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Abstract
In this paper, we study implementation in “economic environments”. It is shown that
there is a dense subset of the set of preference profiles such that given an arbitrary social
choice function, f, and ¢ > 0, 3 another social choice function f., f. within € of f uniformly,

and f, implementable in Nash equilibrium on the dense subset.



1 Introduction

In the classical implementation problem, a social planner’s objective is represented by a social
choice function (or correspondence) which associates outcomes to the characteristics of the
agents as represented by their preferences. Since preferences are unobservable, the problem
arises of designing a mechanism whereby agents with any given collection of preferences
are led via the mechanism to the outcome specified by the social choice function at those
preferences. In the case where such a mechanism exists, the social choice function is said
to be “implementable”. The work of Maskin (1977) considers the question of characterizing
those social choice functions that can be implemented in normal form games using Nash
equilibrium as the solution concept. This is described in further detail below.

Recent literature has addressed the problem of implementation in two ways. In one
approach the solution concept is varied while in the second, the problem is reformulated.
The first approach is adopted by Moore and Repullo (1988) and Palfrey and Srivastava
(1991). Moore and Repullo study the question of implementation using extensive form
games and subgame perfection as the solution concept while Palfrey and Srivastava consider
the impact of using undominated Nash equilibrium in the normal form. An important
conclusion of this line of research is that the set of implementable social choice functions
is greatly enlarged (relative to those implementable in Nash equilibrium), when solution
concepts other that Normal Form Nash equilibrium are used. A second approach is given
in Abreu and Sen (1991) and Matsushima (1988) where preferences on lotteries over states
is considered and the criterion of virtual implementation used (implementation of a social
choice function which is arbitrarily close) with Nash equilibrium as the solution concept. (See
also Abreu and Matsushima (1990).) Moore (1991) gives a useful survey of the literature
and an extensive list of references.

In this paper we provide quite a different perspective on the implementation problem.
Rather than vary the solution concept, we consider the impact of varying the underlying set
of preference profiles. This is done in the context of economic environments - where agent’s

preferences are continuous monotone preferences on some subset of euclidean space. The



main result is that the Maskin requirements (that a social choice function satisfy weak no
veto power and monotonicity to be implementable in Nash equilibrium), are not robust to

perturbations of the preferences and social choice function.

2 Preliminaries

The environment consists of a set of outcomes A, a set of preferences over outcomes, Y, and
a collection of agents, {1,2,...,n}. In this environment, a preference profile is a vector:
u = (u1,uz,...,u,) € U*. In addition, there is a planner. The planner’s preferences
are represented by a social choice function which relates outcomes to preference profiles.

Formally:
Definition 1 A social choice function f is a mapping from U™ to A.

Thus, when the preference profile is u = (uq, ug, ..., u,), the desired outcome of the planner
is a = f(u). However, the planner faced with n individuals does not know the preferences
of each individual. Typically, agents if asked have an incentive to misrepresent preferences.
Suppose that f satisfies a = f(u1,uz,...,u,) and a’ = f(u},us,...,u,), and that the “true”
preference profile is (u1, uz, ..., u,). Then if uy(a’) > uy(a), agent 1 has the incentive to claim
the preference uj. In the implementation literature, the task is the design of an environment
(game form) whereby the interaction of agents leads to the desired outcome: when the
preference profile is u, the unique equilibrium outcome in the environment is ¢ = f(u). This
issue is discussed in Maskin (1977) where two key requirements of a social choice function
are identified: “weak no veto power” and “monotonicity”. These properties are sufficient to

characterize “implementable” social choice functions.

Definition 2 A social choice function f satisfies weak no veto power on U™ if Yu =

(u1,uz,...,un) € U™, if given ¢, Vj # 1, uj(a) > uj(b), Vb € A, then a = f(u).

Weak no veto power is considered a very mild assumption. In economic environments with

three or more agents, where the social choice function specifies allocations of goods and



where goods are desirable the condition is satisfied trivially since no two agents will agree

on the “best outcome”.

