinear model and to infer probabilities concerning
the unobservable states, and initialization of the filter. In Section 3 our
model is applied to the real GNP series from Hamilton (1989) and our results
are compared to those for his first-order model and to those for a linear
autoregressive model. These results include parameter and robust standard
error estimates, model comparison test statistics, plots of duration
dependence, and plots of inferred probabilities concerning the unobservable
state and expected half-cycle durations at each point of the sample. Section
4 provides some concluding comments.

2. A STOCHASTIC REGIME-SWITCHING MODEL FOR CYCLICAL PROCESSES
2.1 The Stochastic Setting

Consider a time series denoted y. generated by the stochastic process

yr = m(S¢) + i ¢i(st—i)(Yt—i - #(St-i)) + 0¢(St)vy, ve ~ N(O,1). (1)
i=1

The state operative at time t is indexed by the discrete—valﬁed variable S:.
Assume a k-state Markov process for the state vector S;. The true state is
unobservable (is hidden or embedded) and must be inferred from the
observations on the series y from time O to time t.
2.2 The Hamilton Model

Hamilton (1989) applies a filter which draws upon the information
contained in the observable series to make probabilistic inferences about the
historical sequence of states {S;}§ . The filter iterates over the length of

the time series sample, producing, as a by-product, the likelihood which is



maximized in order to obtain estimates of the vector of parameters that define
the model. Hamilton (1989) sets the number of states k=2 and assumes a
first-order Markov process for state transitions. The latter assumption
implies that the transition probabilities are completely defined by the
current (t-1) state. That is, using upper-case S to refer to the random state
variable and lower-case to refer to a particular realization,

P(St=st|St-1=S¢-1) = P(St=st|St-1=St-1,...,S0=So). Hamilton also assumes that

the state transition probabilities are constant over the sample.

2.3 Time-Varying State Transition Probabilities

As noted above, several recent papers have extended the Hamilton model by
incorporating time-varying state transition probabilities. Diebold, Lee and
Weinbach (1992) and Filardo (1992a,b) allow the state transition
probabilities to evolve as logistic functions of observable economic
fundamentals while Ghysels (1992) conditions on seasonal indicators.

In particular, Diebold, Lee and Weinbach (1992) provide an EM algorithm
for estimation of the parameters of a model for which the transition
probabilities evolve as logistic functions of xt-1Bs, where the conditioning
vector xi-; contains economic variables that might influence the transition
probabilities. In this case, Hamilton's P(St=st|qu=st_1) is extended to
P(St=st|St_1=st_1,xt_1). In his model and empirical applications, Filardo
(1992b) conditions on leading economic indicators at time t. Filardo (1992a)
extends his time-varying transition probability specification to a bivariate
process.

2.4 Higher-order Markov processes

As suggested by Hamilton (1989), one way of increasing the information
to his filter is to apply a higher-order transition matrix. However, one
difficulty with estimating unrestricted high-order Markov models is that the

number of transition parameters, and thus the order of computational



magnitude, grows rapidly with the order of the Markov process. This results
in a substantial reduction in the degrees of freedom and eventual
intractability. Some restrictions would be desireable.

2.4.1 Duration Dependent Transition Probabilities

It is possible that time series which appear cyclical, or exhibit long
swings, might have higher-order embedded Markov processes with state
transition probabilities which exhibit duration dependence. We extend the
Hamilton model by allowing the state transition probabilities to be functions
of both the inferred current state and the associated number of periods the
system has been in the current state. We refer to the latter as duration
dependence and summarize it by the integer-valued random variable Di_;.

In our case, the conditional state transition probabilities can be
written as P(S;=st|St-1=st-1,Dt-1=d). That is, unlike Hamilton’s
specification, state transition probabilities are not completely defined by
the current state. In particular, we extend his first-order Markov
specification to a T-order (1=t=N) model where N is the length of the sample
for the time series being modelled. In order to focus on duration
dependence, any effects of long lags of the Markov states are collapsed into
the inferred duration variable D{-;. In other words, restrictions are
imposed on the (2t x 2t) transition matrix such that it is very sparse.

Therefore, unlike Hamilton’s (1989) specification which imposes constant
state transition probabilities over the sample, our conditional state
transition probabilities are allowed to vary as a function of the number of
periods (duration) that the system has been in a particular inferred state.
On the other hand, unlike the extensions of Hamilton (1989) discussed in
Section 2.3 above, our duration dependent transition probabilities,
P(St=stISt_1=st_1,Dt_1=d), are inferred from the observable series

{yt-1,¥Yt-2, ... ,Yo} alone —-- rather than being parameterized as functions of



additional observable economic fundamentals. While simpler in that
respect, our specification incorporates higher-order effects in order to
focus on state temporal dependence in cyclical data.

It remains to parameterize our conditional state transition
probabilities P(St=st|Sb4=st_1,Db4=d). There are certain necessary
properties and other desirable properties that such functions should
exhibit. Firstly, since they represent probabilities their values must
always lie in the interval (0,1). Secondly, their sum over all s; must be
equal to one for each t. Thirdly, it would be useful for testing purposes if
the functional specification nested a first-order Markov model with constant
transition probabilities by being independent of D, for given parameter
values. Fourthly, it is desireable that the specification be flexible so that
it is capable of capturing a broad range of possible duration structures.

As is common in parameterizing probabilities or rates, for example,
Diebold, Lee and Weinbach (1992) and Filardo (1992a,b), these objectives can
be accommodated by a logistic functional form. For the two-state case
(i=0, 1), this results in the following functional specification for our
characterization of the probabilities associated with changes of regime:

P(S¢=1|St-1=1, Dt-1=d) = Pj;

exp(a(i)+ b(i)d)/(1+exp(a(i)+ b(i)d)) , if d =T, - (2)
(

exp(a(i)+ b(i)T)/(1+exp(a(i)+ b(i)T)) , if d > T,

P(St=j|St-1=i, D¢q=d) = Pi; = (1-Py;) , (3)

where Tt defines the memory of the process.

Therefore, the conditional probability matrix can be written as:

p p exp(a(0)+b(0)d) _ _exp(a(0)+b(0)d)
P = 00 A I 1+exp(a(0)+b(0)d) 1+exp(a(0)+b(0)d) (2)
P p 1- exp(a(1)+b(1)d) exp(a(1)+b(1)d)
10 1 1+exp(a(1)+b(1)d) 1+exp(a(1)+b(1)d)
I .

10



That is, in the notation of Hamilton (1989) and others, for which the
state i=0 corresponds to recessions and the state i=1 refers to expansions:
Poo is the probability of being in a recession next period if in a recession
this period; Po; is the probability of moving out of a recession; P,y is the
probability of staying in an expansion; and Pio is the probability of moving
out of an expansion.

Note that this parameterization of the conditional probabilities ensures
that they: 1lie in the interval (0,1); sum to 1; and, if b(i)=0, for all i,
then P(St=st|Sb4=stq,[k-1=d)=P(St=st|St4=st_1), and the process collapses
to a first-order Markov process identical to that assumed by Hamilton (1989).

The appendix describes the filter we use to estimate the nonlinear model
and to infer probabilities concerning the unobservable states, as well as
jnitialization of the filter using unconditional probabilities. The appendix
also summarizes the algorithms used to compute those unconditional
probabilities and provides a numerical example, computed at the parameter

estimates given in Table 4 and using the easily illustrated case of 7=3.

3. APPLICATION TO THE GROWTH RATES OF U.S. REAL G.N.P.

3.1 Data and Empirical Models

Three models are compared using the data on post-war U.S. real G.N.P.
growth rates used in Hamilton (1989). These models include: a linear
autoregressive (AR) specification; a first-order Markov model for regime
switches with constant state transition probabilities; and our Markov model
which allows for duration dependence. Therefore, the test equations are
nested versions of (1) with conditional probabilility matrices that are
nested versions of‘(4).

The data is 100 times the change in the log of U.S. real GNP from the

second quarter of 1951 to the fourth quarter of 1984. As in Hamilton
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(1989), the number of states k is set equal to 2 and q (the number of
autoregressive lags included in the mean) is set equal to 4. In this case,

(1) can be rewritten as:

ye = p(Se) + i i (ye-i = B(Sei)) + ove (5)
1=1
in which:
r(S:) = o, for S = 0,
and
r(S¢) = ap + oy, for S = 1.

That is, Hamilton (1989) assumes that the AR coefficients and the standard
deviation are constant so that regime switches only shift the mean growth
rate.

As demonstrated by Perrén (1990), once one models discrete changes in
regime it may be possible to reject the unit root specification. As noted
above, in this regard Lam (1990) generalizes the Hamilton (1989) filter to
allow for an AR process without a unit root and applies the Markov trend
specification to GNP data in levels. Hansen (1991a) introduces a "modified
Markov trend" model in which the states shift the intercept of growth rates
rather than the mean. In that case, the ¢;(Si-;) and the p(Si-;) in (1) are

functions of Si_; for all lags rather than functions of S:_;.

3.2 Results

Table 1 presents some nonparametric evidence that the growth rates in
this sample are not i.i.d.. Estimates for a linear fourth-order AR model are
reported in Table 2. Quasi-maximum likelihood estimates (QMLE) for the
Hamilton (1989) specification are given in Table 3. That model specifies
that the transition probabilities are constant and follow a first-order Markov
process. Finally, Table 4 presents the estimates for the duration dependent

model for which the evolution of the states is determined by the conditional
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probability matrix parameterized as in (4).

Figure 1 plots the duration dependence associated with the model
summarized in Table 4. Figure 2 presents the filtered probability that S.;=0,
the recession state, for each point in the sample according to the Hamilton
model reported in Table 3. Figure 3 provides the corresponding probabilities
for the model reported in Table 4 which allows duration dependence. These
predictors of turning points are not smoothed. That is, they are ex ante in
that they are conditional on current (t-1) information. Finally, Figures 4
and 5 plot expected half-cycle durations conditional upon the inferred state
of recessions and expansions respectively. As comparisons, the NBER dating
of business cycle peaks and troughs are marked with vertical lines from the
horizontal axes of Figures 2 to S.

As discussed in the introduction, one can evaluate whether the GNP
growth data exhibits (potentially nonlinear) dependence using the BDS test
statistic. Table 1 presents a battery of BDS test statistics for alternative
values of m and €. The embedding dimension m refers to the dimension of the
histories used to compute the correlation integral. The correlation integral
measures the proportion of the m-dimensional points which are €-close to each
other according to the supnorm criterion. The € is chosen to be proportional
to the standard deviation of the series of real GNP growth rates divided
(normalized) by its range. The proportionality factor in column 1 is unity
and that in column 2 is 1.2. Although these BDS statistics are not
independent, all but one have a p-value of less than .05 indicating evidence
against the null hypothesis that these GNP growth rates are i.i.d.. We now
proceed to report estimation results for various models which incorporate
linear or nonlinear temporal dependence.

Given correct specification of the first two moments, our quasi-maximum

likelihood estimates (QMLE) of the parameters will generally be consistent and
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asymptotically normal [Domowitz and White (1982), Bollerslev and Wooldridge
(1992)]1. We compute standard errors which are robust to departures from the
maintained conditional normality assumption using the diagonal of the matrix
(J-'KJ™')/T where J is the numerical approximation to the Hessian and K is the
inner product of the score matrix which we also evaluate numerically (Engle
and Gonzalez-Rivera (1991) discuss potential loss of efficiency associated
with QMLE and propose a more efficient semiparametric approach). Note that
the scores used to compute K will reflect the smoothed probabilities as
indicated in Garcia (1991a) and Hamilton (1989b).

Table 2 reports estimates for a linear fourth-order AR model for the GNP
growth rates. There is evidence of strong persistence associated with the
first lag only.

Our estimates for the Hamilton (1989) specification (5) are given in
Table 3. That model specifies that the state transition probabilities are
constant and follow a first-order Markov process. The alternative regimes
appear to be identifying a low growth state (conditional on S=0, the growth
rate, p(0)=a,, is estimated to be -0.36% per quarter) and a high growth state
(conditional on Si=1, m(1)=ao+a,=1.16% per quarter).

The robust t-statistic associated with o, (=1(1)-(0)) being significantly
different from zero is 3.21. As discussed in our introduction and in Section
3.3 below, the asymptotic distribution for this test will be non-standard.
Using the critical values reported in Garcia (1991b), this t-statistic
has a p-value of between 0.05 and 0.01. This suggests that we cannot reject
the hypothesis that the growth rates are the same in the two states very
convincingly. More on this below.

