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Abstract

It is shown that steady state Markov perfect equilibria of discrete time, infinite horizon,
quadratic, adjustment cost games differ from equilibria of their infinitely repeated coun-
terpart games with zero adjustment costs even though no adjustment costs are paid in
the steady state. In contrast to continuous time games, the limit of these equilibria as
adjustment costs approach zero is the same as the equilibria of their static counterpart
games. A classification scheme is presented and it is shown that the taxonomy is identical
to that of analogous two stage games such as those analyzed by Fudenberg and Tirole
(1984). This classification is useful in that it implies that steady state equilibria need not
be explicitly calculated to analyze qualitatively the effects of adjustment costs in strate-
gic environments. It is also argued that estimated conjectural variations parameters may
capture a well defined property of strategic interaction in a dynamic game.
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I. Introduction

Two stage competition has become a standard methodology for studying strategic
behaviour in industrial organization. The approach has also had extensive applications
in other fields such as international trade, public finance, and macroeconomics.! Much
progress has been made in analyzing the equilibria of two stage games as a function of
the payoff structure of the game (Bulow, Geanakopolos and Klemperer (1985), Fudenberg
and Tirole (1984)). The Fudenberg and Tirole analysis provides an influential system
for classifying perfect Nash equilibria to asymmetric two stage games. In this paper, we
provide an analogous taxonomy, based on properties of payoff functions, for a class of
discrete time, infinite horizon, dynamic games with Markov strategies.

Generally, in two stage competition, a “strategic” action is committed to in the first
period (or stage) and is observed by all rivals. Perfect Nash equilibria are derived and
first period choices influence the second period equilibrium. The Fudenberg and Tirole
system classifies the perfect Nash equilibria of asymmetric games according to whether
the second stage competition is between strategic complements or substitutes and whether
investment (the commitment stage of the game) makes the strategic player “tough” or
“soft.” Symmetric two stage games can be similarly classified, but the interpretation is not
as straightforward. The value of these classification systems arises because by studying
the primitive properties of the payoff functions, the qualitative features of the equilibrium
can be derived without fully computing equilibria.

In infinite horizon games, the physical environment can remain unchanged from period
to peridd, as in the supergame framework, or the past can have a direct influence on current
opportunities, through so called “payoff-relevant” strategies. We adopt the latter dynamic
game framework (which is analogous to two stage competition) and restrict attention to
Markov strategies. In a Markov strategy, the past affects current choices only through its
effect on the current physical environment, i.e. on a state variable. Supergame strategies
are thus ruled out.

We show that the steady state Markov perfect equilibria? of discrete time quadratic

1 See, for example, Shapiro (1989) for applications.
2 Maskin and Tirole (1988) includes a critical discussion of the Markov perfect equilibrium concept.
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adjustment cost games will differ from the equilibria of their infinitely repeated counterpart
ganie with zero adjustment costs. This occurs even though no adjustment costs are paid
in the steady state and arises as the presence of such costs provide a strategic incentive to
deviate from the repeated equilibrium. A similar result has been noted in differential games
by Driskill and McCafferty (1989), Fershtman and Kamien (1987), Reynolds (1987), and
others. These three authors also obtain an interesting limit result that, as the strategic
connection between periods goes to zero, the Markov perfect equilibrium approaches a
limit not equal to the Nash equilibrium of the corresponding static game. In contrast,
in our discrete time framework, the limit of steady state Markov perfect equilibria as
adjustment costs approach zero is equal to the Nash equilibria of their static counterpart
games without adjustment costs. Finally, it is shown that the structural classification for
steady state Markov perfect equilibria of quadratic adjustment cost games is identical to

that of the analogous two period games.

Consider a comparison between the infinite horizon dynamic game and the analogous
two stage game. In the latter, a strategic choice in the first period is made anticipating
the effect on the second period sub- game. In a game with symmetry between periods,
but with adjustment costs of changing one’s action between periods, the perfect Nash
equilibrium will not be characterized by the same choice in both periods. In the infinite
horizon game, a current choice is made taking into account the effect on the value of all
future sub-games. Although these are infinite in number, their value can be summarized,
using a dynamic programming approach, by a single value function. In the steady state,
the Markov perfect equilibrium will be characterized by the same actions across periods.
Despite these fundamental differences between the two games, Markov perfect equilibria
can be classified in exactly the same way as the perfect Nash equilibria to two stage games.
In fact, evaluating the derivative of the equilibrium choice variable with respect to the scale
of adjustment costs, we find for small deviations around zero adjustment costs, that the
derivative is identical to the analogous derivative obtained for the equilibrium to the two
stage game.

The steady state equilibria of our infinite horizon games consist of deviations around

the one shot (non-strategic) Nash equilibrium. As such, they predict the same outcome
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as a static conjectural variations model, infinitely repeated, with the appropriate choice
of the conjectural variations (cv) parameter. We show that a function can be defined
from the underlying payoff functions and economy parameters to a cv parameter, sﬁch
that the sign of this cv parameter can be classified in a similar manner to that of Markov
perfect equilibria of dynamic game. Thus, an empirically estimated cv parameter implies
restrictions on the structure of an underlying Markov perfect equilibria.

The remainder of the paper is organized as follows. Section II reviews the model
of two stage competition and the “Puppy Dogs” classification system due to Fudenberg
and Tirole. Section III presents a class of infinite horizon games, derives equilibria, and
constructs an classification system. Section IV applies the general framework to several
example games, which are commonly referred to in industrial organization. Section V
relates conjectural variations equilibria to the Markov perfect equilibria of the infinite

horizon game and Section VI concludes.
II. Benchmark and Review: Two Stage Competition

As a benchmark for comparison, we review a simple two period model of strategic
competition, which has had extensive applications in Industrial Organization and other
fields. There are two players. