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Abstract.

It has long been recognized that solving the logical omniscience prob-
lem requires using some kind of nonstandard possible worlds. While many
such logics have been proposed, none has an obvious claim as the “right”
logic to use to describe the reasoning of agents who are not logically om-
niscient. I show how to derive such nonstandard worlds as part of a repre-
sentation of an agent’s preferences. In this sense, the agent’s logic is given
the same basis as a utility function or subjective probability. As an illus-
tration, I give conditions on preferences which imply that the agent’s logic
is a version of the logic of inconsistency proposed by Rescher and Brandom

[1979].
Key Words: Bounded rationality, decision theory, nonstandard logics. |
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I. Introduction.

It has long been known that the standard possible worlds approach to
representing knowledge and beliefs has one very important implication,
dubbed by Hintikka [1975] the problem of logical omniscience. The possible
worlds approach says that an agent knows that p is true if and only if p is
true in every world the agent conceives of as possible. Suppose the agent
learns that p is true where p — ¢ is a tautology. If every world the agent
conceives of as possible is logically consistent, then p — ¢ must be true
in every such world. Hence in any such world, if p is true, q is true as
well. Therefore, an agent who learns that p must recognize that g is true.
In this sense, the agent knows every logical implication of his knowledge.
While this is a very attractive property for the study of ideal reasoners, it

is unpalatable as an assumption about real people.

I believe that game theorists should also be very interested in relaxing
the logical omniscience assumption. Many of the examples we find to be
“paradoxical,” such as the centipede game (Rosenthal [1981], Reny [1986],
Binmore [1987]) or van Damme’s [1989] dollar-burning example, rely on
a complex deduction from a simple and plausible set of hypotheses. We
believe that the hypotheses may well be known to a real agent, but we
are reluctant to believe that a real agent would reach the conclusion. It
is precisely the assumption of logical omniscience which makes this view

difficult to formalize in standard models.

Fortunately, there is a simple — even obvious — solution to the prob-
lem. If some of the worlds the agent conceives of as possible are not logically
consistent, then the chain of reasoning above is broken. If the agent con-
ceives of a world in which p — ¢ is true, p is true, but ¢ is false, then
learning p does not lead the agent to recognize that g is true, even if he
already knows that p — ¢. Such worlds go by a variety of names, including
nonstandard possible worlds (Rescher and Brandom [1979]) or impossible
possible worlds (Hintikka [1975], Rantala [1975]). I will use these terms



interchangably.

The difficulty with this solution, unfortunately, is also quite obvious:
what should we assume about the impossible possible worlds? Put dif-
ferently, exactly which nonstandard logic should we use to describe the
reasoning of real agents? It is quite clear what “perfect reasoning” en-
tails; it is not at all obvious how to give a precise formulation of “imperfect

reasoning.”

In this paper, I propose an approach to this problem which I study
further in Lipman [1992a]. The idea is to derive the nonstandard worlds
the agent conceives of as possible — and hence to derive the agent’s “logic”
— by analyzing his preferences. In a sense, then, the agent’s logic is derived
as a representation of preferences in the same way a utility function or sub-
jective probabilities would be derived. Intuitively, if the agent’s reasoning
does indeed affect his choices, this effect must be observable in some fash-
ion. The natural place to look for this effect is the agent’s preferences, or,

more specifically, the way the agent’s preferences vary with his information.

The simplest way to see this clearly is to suppose that p and ¢ are
logically equivalent propositions. Suppose, though, that the agent does
not respond to these pieces of information in the same way. That is, his
preferences if he is told that p is true (and is told nothing about ¢ directly)
differ from the preferences he has if he is told that ¢ is true (and is told
nothing about p directly). Then we can infer that the agent does not
recognize the fact that p and ¢ are logically equivalent. Hence there must
be at least one impossible possible world for this agent in which one of the

two propositions is true and the other is not.

The rest of this paper is organized as follows. In Section II, I give the
basic framework for introducing impossible possible worlds. I also prove
a simple theorem which shows that introducing impossible possible worlds

allows us to “rationalize” virtually any preferences. I see this as both



a negative result and a positive one. On the one hand, it is certainly
undeniable that a model which rationalizes everything explains nothing.
On the other hand, this result means that this kind of approach can nest
virtually any sort of preferences we might wish to discuss. In this sense, it

gives us a sufficiently broad “language” for viewing the problem.

In Section III, I illustrate the use of the framework by giving conditions
on the agent’s preferences which are necessary and sufficient for attributing
to him a version of the logic of inconsistency proposed by Rescher and
Brandom [1979]. Section IV offers some concluding remarks. All proofs are

contained in the Appendix.

Related Literature. There are several papers which bear very strong con-
nections to this work. Gilboa and Schmeidler [1992] show that Choquet
expected utility — that is, expected utility with respect to a nonadditive
probability measure — is equivalent to expected utility on an enlarged state
space. Their enlargement of the state space can be seen as introducing
impossible possible worlds. Consequently, some of my results are general-
izations of theirs, as I will point out later. Second, it is well-known that
Shafer’s [1976] belief functions — introduced as an alternative to probabil-
ity for representing uncertainty — can be derived from additive functions
on a larger state set. Again, this can be seen as a particular way to intro-
duce impossible possible worlds. Third, as noted earlier, many approaches
to constructing impossible possible worlds or nonstandard logics have been
proposed in the philosophy and artifical intelligence literature. See, for ex-
ample, Rantala [1975], Fagin and Halpern [1985], or Fagin, Halpern, and
Vardi [1990]. While I focus on the logic proposed by Rescher and Bran-
dom, clearly, a similar analysis could be carried out for a variety of other
nonstandard logics. Finally, Morris [1992] provides an axiomatic derivation
of nonpartitional information structures which has some similarities to my
work. In particular, he also uses the way preferences vary with information
to derive statements about the agent’s reasoning. For more details on the

relationship between Morris’ work and my own, see Lipman [1992a, 1993].



II. Framework for Analysis.

To model the way preferences vary with information, I need a model of in-
formation which does not presume logical omniscience. Hence I begin with
propositions as abstract variables, rather than sets of possible worlds. So
let P denote the set of relevant propositions. I assume that P is nonempty
and is closed under -, V, A, and — (which are “not,” “or,” “and,” and
“implies” respectively). That is, if p € P, then —p € P and if p,q € P,
then pVge P,pAg€ P,and p—q€ P.

The next ingredient I require is a notion of what “correct” logical de-
duction is. This is modeled as follows. A state of the world will be a
collection of propositions which constitutes a complete and logically con-
sistent description of how the world might be, listing all the facts that are
true in some possible complete description. More formally, s C 27 is a state

of the world or a possible world if
PES < —pé¢s

PVgES < pEs or gq€s
PANGgES < p€Es and g€ s
P—qgES < pESsS oOr gE€s

Let S denote the set of all possible worlds. For simplicity, I assume S is
finite.

For any p € P, let S(p) = {s € S | p € s}. That is, S(p) is the
collection of states of the world in which p is true. If S(p) = S, I will say
that p is tautologically true or a tautology. If S(p) = 0, p is tautologically

1 Note that I do not rule out the possibility of quantifiers in the language, though I

do not analyze them. Rescher and Brandom [1979] give some intriguing examples with

quantifiers, suggesting that further analysis may be of interest.



false. By construction, S(p V -p) = § for all p, while S(p A =p) = 0 for
all p. For convenience, I assume that there is a special proposition T € P

such that T is tautologically true and a special proposition L such that
S(L)=0. Let P={p e P | S(p) # 0}.

Set—Theoretic Notational Conventions. For any sets A and B, I will
let AB denote the set of all functions f : B — A. Similarly, 28 will denote
the set of all subsets of B. Also, #B will denote the cardinality of B. If B
is a collection of sets, then NB is the intersection of all the sets in B and
UB is the union of all the sets in B. Finally, I will use C to denote weak

containment (z.e.,, subset or equal to) and reserve C for strict containment.

Let X be the set of consequences. As in Savage [1954], the interpreta-
tion of a consequence is that it is as complete a specification of the outcome
of a choice as is necessary to describe an agent’s evaluation of that outcome.
For simplicity, I will take X = R. Let F = X5 denote the set of acts. That
is, an act or action is viewed in terms of the relationship it creates between

external events (which propositions hold) and consequences.

For each p € P, we have a preference relation on F, >p, to be inter-
preted as the agent’s preferences given that he learns that p is true. That
is, f >p g is interpreted as saying that the agent would strictly prefer act
f to act g if he learns that proposition p is true. Let {>,} denote the
collection of these preference orderings and let = = >. I emphasize that
I make no assumption about the agent’s self-awareness. I assume that we,
as modellers, know how the agent would respond to each possible piece of
information, not that the agent himself knows this ez ante. Note also that
I do not ask for information about the agent’s preferences in response to

nonsensical pieces of information such as p A —p.

A natural way to try to represent these preferences would be with
expected utility. To state this more precisely, I will say that a proposition
p € P is nullif either p¢ P or f ~, g for all f,g € F.



Definition. {>,} is EUR — expected utility representable — if there is
a function u : X — R and a probability measure u on S such that for all
nonnull p, u(S(p)) > 0 and

frpg = Euu(f(s))[s € Sp)]>Epuug(s)) | s € S(p),

where E,[- | s € S(p)] denotes the expectation with respect to the measure

p conditional on the event s € S(p).

It is straightforward to restate the Savage [1954] axioms in this framework

to give sufficient conditions for such a representation.?

There is one necessary condition for an expected utility representation
which is implicit in the usual framework and so is not normally discussed.
Say that p and ¢ are logically equivalent if S(p) = S(q). It is not hard to
see that if {>~,} is EUR, then for any logically equivalent p and g, we must
have >, = >,. To see this, simply note that the effect of conditioning on
p is the same as the effect of conditioning on ¢q. That is, the expectation

conditional on s € S(p) must be the same as the expectation conditional

on s € S(q) if S(p) = S(q).

Definition. {>,} satisfies revealed logical omniscience (or RLO) if S(p) =
S(q) implies >, = >,.

If {>~p} can be represented by expected utility, then it must satisfy RLO.

Several comments on the definition of RLO are in order. First, note
that the agent’s preferences may satisfy RLO without the agent being aware
of all logical implications of his knowledge. In this sense, he may not be

“truly” logically omniscient. However, he is effectively logically omniscient.

2 The finiteness of the state space does complicate matters. See Gul [1992] and Chew and

Karni [1992].



Second, note that the definition of RLO refers only to logical equivalence,
not logical implication. As we will see, there is not a behaviorial distinction
between this notion of logical omniscience and the apparently stronger idea
that the agent recognizes all logical implications. Third, as we will see,
my terminology may be slightly misleading. While I have used “logical
omniscience” in the name of this condition, it does mot imply that the

agent reasons perfectly.

Intuitively, the reason the preferences of real agents are unlikely to
satisfy RLO is that they do not recognize logical equivalence. That is, the
problem is not that the agent knows that S(p) = S(g) but wishes to behave
differently when learning that p is true than when learning ¢. Instead, it is
that the agent simply doesn’t realize that S(p) = S(g). This suggests the

following approach.

Definition. {>,} is XEUR — extended expected utility representable —
if there exists S* C 2P, h: F - X5, u: X > R, and a probability

measure p on S* such that
SCS* Tes*, L¢s* Vs*eS*,
(IS =f, VfEF,
and for all nonnull p, u(S(p)) > 0 and

frpg = Eufu(h(f)(s)) s € 5*(p)] > Eu[u(h(g)(s)) | s € S*(p)]

where E,[- | s € S*(p)] is the conditional expectation with respect to u
given the event s € S*(p) and

S*(p)={s€ S*|pes}

In other words, {>p} is XEUR if we can extend the state set from S to S*

— i.e., introduce impossible possible worlds — and extend all lotteries to

7



the new state set (via the function k) in such a way that the preferences
are represented by expected utility on the larger state set. (In the defini-
tion, h(f)|S is the restriction of the function A(f) to S, so the definition
requires that h(f)(s) = f(s) for all s € S.) The requirement that T € s*
for all s* simply guarantees that there is still a meaningful notion of pref-
erences without any information. The requirement that L ¢ s* for any s*

is primarily a matter of notational convenience.