The estimated constant transition probability associated with recessions
(Poo=.76, 1-Poo=.24) are quite different from that associated with expansions

(Py4=.90, 1-P;;=.10). These estimates imply shorter expected (constant)
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duration for recessions ((1—Poo)"1 = 4.1 quarters) than for expansions.
Consequently, this nonlinear model suggests that the cycles are asymmetric.

Table 4 presents estimates for our model for which the evolution of
the states is characterized by a duration dependent process with conditional
probability matrix parameterized as in (4). As discussed in Section 2, our
specification nests the Hamilton (1989) first-order Markov model. For
example, if b(0)=0 there will be no duration dependence associated with
recessions. The memory, T, of the Markov process is set equal to nine
quarters as a result of a grid search with the likelihood value as criterion.

Table 4 reports that the robust t-statistic for b(0) is -4.55 which
rejects that it is zero and indicates a significant duration dependence for
the probability of a transition out of recessions. In particular, as the
recession ages the probability of a transition into an expansion increases.
The robust t-statistic for b(1) is -0.86 which suggests that, at least for
7=9 in this sample, there is no significant duration dependence associated
with the probability of a transition out of expansions.

Graphic evidence of this asymmetry between recessions and durations is
given in Figure 1. The inferred conditional probability that we stay in a
recession appears to be strongly dependent on the number of quarters the
system has been in a recession. Using an inferred probability of .5, the
model predicts that on average there will be a move out of the recession
after a duration of between 4 and 5 quarters. In contrast, U.S. post-war
expansions do not exhibit nearly as strong duration dependence. These plots
support the statistical inference based on the estimates reported in Table 4.

Figures 2 and 3 present, for each point in the sample, the inferred
probability of being in the recession state (that is, P(St=0|yt_1,...,yo))
according to the models reported in tables 3 (the Hamilton model) and 4 (the

duration dependent model) respectively. These predictors of turning points
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are conditional on ex ante (t-1) information -- rather than on
contemporaneous (t) information and information available one year later
(t+4) as in Figure 1 of Hamilton (1989).

As a comparison, the NBER dating of business cycle peaks and troughs are
marked with vertical lines from the horizontal axes of these figures. Both
models do quite well at indicating turning points. However, using the same
dating of information, the duration dependent specification leads the
Hamilton specification in predicting turning points and also exhibits more
decisive probabilities associated with the inferred state.

Figures 4 and 5 plot the expected half-cycle durations, at each t,
conditional upon the inferred state of recessions and expansions

respectively. That is, for i=0,1:

2]
E[D¢|Se=1,t1,...,¥0] = ) P(De=d|Se=1,ye1,...,¥o)xd . (6)
d=1

For example, Figure 5 indicates that changes in the expected half-cycle
durations lead NBER turning points. This suggests that such a variable
might also serve as a useful conditioning variable or leading indicator.
3.3 Model Comparisons

Formal comparison of the two alternative nonlinear models with the
linear autoregressive (AR) null is difficult since the transition
probabilities are not identified under the null and the scorés associated
with parameters of interest under the alternative will be identically zero
under the null for certain values of those parameters (for example, Py1=1).
As discussed in the introduction, these non-standard conditions affect the
asymptotic distributions of typical tests. In order to compute asymptotic
critical values under these conditions, Garcia (1992a,b) treats the
parameters associated with the transition probabilities as nuisance
parameters and bounds the unconditional probabilites away from the degenerate

cases of 0 and 1.
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Our likelihood ratio (LR) test statistic comparing the linear AR(4)
model (Table 2) with the Hamilton (1989) first-order Markov specification
(Table 3) is 4.812; while the LR test statistic comparing the linear AR(4)
model with our duration dependent specification (Table 4) is 14.856. Based
on the appropriate critical values [Garcia (1992b, Table 2)] for the LR test
statistic comparing a linear AR(4) model against a two-state Markov trend
AR(4) model, we are unable to reject the linear model in favor of the
first-order Markov model with constant transition probabilities (p-value
between 0.25 and 0.30). However, we are able to reject the linear model in
favor of our model which allows duration dependence (p-value less than 0.01).
While this rejection of the linear model in favor of a duration dependent
parameterization of the state transition probabilities in a regime-switching
model appears to be decisive, our results in this regard are preliminary.
More work needs to be done with respect to any potential effect the
additional nuisance parameters (introduced by our duration dependence
specification) might have on LR test statistics comparing nonlinear
alternatives to a linear null.