Definition 3 A social choice function f is monotonic on U™ if Vu,u’ € U™, Va € A,
1. a = f(u) and
2. Vbe A,Vi=1,2,...,n, ui(a) > u;(b) = ul(a) > ul(d)

Then a = f(u').

Whether a social choice function, f, is monotone or not depends critically on the domain
U. It may be useful to express monotonicity in a slightly different manner. Let u € U
and define L(u,a) = {b € A | u(b) < u(a)}. L(u,a) is the “lower contour set of u at
a”. With this notation, observe that a social choice function is monotonic if a = f(u) and
Vi, L(ui,a) C L(ul,a), then a = f(u’). In words, if at a point a = f(u), the lower contour
set of each agent at profile u is nested in the lower contour set at profile u/, then a must be
in the social choice function at the preference profile u'.

To formulate the implementation problem, a “game form” specifies the environment in
which agents interact. To each player : € {1,2,...,n} is attached a strategy space. In

addition, a rule is given which associates outcomes to actions chosen by the agents.

Definition 4 A game form G = ({Si},,9), is a collection of action spaces, S, Sa,...,Sn,
and a mapping g: S — A, § = x,S;.

A preference profile u = (uy, ug,...,u,) and a game form G define a game where the action
vector s € S leads to outcome g(s) with associated payoff u;(¢g(s)) for agent . The outcome
a* is a Nash equilibrium outcome if 3s* € S, g(s*) = a* and Vi,Vs; € S;, u;(g9(s*)) >
u;(g(si, s%;)), where (s;,s*;) is obtained from s* by replacing the i** component, s} with s;.
Given a preference profile, u, and a game form G, the associated set of Nash equilibrium

outcomes is denoted Ng(u).

Definition 5 The game form G implements the social choice function f onU™ if Ng(u) =
f(u),Yu € U™. A social choice function f is implementable on U™ if 3 a game form G
which implements f on U™.



The following theorem (Maskin (1977)) characterizes implementable social choice functions.

Theorem 1 Let f be an n person social choice function. If f is implementable in Nash
equilibrium then it is monotonic. Conversely, when n > 3 and f satisfies both weak no veto

power and monotonicity, then it is implementable.

Proof: See Maskin (1977).

3 Economic Environments

Throughout the paper we focus exclusively on “economic environments” , where an economic
environment is essentially the classical exchange model. Let X C RF where R is the real line,
RF = x%¥_ R and X a compact connected set with nonempty interior (and we assume that
k> 2). Let F = {u: X — R}. Thus X is the consumption set of each agent and F the set of
“possible preferences” over points in X. The sets of continuous, continuous differentiable (ie.
Ou/0z; continuous for each 7) and continuous twice differentiable (ie. %u/dz;0x; continuous
for each i,j) functions from X to R are denoted, respectively, C°(X,R), C}(X,R) and
C*(X,R). The set of utility functions, U, is assumed to be continuous (at least), so that
U = CI(X,R) for some j = 0,1,2. In addition elements of & are assumed to be (strictly)
monotonic: if u € U, z,y € X,z # y and z; > y;,j = 1,...,k, then u(z) > u(y). An
n-person preference profile is an element u = (u1,uz,...,u,) € U". This relates to the
previous notation by letting A = X". Also, taking a = (z1,22,...,2,), with some abuse
of notation u;(a) = u;(z;). If we impose feasibility or endowment constraints, let e > 0 be
the total endowment of good k. Define FF C R according to F = {(z;,z2,...,2s) | zi €
RE, ™ zi; < ej,] =1,...,k}. In this case, set A = X" N F. For much of the discussion,

we use the sup norm on U to determine “closeness” of preferences.

Definition 6 Letu € FNC°(X,R), then ||u|| = supgex | u(z) |.



4 Preference Approximation

Recall that a social choice function is monotonic if @ € f(u), u = (u1,us,...,u,), and for
each agent z, the lower contour set of u; through a lies below the lower contour set of some
other preference u} for each ¢, u’ = (u},u},...,u’,), then a € f(u’). If for each point a in the
range of f the lower contour sets of different preferences are nonnested, or equivalently, if
the level surfaces (indifference curves) intersect at each a, then the condition of monotonicity
imposes no requirements on f.

Cobb-Douglas preferences provide is a simple example illustrating “good intersecting
properties”. Let X =[0,1]? andlet ¥ = {u: X —» R | u(z,y) = z°y~*,0 < a < 1}. In this
case, the marginal rate of substitution at (z,y), given a is (;2;)(%), so that at every point
in the domain (every (z,y) pair), the indifference curves cut and the lower contour sets are
never nested. In this case every social choice function satisfies monotonicity: definition 3
is satisfied trivially since 2 of definition 3 is never satisfied. The content of the following
discussion is to show that this situation is “generic”. Before presenting the details, we first
give a brief summary.

If g: X —» R denote the gradient of g by Vg = (9g/0z1,09/0z,,...,09/0z,). If
two preferences u,v € U have the same tangency at a point z € X, then the normals to
the indifference curves of u and v are the same and u(z) = ¢ - v(z). Conversely, if the
normals differ, then the indifference curves of u and v cut at z. If every preference pair has
this property at z, then the requirement of monotonicity can never be violated at z. The
denseness result gives a dense subset of « such that u,v in this dense set implies that u and
v have intersecting indifference curves at “most” points in X: There is no open set, O, and
function ¢ defined on O such that u(z) = ¢(z)v(z) on O. The main results of this section

are:

1. IfU = C°(X,R) is the set of preferences, then 3 a dense (in sup norm) set of functions,
Uq in U, such that if u,v € Uy, then the gradients of u and v agree on at most a set
in X with empty interior. Precisely, Vu(z) = ¢(z)Vv(z) on at most a closed set with

empty interior. See theorems 4 and 5.



2. This result cannot be extended from “dense” to “open dense”: If D is an open set in
U, then there are functions u,v € D, and open sets Y3,Y, C X, Y; NY; = 0 such that

u=vonY; and u # v on Y. See theorem 6.

3. HU =CY(X,R) and U* =U x U = C}(X,R?) with the Whitney topology, then 3 an
open dense set Y in U*, such that for each w = (u,v) € U, the associated Jacobian
is singular only on a set of lower dimension than X (and hence has empty interior).

See theorem 7.

4. Comment 2 remains valid if the Whitney topology is used instead of the sup norm
topology. The property of open denseness typically in equilibrium theory does not

carry over to the social choice environment.

The remainder of this section proves these results. We use the following notation. If u and

v are two functions, u,v : R¥ — R, define J¥ by:

A
Vg; Vz;
Given a function h = (hy, ha, ..., h,) : R¥ = R", denote the Jacobian matrix J, or J4(z) if

evaluated at =z.

[ ohi(z) Oh(z) Bhy (z)

oz, Oz2 e oz
8h21xb 8h21z) 3h2§z!
Jh(-’L‘) — Oz, Ozo oz,

Shp(x) Ohn(z) Ohn(x)

31‘1 8:1:2 ot 8«:;,

The denseness result is based on approximation by polynomials. A key property of poly-
nomials and (more generally) of analytic functions, is that the parameters of such functions
are fully determined by the value of the function on any open set.

Let Z denote the set of nonnegative integers, Z¥ the n-fold product of Z. Given v =
(J1,J2,°+*,Jk) € Z¥ and z € X C R*, write 27 = iy -zt



Definition 7 A function f on R* is analytic if for any a = (a1, az,...,ax) € R¥, IN,, a
neighborhood of a and c, € R,y € ZF such that for z € N, the series {c,(z — a)'} ez i3
absolutely summable (¥ czx ||cy(z — a)?|| converges) and
f@) = ¥ ofa —a),Va € A,
YEZk
An important class of analytic function is the class of polynomials. A polynomial p on

REF is a function of the form:

my,m2, Mk . . .
= L el 2k
p(z) = Z bjy jz -3 T1 T3 Ty
jl ’j2 7"'7jk

The key theorem on analytic functions is:

Theorem 2 Let f and g be two real valued analytic functions on Y C R*, Y an open
connected subset. If there ezists an nonempty open set, O C R, such that f(z) = g(z) on
O, then f(z) = g(z) on Y.

Proof: See Dieudonné.

An immediate implication of theorem 2 is the following corollary 1.

Corollary 1 If f and g are two real valued analytic functions which do not agree on some

open set in R¥, then they do not agree on any open set in RF.

The next theorem connects the representation of preferences to the slopes of indifference

curves.

Theorem 3 Let u,v be continuous functions with continuous partial derivatives on X C
RE. If30 C X, O open, | J9 |= 0 on O and some & € O with vi(Z) # 0 for some
t, then 3 an open neighborhood of Z, Oz, with u(z) = P(v(z)) on Oz (and so Vu(z) =
Y'(v(z))Vo(z),Vo € Oz). Conversely, if 30 C X, O open and ¢ : O — R such that
Vu(z) = p(z)Vu(z),Vz € O, then I : R — R such that u = 1 o v on O*, where O* is an
open subset of O.



Proof: Let u,v be as given. By assumption, there is some non zero partial derivative at
a point Z € O, say v; # 0 (otherwise both u and v are constant on O and the theorem
is trivially true). Continuity of the partial derivatives implies that v; # 0 on a (open)
neighborhood of Z € O, so we can apply the implicit function to the equation

0=G(v,21,Z2,...,Zp) =V — V(T1, T2,...,Zn)
to obtain z; = z;(v,z2,23,...,%,). This equation becomes an identity on a neighborhood
of Z if we write z; = z;(v(z1,Z2,...,Zn), T2, Z3,. .., Ts). Define
F(v,z3,23,...,Tn) = u(z1(v, T2, T3,...,Zn), T2, T3, . . ., Tn).

Again, we have an identity on a neighborhood of z,

u(Z1,Z2,...,Zn) = F(v(z1,22,...,Zn), T2y ., Tn),

so that on this neighborhood, u;, = F,vs,, and u,; = Fyvs; + F;;,5 = 2,3,...,n. Therefore,

F, F;;||vs v
1 0 0 1

Since Vu(z) = ¢(z)Vv(z) on a neighborhood of Z, J1J has a zero determinant on a neigh-

on a neighborhood of Z

7 [uq uz,-] _ I:Fvvzl Fyvz; + Fy

Vg, Ug;

; Vg, Vg

J

borhood of z: | JX |= 0 = —F;,v,,. Because the choice of j € 2,3,...,k is arbitrary, and
vz, # 0, this implies that on an open neighborhood of z, F;; = 0, for j = 2,3,...,k. Thus,
on this neighborhood,

u(z1, 2y ..., 2n) = F(v(21,Z25 ..., Tn), T2y, Tn) = P(v(T1,Z2,...,Tn)).

Conversely, Let u, v be as given with Vu(z) = ¢(z)Vv(z) on O for some function ¢. Then

| Ji |= 0 on this neighborhood, and we have u = 1)(v) on some open subset in O.

In view of theorem 2 and the observation following it (corollary 1), in the present context

we have:



Corollary 2 Suppose that u,v are polynomials on an open connected set, Y C RF. If the
matriz J¥, is nonsingular on some open set O C Y, then there is no open set N C'Y on

which this matriz is singular.

Proof: Suppose that | J&, |= 0 on some open set N’ C Y. Observe that | J¥ |= (ugvs; —
Ug;Vz;) is a polynomial, and since polynomials are analytic, | J¥%, |= 0 on N implies | J¥, |= 0

on Y, (using theorem 2).
|

Thus, if we can find an open set on which | JiJ |# 0, there is no open set on which this is
zero and hence no open set on which Vu(z) = ¢(z)Vuv(z) for some function v. In this case,
we have intersection of indifference curves “almost everywhere” (meaning except on a closed

set with empty interior). This is the content of the next theorem.

Theorem 4 Let U = C°(X,R). There ezists a dense subset of U, Uy, such that for any

u,v € Ud, J(uy) has full rank on an open dense subset of X.

Proof:  Since U are continuous functions on X, X a compact subset of R", the space
of polynomials on X is dense in ¢/ by the Stone Weierstrass theorem. Taking only rational
coefficients implies that there is a countable collection of polynomials dense in &. Let {p;}icz
be the collection. For each u € {p;}icz we can assume that there is no open set on which
Ou/0z; =0,j € {1,2,...,k}. (If for some u € {p;}icz, Ou/dz; = 0 on an open set, then u is
independent of z; on an open set, and hence by theorem 2 is independent of z; on the entire
domain. Let j, denote the set of variables with respect to which u has a zero derivative on
an open set. Define u™ = u + 23, ;. z;, n a small positive number, and replace u by the
collection {u"}2,).

Now, consider p; and p;. Define P(1) = {p;}. If there is no open set O in X such
that for all ¢, 7, (p1ip2; — p2ip1;) = 0 on O (where p;; = 0p;/0z;), then define P(2) = {p.}.
Otherwise, pick some ¢ and let r be the highest power of any variable appearing in p, or p,,

and define p§ = p; + £z}t

, 0 < &, € small. Thus on the open set,
7 7 € T
(Prip5; = PoiP1s) = (PriPas — [pai + (27 + 1)—2"]py;)
€
= —@r+1)-a¥p,

9



Since p;; # 0, this is non zero on an open set. By corollary 2, there is no open set on which

this determinant is zero. Next, if we consider the sequence {p}}, then for m # n,

(P2:p3; — P5ip2;) = (P2iP2j — P3ip2;)
€ E
= [pxu+(2r+ 1);$?’]sz — [p2i + (2r + 1);"5?']1’25

E €4 g
= @+ 1) - —l2i"py

This is nonzero on an open set, and hence nonzero on every open set. Define P(2) = U,{p3}.
Now, consider ps3. If for each u € P(1) U P(2), there is no open set such that for all 7,
pait; — u;ps; = 0, then set P(3) = {p3}. Otherwise, there is such an ¢,j pair. Let r be the
highest power of i appearing in P(1) U P(2) U {ps}. Define p} = ps + £z?"+'. Then, given
u € P(1)U P(2),

(P5iu; — wips;) = [(psi + (2r + l)gw?'lw — u;ps;.
Since, [(2r + 1)£z?"]u; is nonzero and the only term in the expression with z; raised to the

power of (2r + 1) or greater, the expression is nonzero on an open set. Similarly,

(Pgipg;' - P;:'ng) = (Pgipsj — D3;P3j )

E €, 5
= (@2r+1)[>- E]x‘? P2;

so the gradients of p§ and p7' disagree on open sets when n # m.
Proceed inductively to define {P(s)}%2,, and set P = U2, {P(s)}. Let Uy = P, Uy is the
required dense set.

An alternative representation avoids distinguishing between different utility functions which
generate the same indifference curves (ie. one function is a monotone transformation of the
other). Write u ~ v if 3¢ such that u = ¢ o v. The equivalence class of v € U is denoted
[v] and defined: [v] = {u € U | u ~ v}. Let [U] denote the family of equivalence classes. Say
that two elements, [u], [v] of [] intersect if there does not exist u,v € U with [u] # [v] such
that Vu(z) = ¢(z)Vv(z) on an open set in X.

10



Theorem 5 Let [U] be the set of “~7” equivalence classes, with the quotient topology. Then

there ezists a dense set in [U], [U]a such that no two elements of [U]q intersect.

Proof: Take the dense set, Uy given in theorem 4 and let [U]4 be the equivalence classes in
U,y determined by “~”. By construction, if p,q € Uy, then Jg has a nonzero determinant on
an open subset of X. Thus, there is no open set on which p = 1 o ¢ for some function % so
that p 7 ¢, and so no two elements of U, are in the same equivalence class. Thus, no two
elements of []4 intersect. Now, let p be the identification mapping which associates to each
u € U, the equivalence class [u] € [U]. Thus, p : U — [U]. With the identification (quotient)
topology on [U], p is continuous. Given [u] € [U], there is some sequence v™ C Uy, with

v™ — u. Since p is continuous, [v"] — [u], so that [Uy] is dense in [U].

One might expect that theorems 4 and 5 can be strengthened from “dense” to “open dense”.

The next result shows that this is not possible.

Theorem 6 Let D be an open set in the space of continuous differentiable functions (with
the sup norm) on X. Then, givene >0, 3f,9 € D, ||f—g|l < € and two open setsY;,Y> C X
such that f =g on Y (so that Vf=VgonY;) and f #g on Y,.

Proof: Let f € D. Pick B € O C X C R*, O open, and define 0(z) = maz{0, x5_,(z; —
B:)3}. Thus, 8 is a continuous differentiable function on X, 6,;, = maz{0, x5_,(z; — 6;)3} -
[xj2i(zj — B;)%] - 3(zi — B:)?, and since X is compact, maz,cx8(z) = § < co. Note that
there is an open set, ¥; = ON{z € X | z; < B;,Vi} on which 0 is zero. Define f*(z) =
f(z) + 20(z)f(z) and set Y; = ON{z € X | z; > B;,Vi}. Thus, f* — f, f* # f and
Vf=Vf*onY, for all n.

|

In other areas of economic theory, it is common to require genericity in product spaces
of preferences, U™ (for example, in equilibrium theory). In that literature it is usual to
obtain “open denseness” rather than“denseness” results (for example, Smale (1974)). In the

present context, there is an analogous open denseness result. For this, assume that the space

11



of utility functions is continuously differentiable: # = C!(X,R) and let the topology on U
be the Whitney topology.

Theorem 7 There is an open dense set of preferences U7 C U™ such that if u € U}, then
My = {z | rank[Ju(z)] < min(n,k)} is a manifold with dim(My) < dim(X).

Proof: The proof is a straightforward application of the jet transversality theorem (see
Hirsch (1976), p80-82). The vector space of k x n matrices, LA(k,n) is a differentiable man-
ifold of dimension kn. The subspace of k X n matrices of rank r, LA(k,n;r) is a submanifold
of LA(k,n) of codimension (k — r)(n —r), r < min(k,n). The submanifold of LA(k,n) of
matrices of rank lower than min(k,n) is closed. The “l-jet” of a function u at z consists
of z, the value of the function at z, u(z), and it’s Jacobian at z, Jy(z). If we look in the
range space of the mapping, identify the submanifold in LA(k,n) of matrices of rank less
than min(k,n),this gives a closed submanifold. Using the transversality theorem (see 2.8,
2.9 of Hirsch), gives an open dense set of functions intersecting this manifold transversely

(openness is due to the fact that the submanifold in the range is closed).

Thus, there is an open dense set of functions U} in U™, such that v € Y7 implies that Jy(z)
has full rank except on a set of dimension less that X.

Note however, that this result does not address the issue of monotonicity. To see this
suppose that there are two agents. Then it may be that there are u,v € Y3 with u = (uy,us)
and v = (vy,v;), such that u; and v; have nested lower contour sets. Then u,v € U2 is
consistent with the possibility that monotonicity of a social choice function fails at those
preferences. Or, in the approached used above, it may be that for some function ¢, Vu,(z) =
@(x)Vvi(z) on open sets in X. It is worth making one last point of clarification: this result
arises from the fact that open denseness is in a product space, and not from the fact that the
Whitney topology is used. To see this, observe that if u € C1(X,R), then a neighborhood
basis of u is given by the collection {B,/,(u)}2,, where By/,(u) is defined:

1 1 .
Byr(w) = {v € CY(X,R) | [lu — o]l < —,[|10u = 8ol < —, 5 =1,2,... k}

12



where 0;u denote the partial derivative of u with respect to z; (a function from X to R).

With this notation, we can repeat theorem 6 (essentially).

Theorem 8 Let D be an open set in the space of continuous differentiable functions (with
the Whitney topology) on X. Then, 3f,g € D, and two open setsY;,Y, C X such that f =g
onYy (so that Vf = Vg onYy) and f # g on Ys. Therefore, dim(My,q)) = dim(X), where
M(1g) = {z | rank[J(14)(z)] < 2}.