Remark 1. XEUR requires that 4(S(p)) > 0if p is nonnull. This is stronger
than the perhaps more natural requirement that u(S*(p)) > 0 (note that
S(p) C S*(p)). However, without this requirement, XEUR becomes com-
pletely trivial since one can choose a y such that p(S) = 0. In this case,

only the extension is relevant to the preferences.

Theorem 1 below essentially says that almost any “reasonable” collec-
tion of preferences is XEUR. As the proof shows, this result is due to the
fact that the extension can be chosen in such a way that the evaluation
of lotteries on $* \ S determines the evaluation overall. Thus, with no re-
strictions on how the lotteries are extended, virtually any preference can

be represented.

Definition. {>~,} is representable if for all nonnull p, there exists u, : F' —
R such that

Frpg = up(f) > up(g).

Clearly, representability is necessary for {>,} to be XEUR — without it,
preferences conditional on some nonnull p are not representable by a utility
function at all, much less one with the particular structure XEUR requires.
Necessary and sufficient conditions for representability are well known so I
will omit discussion of them. It is sufficient to note that representability is

vastly weaker than the axioms needed for EUR.

Theorem 1 says that representability, together with one simplifying
8



assumption, is sufficient for XEUR. Hence representability is essentially
necessary and sufficient for XEUR. The auxiliary assumption I will make

1s:

(A1) There are finitely many distinct preference relations in the collection

{>»}

Recall that S is finite. (A1) and the finiteness of S can certainly be relaxed

but these assumptions enable me to avoid constructing a o-algebra.

Theorem 1. If representability and (A1) hold, then {>~,} is XEUR.

The theorem is proved by constructing impossible possible worlds and
a way of extending the acts given a particular collection of preferences.
To understand the idea, say that p and g are strongly equivalent if they
are logically equivalent and >, = >,. When two propositions are strongly
equivalent, I include either both or neither of them in each impossible pos-
sible world. That is, strongly equivalent propositions are ones which the
agent recognizes as equivalent. If two propositions are logically equivalent
but not strongly equivalent, then impossible possible worlds must be intro-
duced in which one but not the other is true. Of course, this must be done

in such a way as to represent the particular preferences in question.
III. An Axiomatic Derivation of the Logic of Inconsistency.

In this section, I give conditions on the agent’s preferences which are nec-
essary and sufficient to represent him by assuming that his deductions are
based on a version of Rescher and Brandom’s [1979] logic of inconsistency.
I proceed as follows. First, I show how to define two deduction relations,?

one which describes the “true” logic (and is entirely standard) and the other

3 . . . .
I do not use the more common term “consequence relation” to avoid confusion with the

consequence set X.



of which describes the agent’s logic. That is, the latter can be interpreted
as our representation of the logic which underlies the agent’s deductions.
Next, I will present a slight generalization of the logic of inconsistency pro-
posed by Rescher and Brandom and derive some of its properties. Finally,
I use this information to relate statements about the agent’s preferences

to statements about his logic. Throughout this section, S* will denote a
subset of 2F such that S C §*, $*(T) = §*, and S*(L1) = 0.

First, I will define the “true” logic in the form of a deduction relation
. My approach will differ from the usual one in two ways, neither of which

is important in the standard logic, but both of which are important in

the agent’s logic. Normally, one writes py,...,p, F g if from the premises
P1,...,Pn, one can deduce g. The first important issue concerns what
we mean by “the premises pi,...,pn.” I will interpret this to mean the

collection of propositions rather than to mean the conjunction p; A...Apy,.
The agent may well recognize that if each of the propositions py,...,pn
is true, then the conjunction must be true. However, we wish to study
agents who may fail to recognize such implications. Consequently, I will
not assume that the agent makes the translation from the collection of

propositions to their conjunction.

The second important question concerns the deduction. In particular,
if the deduction is a single proposition, how can we represent the notion that
the agent recognizes that either ¢; or g2 must be true but does not know
which? Normally, we would say that this is the same as his deducing ¢; V ¢,.
But again, treating these statements as equivalent presumes that the agent
uses the V operator correctly in all his deductions, a treatment not obviously
appropriate here. For this reason, as in Shoesmith and Smiley [1978], I will
allow the conclusion to be a collection of propositions. The interpretation,
then, is that p1,...,pn F ¢1,..., ¢m holds if from the premises that each of

P1,-..,Pn is true, the agent recognizes that at least one of qy,..., g, must

10



be true. Formally,
Pl Pa b a1yedm <= [ S(pi) € | S(a)

Of course, this definition implies that

(1) Ply-- Pt qlye sgm = pIA...ADpbF @ V...Vgn.

Finally, given S*, I will define F, to be the logic it implies. That is,

PPt @1y gm = ﬂS*(pi)QUS*(qz')-

=1 =1

In general, b, will not satisfy the analogous condition to (1).

The logic proposed by Rescher and Brandom is based on constructing
the new worlds in S* \ S from the old ones in S in a particularly simple
way. Since the elements of S are sets, a natural construction procedure to
consider is unioning or intersecting these sets to create new states. Natu-
rally, one might also wish to consider unions of intersections of states, etc.
The simplest way to allow such possibilities is the following. Recall that
for any collection of sets B, NB denotes the intersection of the sets in B

and UB denotes the union. Given a collection of subsets of P, say P, let
I(P)={s* € 2P | s* =NB, some B C P}

and
U(P) = {s* € 2P | s* =UB, some B C P}.

Finally, let 7(P) denote the smallest topology on UP containing P. By
definition, since 7(P) is a topology, it is closed under unions or finite inter-
sections. The smallest topology containing P is the topology for which P
is the subbase. More precisely, 7(P) is the topology generated by the base
I(P) (if P is finite — otherwise, I(P) should be replaced by the collection
of finite intersections). By definition, then, for every p € UP and every
U € 7(P) such that p € U, there exists V € I(P) such that p € V C U.

11



(See Kelly [1955], pp. 46-48.) The natural alternatives to consider are
I(S), U(S), and 7(S), which I will simply denote I, U, and T respectively.