In any event, we are able to reject the nonlinear first-order Markov
specification for regimes switches (Table 3) in favor of our nonlinear Markov
model which allows duration dependence (Table 4). The LR test statistic is
10.044 which has a p-value of less than 0.01 according to the chi-square
distribution with two degrees of freedom. In addition, as discussed in the
previous section, the robust t-statistic for b(0) rejects that it is zero
and indicates significant positive duration dependence for the probability
of a transition out of recessions. The robust t-statistic for b(1) suggests
that there is insignificant duration dependence associated with the
probability of a transition out of expansions.

As discussed in our introduction, much recent work on duration

17



dependence in GNP data has used hazard functions. Using nonparametric tests,
Diebold and Rudebusch (1990) found the strongest evidence for duration
dependence in prewar expansions. With respect to postwar data, they detected
some weak evidence of positive duration dependence associated with postwar
contractions but none for postwar expansions. This empirical evidence led
them to conclude that the assumption of constant Markov transition
probabilities in Hamilton (1989) is "particularly valid for expansions and
perhaps less so for contractions, although the very small size of these
samples may impair the power of the tests" (p.613).

That concern about sample size no doubt motivated Diebold, Rudebusch and
Sichel (1991) to propose the exponential-quadratic hazard as a balance
between parsimony and flexibility. Their extensive empirical evidence
includes the postwar U.S. experience for which they find strong positive
duration dependence for contractions and no dependence for expansions.

As noted above, our duration dependent specification rejected the nested
constant transition model of Hamilton (1989) for his postwar sample.
Therefore, our parametric approach produces evidence of duration dependence
which is considerably stronger than that of Diebold and Rudebusch (1990) and
closer to that of Diebold, Rudebusch and Sichel (1991). However, the results
are also similar in that all three approaches detect an asymmetry with

respect to duration dependence for recessions and expansions.

4. CONCLUDING COMMENTS
The econometric modelling of nonlinear temporal dependence in time
series data involves many interesting challenges. This paper takes one
step in that direction by extending Hamilton’s (1989) nonlinear Markov
switching model to allow duration dependence in the state transition
probabilities. Explicit conditional probability representation of time

duration in any given state allows inference concerning a number of
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hypotheses. For example, such dependence is one important source of
asymmetries in the cycles which necessitate the use of nonlinear models.
Quasi-maximum likelihood estimation allows inference concerning
nonlinearity, asymmetry and state dependence of parameters associated with
the first two conditional moments for various business cycle indicators. Our
results, for a sample of post-war U.S. real GNP growth rates, provide
evidence in support of nonlinearity and in particular of asymmetry between
contractions and expansions. This asymmetry is indicated by the difference
in the transition probabilities associated with these states and also
evidence of considerably stronger (positive) duration dependence associated
with post-war recessions than with expansions. This duration dependence
result rejects the first-order Markov specification with constant transition

probabilities for regime switches between two states in these data.
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APPENDIX: ESTIMATION ALGORITHM

A.1 A Nonlinear Filter

This appendix describes a nonlinear filter which extends that of
Hamilton (1989) by relaxing the restrictions imposed by Hamilton’s
first—ordér Markovian filter and allowing the conditional state transition
probabilities to be duration dependent. In particular, we impose
restrictions on the transition matrix associated with a T-order system such
that the evolution of the corresponding first-order process depends not only
on the current state but also on the number of periods the process has been

in the current state.

A.2 Computing the t-order Transition Matrix and Unconditional Probabilities

Given a T-order system with two state variables, S and D, and assuming
that di=t, the state vector at time t is:
A= [(St=0,Dt=1) (St=O,Dt=2)...(St=O,Dt=t)(St=1,Dt=1)...(St=1.Dt=T)]’, (A.1)
so that m, the vector of unconditional probabilities of %, is (2t x 1) and
the associated transition matrix, T, is (2T x 2t). Given T, one can solve for
the unconditional probabilities m as the solution to:

T'n=n (A.2)

’

subject to e =1, (A.3)
in which ¢ is a (2t x 1) vector of ones.
Using our parameterization of the conditional probability functions in

(2) and (3), the sparse (2t x 2t) transition matrix, T, can be computed as

follows:
For j=1:

exp[a(1)+b(1)(i—T)]
T;, ;= 1- ’ for T<i=2T; (A.4)

1+exp(a(1)+b(1)(i-1)}

=0 otherwise. (A.5)



For 1<j=t:

exp[a(0)+b(0)i]
Ti, ;= ’ for i=j-1;
1+exp[a(0) +b(0)i]
=0 otherwise.
For j=t+1:
exp[a(0)+b(0)(i)]
i,5= 1- > for 1l=i=t;
1+exp[a(0) +b(0)(i)]
=0 otherwise.
For t+l<j=2Tt:
exp[a(1)+b(1)(i-1)]
T;, 5= ' for i=j-1;
1+exp[a(1)+b(1)(i-r)]
=0 otherwise.
Finally,
exp[a(0)+b(0)r) exp[a(l)+b(1)r]
T = and T

Tt 1+exp[a(0)+b(0)r]

2T,21T 1+exp[a(1)+b(1)1:]

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

For example, using the parameter estimates from our duration dependent

model reported in Table 4, and for ease of jllustration setting 7=3, the

sparse (2t x 2t) transition matrix T is:

J:
i:| 0.000 0.994 O
0.000 0.000 O
0.000 0.000 O
0.017 0.000 O
0.021 0.000 O
| 0.027 0.000 O

and the corresponding unconditional probabilities, associated with the

.000 0.006 0.000 0.000 T
.979 0.021 0.000 0.000
.922 0.078 0.000 0.000
.000 0.000 0.983 0.000
.000 0.000 0.000 0.979
.000 0.000 0.000 0.973 |




state vector (A1) with T=3, are:

m = [0.0193 0.0191 0.2415 0.0193 0.0190 0.6817]‘.

A.3 Initialization of the Filter
Compute the unconditional joint probabilities,

P(Sq-1=Sq-1, Sq-2=Sq-2s « - - » S0=S0,Dt-1=d), (A.13)
using the unconditional probabilities computed in section A.2, and the
conditional transition probability functions from (2) and (3). For example,
P(S4=1, Ss=1, S»=1, Si=1, D4=7) = P(So=1,De=2)xP(S;=1|Sc=1, Do=3)

xP(Sz=1[S1=1,D1=4)xP(Sg=1|Sz=1,D2=5)xP(S4=1|Sg=1,D3=6).
We are grateful to a referee for very helpful suggestions concerning

initialization of the filter.

A.4 Iterative Structure of the Filter
STEP 1:
In step 1, use the input
P(St-1=St-1s -+« - » St-q=St-q» Dt-1=d | ¥t-1, - - ., Yo) (A.14)
and compute
P(St=St, St-1=St-1, - -  » St-q=St-q» Dt-1=d | Yt-1, - - - » Yo) (A.15)

=P(St=stlst—1=st-1,Dt-1=d)XP(St-1=St-1:---:St—q=st—q,Dt—1=d|Yt—1v---»YO)

where the first term on the right hand side is the time t conditional
probability matrix given by (4).

For the first iteration the input (A14) comes from the initialization
described in section A.3. For subsequent iterations that input is provided

as output of the last step.



STEP 2:

From the output of Step 1 compute the joint conditional distribution

P(yt,St=St, ..., St-q=St-q» Dt-1=d|¥t-1,...,¥0)
= P(yt|St=st, e ,St—q=st-q’yt—1, oo ,YQ)
XP(St=St, . ooy St_q=St_q,Dt_1=d|yt_1 y ce sy YQ). (A.16)

The second term on the right hand side is given by (A15) and the first term
is the state dependent likelihood of y: which under the distributional

assumption of conditional normality is given by

P(y¢|St=St, . .- »St-q=St-q» Yt-15 - - - » Yo)
1 1 2
= eXpiT— (Yt'#(st))' ¢i(st-i)(Yt—i‘#(St—i)) . (A.17)
ovV2n 20 i=1
STEP 3:
Using (A16), which is the output of step 2, integrate out Si,...,St-q,

and Di{-; to compute the conditional likelihood of y;:

P(Ytlyt-1’ LR ,Yo)=

Z .. z Z P(yt,St=St, . . . , St-q=St-q» Dt-1=d | Yt-1, . . . » Yo), (A.18)
St St-q d

from which the log likelihood function is formed as
T

L = z logP(yt|yt_1,...,yo) ’ (A.19)
t

which may be maximized numerically to form estimates of the parameter set
Q= (u,¢,0,P;;), 1=0,1. (A.20)
Finally, to create the necessary input for the next iteration of the
filter, we must obtain
P(St=St, . . . , St-q+1=St-q+1, Dt=d|Yt, . . ., Yo). (A.21)
This is accomplished in two steps.
STEP 4:

Firstly, we must add y: to the right hand side of the condition operator

in the output of Step 2 to obtain the conditional probability



P(St=5t, R ,St_q=St_q, Dt_1=d|yt, .o ,yo)

= P(y:,St=St, ..., St-g=St-q,De-1=d|y4-1,. .., Vo)

P(y¢|Yt-15+--1Y0)

which is the output from Step 2 standardized by the output of Step 3.

STEP S:

Now, using the output of Step 4, compute:

P(St=St, .. .,St-q+1=St-q+1» Dt=X|¥t, . . -, Yo).
For 1l<x=t:
P(Si=St, . . . » St-q+1=St-q+1, Dt=X|¥t, . . ., ¥o)
= Z P(S¢=St, . . . » St—q=St-q» Dt-1=%X-1| ¥, - - - » Yo),
St-q
=0

For x=1, that is,

P(St¢=s¢, . - -,St—q+1=St—q+1,Dt=1|Yt,--- »Yo)

=z Z P(St=St, .. - » St-q=St-q» Dt-1=d|Yt, - - -, ¥o),
d st-q

=0

for

for

for

for

Using (A23) as input, proceed to the first step of the

and continue until convergence is obtained.

(A.
(A.
St=St_1; (A
St¢st_1 . (A.
St#St-1; (A.
St=St—1 . (A.

next iteration

22)

23)

24)

25)

26)

27)
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Table 1. BDS Statistics For Real GNP Growth Rates

e=normalized SD e=normalized SD scaled by 1.2
Embedding Dimension BDS BDS
3 2.29 2.34
5 1.90 2.52
7 2.32 3.44
9 2.30 3.68

NOTE: The BDS statistics are distributed as standard normal variates. The €
is chosen to be proportional to the standard deviation divided by its range.



Table 2. Linear Autoregressive Model

PARAMETER ESTIMATE ROBUST STD. ERR.
o 0.720 0.103
o1 0.310 0.075
bo2 0.127 0.090
$o3 -0.121 0.082
doa -0.089 0.078
o 0.983 0.061

NOTE:

4

Yt = Qo + z PoiYt-i T OV

i=1

Value of the log likelihood (excluding the constant) = -63.288



Table 3. First-Order Markov Model: Constant Transition Probabilities

PARAMETER ESTIMATE ROBUST STD. ERR.
oo -0.359 0.491
o 1.522 0.474
$o1 0.014 0.226
$o2 -0.058 0.283
®o3 -0.247 0.197
doa -0.213 0.192
- 0.769 0.122
a(0) 1.124 0.688
a(1) 2.243 0.296
4
NOTE: ye = u(St) + z ¢Oi(Yt—i - M(St-i)) + OV
i=1
p(St) = o if S¢=0

}J-(St)= g + 04 if S¢=1

Poo = exp(a(O))/(1+exp(a(0))) = 0.76, Py = exp(a(l))/(1+exp(a(1))) = 0.90

Value of the log likelihood (excluding the constant) = -60.882



Table 4. Markov Model with Duration Dependent Transition Probabilities

PARAMETER ESTIMATE ROBUST STD. ERR.
oo -0.448 0.264
o 1.594 0.273
$on -0.017 0.105
Po2 -0.092 0.107
$o3 -0.255 0.094
Pos -0.246 0.103
- 0.761 0.063
a(0) 6.516 2.055
a(1) 4.305 2.363
b(0) -1.348 0.296
b(1) -0.243 0.282
4
NOTE: ye = 1(Se) + z ¢0i(Yt-i - P(St-i)) + ovg, Ve ~ N(O,1)
i=1
pu(Sy) = o if S¢=0

}J.(St)= oo + o4 if S¢=1
P(S¢=J|St-1=1,D¢-1=d) = exp(a(i)+b(i)d)/(1+exp(a(i)+b(i)d)), for i=j=0,1;

=1 - exp(a(i)+b(i)d)/(1+exp(a(i)+b(i)d)), for i=#j.

Value of the log likelihood (excluding the constant) = -55.860
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