Proof: Let f € D. Define f" as in theorem 6. Observe that since X is compact and 6, 6,,,V:
continuous, 36* such that mazzex icfa,..n}} {0(2), bz;(z)} = 6* < co. Thus given r, 37 such
that f* € By/,(f),n > . Consequently, in any open neighborhood of f, there are functions

g,h € By/,(f) with Vi = Vg on open sets in X.
|

5 Implementation on Dense Domains

The next result shows that there is a dense subset (U;) of U such that if f is an arbitrary
social choice function, there exists another social choice function, f., approximately equal to
f and which is implementable on U}.

Recall that the consumption set of agent ¢ is X, a compact subset of R™ and that prefer-
ences are monotonic. Choose X be sufficiently large to contain the set of feasible allocations,
F = {(zi,z2,...,20) | zi € R*, S 7i; < €, =14,...,k}. Thus e = (e1,...,ex) € X and
A= X"NF = F. Write X(e) = x*_,[0,¢,]. For the remainder of the paper, we normalize
preferences in U with a monotone (affine) transformation in the following way. Let 3 be a
small positive number and given z € RF, let Bg(z) = {y € R* | d(y,z) < B} be the open
sphere of radius # centered on z. Given u € U, let ug = maz{u(z) | z € X(e) \ Bs(e)},
where X(e) \ Bg(e) is the set of points in X(e) not in Bg(e). Similarly, uss = maz{u(z) |
z € X(e) \ Bys(e)}. With u monotonic, ug > uzs. Choose a, and b, so that a,us +b, =1
and a,uzg + by, = 0. With some abuse of notation we leave notation unchanged and take
all functions in U to satisfy this normalization. Note then that given u € U, y € X(e) and
u(y) > 1 implies that y € Bg(e). Similarly, u(y) > 0 implies that y € Bys(e).
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The dense set of (approximating) preferences, Uy given in theorem 4 is dense in this
set. Fix some 4 > 0, 4 small, and assume that the set of approximating functions in
Uy contain no polynomials p for which sup, | p(z) — u(z) |[> v > 0,Vu € U. If any
such polynomials are present, they may be discarded and U; remains dense in Y since such
polynomials approximate no function in & “well”. Thus, U is the set of normalized functions
as described above, and U, a dense set of preferences with any point in ¢; within v of some
point in U.

Observe that in the case of three or more players, the weak no veto power condition is
always satisfied on U;. To see this, let p;, p; € Uy, the preferences of agents : and j. Suppose
the allocation & = (z1,23,...,2,) is top-ranked by . Let u € U be uniformly within v < 1
of p;, so p; satisfies | pi(y) — u(y) |< 7,Vy € X(e). Since mazyexEyu(y) > 1, it must be
that mazyex(e)pi(y) = pi(zi) > 1 — 7. Furthermore, | p;(y) — u(y) |< v, Vy € X(e), implies
pi(z;) < u(x;) +4. Thus, u(z;) +4 > 1— v so u(z;) > 1 -2y > 0. Recall that u(z;) > 0
implies that z; € Byg(e). Similarly, since z; is top-ranked by j, it must be that z; is within
28 of e. With f sufficiently small, this is impossible since z; + z; < e (and S is chosen so).

Theorem 9 3 a dense set, Uy C U, such that if f is a social choice function on U™, n > 3,
then given € > 0,3f. : U™ — X", with ||f(u) — fe(u)| < ¢,Vu € U™, such that f. is

implementable on U7.

Proof: Take the dense set Uy in U given by theorem 4. This set can be taken to be countable
(using rational coefficients in the polynomials). If u,v € U, then {z | Vu(z) = Vuv(z)}
is nowhere dense in X. For each u,v € Uy let My, = {z | Vu(z) = Vu(z)} and let
Q = Ufuveu d|,,¢,,}./\/'(,,,,,). Q is the union of nowhere dense sets in X - a set of “first category”
- and since X is a complete metric space, the complement of Q in X, Q¢ is dense in X.
This implies that given f : U™ — X", 3f,, ||f(u) — fe(u)|| < €, Vu € U™ such that f, has
range [Q°]". At every point in the range of each agents indifference curves in U, intersect,
so that monotonicity is satisified on U}. In addition, by the earlier discussion, weak no veto

power holds. Thus, theorem 1 applies.
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