Remark 2. When Gilboa and Schmeidler [1992] show that Choquet ex-
pected utility is equivalent to standard expected utility on an enlarged
state set, the enlarged state set they consider is I. (Their framework is
different and so the construction is not described this way; however, it is
not hard to show that it is equivalent.) Similarly, the equivalence of belief
functions to additive functions on an enlarged state space, as shown by

Shafer [1976] and others, uses I as the enlarged state space.

Rescher and Brandom call the states in I \ S schematic worlds and
those in U \ S superposed worlds. They discuss at some length the interpre-
tation of these two procedures and some of the properties of the deduction
relation they imply. They do not discuss the worlds in 7 and the following

characterization of their logics is also new.

First, I present a lemma describing how the topology can be con-

structed from the U and I operators.

Lemma 1. IfP is finite, 7(P) = U(I(P)).

As the lemma should suggest, introducing the worlds in 7 is not a major
generalization of the Rescher and Brandom analysis. This point will be

seen even more clearly in a moment.

I will now introduce some properties we might want the agent’s logic

to satisfy.
Definition. -, preserves simple inference (PSI) if p - q implies p t-, q.
Intuitively, if -, preserves simple inference, then an agent learning the single

premise p infers any one conclusion tautologically implied by p. Note in

12



particular that T F p for any tautology p. Since I require T € s* for all
s*, PSI implies that every tautology p is true in every world in S*. In this

sense, it requires that the agent knows all tautologies.

One might be puzzled by the reference to simple inferences. After all,
the “one” premise p could actually be a conjunction of numerous proposi-
tions and the “one” conclusion g could be the disjunction of several proposi-
tions. Hence one might be tempted to conclude that an agent who satisfies
PSl s, in fact, a perfect reasoner. As noted by Rescher and Brandom [1979]
and hinted at in the discussion before the definition of I, this view is not
correct. To see the point most simply, suppose that pAp' I ¢q. If PSI holds,
an agent who learns p A p' will infer q. However, PSI does not rule out the
possibility that an agent who already knows p and learns p' still fails to
infer q. In other words, PSI does not imply that the agent combines the
two premises p and p' to recognize p A p'. Hence he may not infer q. This

motivates the following additional property on reasoning,.

Definition. +, satisfies perfect conjunction (PC) if: (i) p,q b« p A g, (ii)
PAqlsp,and (iii) pA g . q.

Note that if I, satisfies PSI, then (i7) and (i¢7) are redundant.

Just as PSI does not guarantee that the agent combines multiple
premises into their conjunction, it does not guarantee that he combines

multiple conclusions into their disjunction. This suggests the following
“dual” to PC:

Definition. . satisfies perfect disjunction (PD) if (i) p b« p V g, (ii)
gFspVg, and (i) pV g Fu p,g.

If -, satisfies PSI, then (z) and (i7) are redundant.
13



The following result provides a characterization of logics which use the
T operator to construct new worlds. It shows that all logics which generalize
Rescher and Brandom by using 7 must satisfy PSI. Furthermore, any logic
satisfying PSI is, in this sense, a generalization of Rescher and Brandom’s

logic of inconsistency.

Theorem 2. t, satisfies PSI iff S* C .

The next result clarifies the implication of restricting the set of worlds
further to either using only the schematic worlds or only the superposed

worlds.

Theorem 3. |, satisfies PSI and PC iff S* C I. |, satisfies PSI and PD
iff S* CU.

Corollary. &, satisfies PSI, PC, and PD iff +, = + and S = S*.

In other words, any logic satisfying PSI and PC must be constructed from
Rescher and Brandom’s schematic worlds, while any logic satisfying PSI
and PD must be constructed from their superposed worlds. If we only
impose PSI, the logic is a generalization of theirs, constructed from the
worlds in 7. Given this, it is clear that introducing 7 simply unifies these

two logics.

At this point, an example may be useful. Suppose we have two atomic
propositions, p and ¢q. The other propositions all take the form p V ¢, —p,

etc. Hence S = {s1, 32, 53,54} where

b, q € S1,

D, g € $2,

—P,q € 83
14



and

P, g € 34.

Of course, the other propositions in s; are the tautologies and other impli-
cations of p and ¢, such as =—p or p — ¢, and analogously for the other

states.

First, suppose that S* = {s1, s2,53,84,51 U s2}. Since S* C U, we
know from Theorem 3 that PSI and PD must hold. However, PC will not
be satisfied. To see this explicitly, note that ¢ € s; and —=q € s;. Hence
both ¢ and —¢ are elements of s; U s;. However, ¢ A ~q ¢ s; for any i, so
gA—q & s1Usz. Hence S*(g A —q) = 0, while $*(g) N S*(—¢) = s; Usz. By
definition of -, then, g, ~q I/« ¢ A =g, contradicting PC.

As an alternative, suppose S* = {s1, s2, 83,384,581 N s2}. Now S* C I,
so that PSI and PC will hold. However, PD will not be satisfied. To see
this, note that ~¢q ¢ s; and ¢ ¢ s2, so that —q,q ¢ s; N s3. On the other
hand, ¢ V —q is a tautology, so that it is contained in every s; and therefore
gV —q € s1 N sz. Therefore, S*(q V —q) = S*, but S*(¢) U S*(—q) = S.
Since S* € S, we see that ¢ V —¢ V. q,q.

As a last example, suppose S* = {s1, 32,53,54,52 U s4}. Just as in
the first example, S* C U, so that I, must satisfy PSI and PD but will
not satisfy PC. A particularly interesting example of this failure is the
following. Recall that p — ¢ is true whenever p and q are true or p is
false. Hence S(p — ¢) = {s1,53,84}. Since p — q € s4, we certainly
have p — ¢ € s3 U s4. Hence S*(p — ¢) = {s1,93,84,82 U s4}. Also,
S*(p) = {s1,82,82 Usa}. Hence

S*(p—¢) N §%(p) ={s1,52 Usa}.

Notice, though, that ¢ ¢ sy U s4. Hence p,p — ¢ l/, ¢ — that is, if the
agent learns that p — ¢ and also learns that p, he does not infer g. On the
other hand,

S*(pA(p— @) ={s1}
15



as pA(p — q) ¢ s2 Usys. Hence an agent who simultaneously learns p and

p — g does infer g. This is simply an implication of PSI since pA(p — ¢) | q.

I now characterize preferences such that we can attribute a form of the

logic of inconsistency to the agent.

In light of Theorem 2, if we can represent {>,} by extended expected
utility where S* C 7, then the implied logic satisfies PSI. That is, $* will
have the property that if S(p) C S(g), then S*(p) C S*(g). Clearly, then,
if S(p) = S(¢), we must have S*(p) = S*(q). Hence if {>,} is XEUR with
PSI, it must satisfy RLO. In fact, RLO plus representability is sufficient
for {>,} to be XEUR with PSI. In this sense, revealed logical omniscience

is exactly the preference implication of PSI.

Theorem 4. {>,} is XEUR with -, satisfying PSI iff {>,} satisfies rep-
resentability and RLO.

One interesting aspect of Theorem 4 is that RLO — a property which
only refers to logical equivalence — tells us that we can treat the agent as
correctly recognizing all simple logical implications. Even though RLO
would seem to allow the possibility that the agent correctly recognizes
equivalence but occasionally makes errors regarding implications, Theorem
4 implies that this distinction has no behaviorial content. On the other
hand, it is possible, at least in principle, that the distinction could be im-
portant if one wishes to find a representation that satisfies certain other

properties as well.

Suppose now that {>,} is extended expected utility representable with
PSI and PC — that is, with §* C I. Note that $* = I implies

S*(p) ={s€2P |s=nB, some B C S(p)}.

Hence if S(p) is a singleton, S*(p) = S(p). To see the implication of this,
suppose S(p) = {s}. Suppose {>,} is XEUR with $* = I, utility function
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u, and measure . Then if u(s) > 0,

Eu[u(h(f)(s¥)) | s* € §*(p)] = u(f(s)).

Therefore, it must be true that f >, g iff u(f(s)) > u(g(s)). Furthermore,
the same must be true for any p such that S(p) is a singleton. Put differ-
ently, u must represent preferences over consequences for every state. This
kind of state independence is also a necessary condition for EUR and is an

obvious weakening of Savage’s [1954] P3.

To state this condition more formally:

Definition. {>,} satisfies weak state independence (WSI) if there exists
u : X — R such that for all s € S and every nonnull p such that S(p) = {s},

frp g iffu(f(s)) > u(g(s)).

The argument above shows that this condition is necessary for {>,} to be
XEUR with S* C I. I show below that representability, RLO, and WSI
are sufficient with one auxiliary assumption. In this sense, the preference

implication of PC is WSI. The auxiliary assumption is
(A2) {>p} satisfies WSI where u is onto.

This assumption implies that there are no best or worst consequences

(where “best” and “worst” are defined relative to u) and u has no “gaps.”

Theorem 5. If {>~,} is XEUR with -, satisfying PSI and PC, then {>,}
must satisfy representability, RLO, and WSL. If representability, RLO, WSI,
and (A2) hold, then {>,} is XEUR with F, satisfying PSI and PC.

Finally, I turn to the preference conditions under which there is a
representation where -, satisfies PSI and PD. The additional preference

requirement for PD is analogous to but more complex than the condition
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for PC. To see it intuitively, suppose we have such a representation with p,
u, and h denoting the relevant functions. Fix any state s and a proposition
p such that S(p) = S\ {s}. We know from Theorem 3 that satisfying PD
requires S* C U. Suppose S* = U. Then

Eulu(h(H)(s* D] = Y u(shu(f(s) + D w(UB)u(h(f)(UB)).

s€S BCS,#B>2

Let uT denote the function on the right-hand side. Also,

Bufu(h()(s")) | 5* €5 () = 3 "(S( ()

s'#s

. (UB)) (h(FXUBY).

Bg&#B>2 (

To see this, note that p € s’ for all s' # s. Hence for any B C S such that
B # {s}, p € UB. Let u, denote the function on the right-hand side. Note
that

ut(f) = [1 = p()]up(f) + p(s)u(f(s)).

This must hold for every such s, p, and f. Notice that the function [1 —
p(s)]up(f) represents the same preferences as u,. Hence this condition
implies that we must be able to find a representation of >, say uT, and,
for every s and every p with S(p) = S\ {s}, a representation of >, say 4p,
such that ’

uT(f) = @p(f) = u(s)u(f(s))-

In a sense, this condition is the “dual” to WSI. Weak state independence
required us to find a function u(z) that represented preferences conditional
on a single state. Equivalently, we needed to find functions u(s) and u(z)
such that the product represented preferences given a single state. This
condition requires us to find functions p(s) and u(z) such that the product

represents the difference in utility associated with a single state.

To state this condition formally,
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Definition. {>,} satisfies dual weak state independence (DWSI) if there
exists uT representing > and, for each s € S and each p with S(p) = S\ {s},
a function u, representing >, such that there exists a function u : $ — R
and u : X — R such that

f(s) =2, S(p)=5\{s} = u(s)u(z) = ur(f)—up(f).

As the discussion above shows, DWSI is necessary for the existence of
an XEUR representation where |-, satisfies PSI and PD. To demonstrate
sufficiency, as in the case of Theorem 5, it is convenient to strengthen the

condition to:

(A3 {>,} satisfies DWSI where u is onto.

Theorem 6. If {~,} is XEUR with |-, satisfying PSI and PD, then {>~,}
must satisfy representability, RLO, and DWSI. If representability, RLO,
DWSI, and (A3) hold, then {>,} is XEUR with t, satisfying PSI and PD.

Summarizing, then, representability is the preference implication of
XEUR, RLO is the additional preference implication of PSI, and WSI
(DWSI) is the additional preference implication of PC (PD).

V. Conclusion.

It bears emphasizing that the analysis here is still very preliminary. There
are numerous open questions that I am engaged in trying to answer. A few

of these are sketched here.

First, one obvious direction for further work involves continuing along
the lines above. There are certainly many potentially interesting logics
that could be studied in a similar manner to my analysis of Rescher and
Brandom’s logic of inconsistency. In particular, it would be quite interesting

to see how a modal logic could be derived.
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An issue not addressed here which I discuss at some length in Lipman
[1992a] is the agent’s understanding of the available acts. The extension
function h describes the agent’s perception of the way the outcomes of pos-
sible actions depend on what is true about the world. In Lipman [1992a],
I relate conditions on preferences to various statements about how accu-
rately the agent understands the available acts. There are still many open

questions in this direction as well.

In addition, there are a number of seemingly related ideas in the litera-
ture which may relate to and/or cast light on the results here, some of which
were mentioned in Remark 2. Also, there may be other interpretations of
the model here related to suggestions in the literature. For example, Stal-
naker [1987] suggests that imperfectly reasoning agents might be thought
of as collections of logically closed belief states. Is there a formal way to

interpret XEUR as modeling this kind of phenomena?

Finally, the purpose of this project is to generate a useful model of
bounded rationality for economics and game theory. The analysis carried
out so far and the further possibilities described above are focused on un-
derstanding the structure of the model. Ultimately, the usefulness of the
model will only be demonstrated by trying to apply it. This was one of the
purposes of Lipman [1992b], but much further work in this direction is still

needed.
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APPENDIX
Proof of Theorem 1.

The proof is by construction. Define an equivalence relation 2 on P
by p 2 q if =, = >4 and S(p) = S(g). (It is easy to see that this is an
equivalence relation.) Let D = {Dy,...,Dpn} denote the partition of P
induced by 2. Note that (A1) implies that D is finite. For any proposition
p € P, let D(p) denote the event in D which contains p. For notational
convenience, let Dy = D(T). For the moment, assume that Dy U Dy ¢ S
for any k.

Let
S*=S U {s€2P|s=Do U Dy for some k}.

The key fact to observe about this construction is that for any p € P such
that D(p) # Dy, there is exactly one s* € S*\ S such that p € s*. Hence

for such a p
S*(p) = S(p) U {Do U D(p)}.
If D(p) = Do, then p € s* for every s* € S*. (By construction, if D(p) =

Dy, then p is a tautology and so is in every s € S.) Hence for such a p,

5*(p) = S*.

Let u(z) = z and p(s*) = 1/#S* for all s* € S* (where for any
set B, #B denotes the cardinality of B). Fix a collection of functions
up, p € P satisfying representability. Without loss of generality, assume
that p 2 ¢ = w4 = up. Also, for each Dy € D, fix a proposition
Pr € Di. Extend the lotteries to S* as follows. Of course, if s* € S, then
h(f)(s*) = f(s*). If s* = Dy U Dy for k # 0, then

R(F)(*) =up(f) = DY, f(s).
s€S(pkr)
Finally, for s* = D,,

R(F)(™) = ur(f) = ) [un(H) = D =Y f(s).
k=1

s€S(px) s€S
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Since X = R and the utility functions are all real-valued, this extension is

legitimate.

For any p € P such that D(p) # Dy and any f € F,

Eu[u(h(f)(s*)) | s* € S*(p)] =#51(p) > h(F)(s*)
s*€S*(p)
1
= |u(f) — f(s) + f(s)
#5 (p) 8625(:11) 8625(:17)
1
EEOR

Clearly, then, this function will represent >, since u, represents >,. For
any p € P with D(p) = Dy and any f € F,

E,[u(h(f)(s)) |s* € S*(p)] = Eu[R(f)(s*)] =

")

S*ES‘
1
=L () = > fum () - )] = 3 £(s)
i [ ! ; SGSZ":N) ;
Y (D= )] +Zf<s)]
k=1 s€S(pk) sES
#S*UT(f)

Again, this function obviously represents >, since it represents >1 and

=T = >, for all p with S, = S+.

All that remains is to deal with the case where Dy U D(p) € S for
some p. First, suppose that Dy € S. This means that there is some s € S
such that

s={peP|S(p)=S and =, =>}.

Note that this requires every proposition in s to be a tautology. Suppose
there is any ¢ € P such that ¢ ¢ s. Since s is a logically consistent world,
—q € s. But since every proposition in s is a tautology, ~¢ € s' for all

s' € 5,50 q ¢ s for any s' € S, contradicting the assumption that ¢ € P..
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Hence s = P. But then >p = = for every p € P. Representability trivially
implies {>,} is XEUR in this case.

So suppose that Dy U D(p) € S for some p ¢ Dy. Suppose D(p) = {p}.
Since every g € Dy is a tautology, this means there is a state s € S which
has exactly one proposition, p, which is not a tautology. Consider the
proposition ——p. By the definition of a logically consistent state, =—p € s.
But if p is not a tautology, —~—p cannot be a tautology either, contradicting

the hypothesis that p is the only proposition which is not a tautology in s.

Hence for every p ¢ Dy such that Dy U D(p) € S, we must have
#D(p) > 2. Hence we can simply partition all such D(p) into nonempty
sets D' (p) and D?(p). It is easy to see that we cannot have Di(p) U Dy € S
for 2+ = 1,2. It is straightforward to repeat the construction above where
S* consists of S plus the various sets D*(p) U Dy. |

Proof of Lemma 1.

By definition, a topology is closed under (finite) intersections and
unions. Hence U(I(P)) € 7(P). But consider any set U € 7(P). By
definition, for each p € U, there must be V, € I(P) such that p€ V, CU.

But then
U=
pEU

so U € 7(P) implies U € U(I(P)). Hence 7(P) C U(I(P)) so that 7(P) =
u(I(P))1

Proof of Theorem 2.

First, suppose that S* C 7. I show if p - ¢ (i.e., S(p) C S(q)), then
p Fy ¢ (S*(p) € S*(¢)). Consider any s* € 7 such that p € s*. Since I is

4 i P is not finite, all statements here are still true where we simply replace I(P) with

the set of all finite intersections of sets in P.
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a base for 7, there exists V such that p € V C s* where V = NB, some
B C S. Hence p € s for all s € B, so B C S(p). But then B C S(q),

so we must have ¢ € s for all s € B. Hence q € V, so ¢ € s*. Hence

S*(p) € S*(9)-

To show the converse, suppose |-, satisfies PSI so that S(p) C S(q)
implies S*(p) C S*(g). In particular, this implies that if S(p) = S(gq), we
must have $*(p) = S*(q). For each nonempty B C S, let

Ps={peP|S(p)=BY}.

Obviously, every p € P is in exactly one Pg. Fix any s* € S*. Suppose that
there is a p € Pp such that p € s*. For any q € Pg, S(p) = S(¢)(= B), so
PSI implies S*(p) = S*(g). Hence s* € S*(p) implies ¢ € s* for all ¢ € Pg.

Therefore, PSI implies that every s* can be written in the form

s* = U Pp

BeB(s*)

where B(s*) = {B C S | Pg C s*}. Also, suppose B € B(s*) and B C B'.
Let p € Pp and ¢ € Ppr, so S(p) C S(g). Then since s* € S*(p), PAI
requires s* € S*(¢) — that is, ¢ € s* or B' € B(s*). In short,

(2) BeB(s*), BCB' = B' e B(s*)

Note that PSI also implies that if S(p) = 0 = S(L), then S*(p) =
S*(L). By assumption, S*(_L) = (. Hence for all s* € S*, 0 ¢ B(s*).

For any B C 25, let
minB = {B € B | AB' € B with B' C B}.

Since S is finite, every B is finite and so min B # (). Clearly, for any s* € S*,

s= U U

B€min B(s*) B'DB

(2) implies
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But for any B C S,

U Ps={pcP|BCS@)
B'DB

Hence

pe |J P» < pes, Vs€eB < penB.
B'DB

That is,

U Pg: = NB.
B'DB

Hence every s* is a union of elements of I. By Lemma 1, 7 = U(I), so

every s* € 7. ||
Proof of Theorem 3.

The proof makes use of the following lemma.
Lemma 2. For every B C S, there exists pp € P such that S(pg) = B.

Proof: If s # s', then there must be p € s such that p ¢ s'. For each s

and s' with s # ', let p(s, s') denote such a proposition. Then

S /\ p(‘s’sl) = {s},
8'#s
where A #1£s denotes the conjunction of the propositions. Hence for every

singleton {s}, there is a proposition ps such that S(p) = {s}. For nonsin-

bB = vps-

sEB
It is easy to see that S(pp) = B. Finally, for B = (), let pg = p A —=p for

gleton sets B, let

any proposition p. ||

For the proof of the theorem, first suppose S* C I (C 7). By Theorem
2, PSI must hold. Hence conditions (i7) and (2:¢) of the definition of PC

25



must hold, so that we only need to show that p,q F« p A g. So consider
any s* € S*(p) N S*(q). By the definition of I, there exists B C S such
that s* = NB and p,q € s for all s € B. Hence pA g € s for all s € B, so
p A q € s*. Hence S* C I implies p,q 4 p A g, so PC holds.

Similarly, if $* C U, PSI must hold. Since pF pVgand gt pV g,
conditions (¢) and (¢2) of the definition of PC are automatically satisfied. So
we only need to show that pV ¢ . p,q. For every s* € U, if s* € S*(pV q),
there is s € S such that pV ¢ € s C s*. Hence either p € s or g € s so
either p € s* or ¢ € s* so s* € S*(p) U S*(q). Therefore, S* C U implies
pVqklk« p,qor PD.

For the converses, first suppose S* satisfies PSI and PC. By Theorem

2, we know that each s* can be written in the form

s* = UPB

BeB

where P = {p € P | S(p) = B} and B is a collection of subsets of S.
Suppose p € P and q € Pp where B, B' € B. Then s* € S*(p) N S*(q),
so PC implies s* € S*(p A q). Hence pA g € s*, or S(p A q) € B. But
S(pAg) =S(g) N S(¢) = BN B'. Hence if B, B' € B, we must have
BN B' € B. By the finiteness of S, then, B = NB € B. This implies that

min B = {B},

so that the same argument as in the proof of Theorem 2 shows that s* =
NnB ,or s* € 1.

Suppose, then, that PSI and PD hold. Again using Theorem 2, we

know that every s* can be written in the form
s* = U NB.
B€min B

Suppose there exists B € min B such that #B > 2. Let B; and B; be a
partition of B with B; # 0,1 = 1,2. Let S(p) = B; and S(¢) = B2. Then
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S(pVgq) = B. Hence pV g € s*. However, p ¢ s* and ¢ ¢ s*, contradicting
PD. Hence every B € min B is a singleton, so s* € U. |}

Proof of Theorems 4 and 5.

The following lemma is useful.
Lemma 3. For every By, B, C S with By # By, NB; # NB,.

Proof: Using the notation of Lemma 2, clearly, pp, € NB;, i = 1,2.
However, pp, € NB, iff B, C B;. Since B; # Bs, it cannot be true that
both B; and B; are subsets of the other. Hence either pg, ¢ NB; or

pB, ¢ NB;. I

For convenience, I first prove Theorem 5. The discussion in the text
proves the first sentence of the theorem. To prove the second, note that
by Theorem 3, it is sufficient to show that {>,} is XEUR with S* = I.
Fix u satisfying (A2). For simplicity, assume every proposition p such that
#S(p) = 1 is nonnull. (It is straightforward to adapt the proof to cover
any null p with S(p) a singleton.) Let u(s*) = 1/#S* for all s* € S* = I.
For each p such that #S(p) > 2, fix u, satisfying representability. Without
loss of generality, assume that u, = u, if S(p) = S(q). (Recall that by
RLO, S(p) = S(g) implies >, = >,.) For each B C S, fix a proposition,
PB, such that S(pp) = B. By Lemma 2, this is possible. Fix any function
v : R — R such that u(v(z)) = z. That is, v is ™! or a selection from u ™1

if the inverse is not single—valued. By (A2), v(z) exists for all z € R.

Construct h as follows. Of course, h(f)(s) = f(s) for all s € S. For
any s* such that s* = NB with BC S, #B = 2, let

h(f)(s¥) = v (upa(f) - U(f(S))) :

sEB
(By Lemma 3, given any s* € S*, there is exactly one B C S such that
s* = NB.) In general, for s* such that s* =NB, B C S with #B =k > 3,
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let

k—1
h(f)(s*)=v(upa(f)—2 >, uh(HNBY) - > u(f(s)))-

¢=2 B'CB,#B'=¢ s€S(pp)

Consider any p € P and any f € F. If S(p) = {s}, then

Eu[u(h(f)(s¥)) | s* € §*(p)] = u(f(s))-

By WSI, this represents >,. Suppose, then, that #5(p) > 2. Then

* * * _ 1 u s*
Bufu(h(7)(s") | o* € $*(9)] = s 3;@) (A(£)(s*))
u(h(f)(NB))
(p) Bczs:( )
#S(p)—1
. [R(£)(NS(p))] + u(h(f)(NB"))
5 )[ DOSEI+ 3, 3wk
s u(f(s))]
s€S(p)
1
=#S—*(p)up(f)

which represents >, by assumption. This completes the proof of Theorem

5.

Intuitively, WSI is necessary for Theorem 5 because if S(p) is a single-
ton, S* = I makes S*(p) = S(p). Hence in conditioning on such a p, we
cannot use the extension to help represent the preferences. As this intuition
suggests, if we add just a few more states to S*, WSI is no longer neces-
sary. In fact, if we continue to assume RLO, we can choose these additional

states from 7. This is what gives us the proof of Theorem 4, as follows.

Again, the first sentence of the theorem is proven in the text. To prove

the second sentence, first note that, by Theorem 2, it suffices to show that

28



{>p} is XEUR with S* C 7. Fix any s € S and refer to this state as s;.
Let
St = {US} U {s*€2P |s* =5 Us, some se S}

and let $* =1 U Sf;,. Clearly, then S* C 7.

Let u(z) = z and let p(s*) = 1/#S5*. Let n = #S. Fix up, p € P
satisfying representability where u, = u, whenever >, = >,. As before,
for each B C S, fix pp such that S(pg) = B. Note that

S*(p) ={s*€S*|s*€B or s*=NB

or s* € S, and s C s* some s € B}.

Define h as follows. Of course, for any s € S, h(f)(s) = f(s). For any
s # 81, let
h(f)(s Us1) = up,(f) — £(s) = R(f)(US).

Let

MAUS) = — | £(51) =, (F) = 3 () — £(5)) |

s#8q
For B C S with #B = 2, let
(F)NB) =ups(f) = ) £(s)

SEB

- > h(£)(s%).

{s* €S}, |3sCs* with s€B}
Finally, for B C S with #B =k > 3,

h(F)(NB) =upy(f) — Y _ £(5)

SEB
k—1
=Y > MH(NB)- > h(f)(s*).
{=2 B'CB,#B'=¢ {s*€S},|3sCs* with s€B}

Consider any p such that S(p) is a singleton, say {s}. If s # s;,
E,[u(h(f)(s)) | s* € 5*(p)] =% [£(s) + A(f)(s U s1) + R(f)(US)]

zéu}’(f))
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which obviously represents >,. If s = s;,

Bulu(h(f)(s")) | 5" € §*(p)] = [f(sl) + 2 (s Us) + h(f)(US)}

8#8,

S

8#3s,

=2 | f(s1) + > (up,(F) = f(s) = A(F)(US)) + h(f)(U5>}

== | f(s1)+ D (up,(f) = £(5)) — (n — 2)h(f)(U5)}

8#38,

uP(f)7

S~ 3+

which again represents >,. The argument for p with #S(p) > 2 parallels
the proof of Theorem 5 above. |

Proof of Theorem 6.

The following lemma is useful.
Lemma 4. For every B;,B; C S with By # B,, UB; # UB,.

Proof; Using the notation of Lemma 2, clearly, ps\p;, ¢ UB;, i =1,2.
However, ps\p, € UB; iff B,NS\ By # 0 — or By € By. Since By # By, it
cannot be true that both B; and B, are subsets of the other. Hence either
Ps\B, € UB; or ps\p, € UB;. i

The first sentence of the theorem is proved in the text. To prove the
second, Theorem 3 implies that it is sufficient to show that the conditions
imply an XEUR representation with S* = U. Fix u and u satisfying DWSI
and (A3). Without loss of generality, assume that > .o u(s) < 1. (Note
that we can always replace uT and each u, with the same functions divided

by a fixed constant and the new y will be the old x divided by this constant.)

Let >, csu(s) = B. Let
__1-5
~ #(S*\ S)
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and let u(s*) = afor all s* € §*\S. It is easy to see that Doerese H(s*)=1.

For each p, fix u, satisfying representability. Without loss of generality,
assume that u, = u, if S(p) = S(g). For each B C S, fix a proposition,
PB, such that S(pp) = B. By Lemma 2, this is possible. Fix any function
v : R — R such that u(v(z)) = z. That is, v is v~ or a selection from u ™!
if the inverse is not single-valued. By (A3), v(z) exists for all z € R. For
each p € P and each f, define

() = up(f) = Y u(s)u(f(s))-

s€S(p)

Also, for p such that S(p) =0, let z,(f) = 0 for all f.

Define h(f) as follows. Of course, for s € S, h(f)(s) = f(s). For any
B C S such that #B = 2, let

HAUB) = v (Zler(h) = 2pa(1))

(By Lemma 4, given any s* € S*, there is exactly one B C § such that
8* = UB.) For any B C S such that #B =k > 3, let

h(H)(UB) = v (é[zT(f) —rpa( - Y U(h(f)(UB’))) .

B'CB,#B'>2

The recursivity of the definition guarantees that hA(f) is well-defined.

Consider any p € P. Then

B u(h(f)(s")) | s* € S*(p)] :Tsl@[ S u(su(f(s))
s€S(p)

(3)
+a > u(h(f)(UB)|.
BCS,#B>2,BNS(p)#0
By definition,
Y ws)u(f(s)) = up(f) — 2p(f).

s€S(p)
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Also, note that

> u(h(f)(UB)= > u(h(f)(UB))
BCS,#B>2,BNS(p)#0 BCS,#B>2
- > u(h(f)(UB)).

BCS,#B>2,BNS(p)=0

Since S\ S(p) = S(—p), we have BN S(p) = 0 iff B C S(—p). Hence the
right-hand side of (3) can be rewritten as 1/u(S*(p)) times

up(f)=2(f) + au(h(f)(US)) + a 3 w(h(f)(UB))

BCS,#B>2

—au(h(f)(US(-p)) — & Y. u(h(f)(UB))

BCS(-p),#B2>2

=up(f) — 2p(f) + 27(f) = 0 — [27(f) — zp(f)]
=up(f).

Therefore, E,[u(h(f)(s*)) | s* € S*(p)] represents >, as required. |
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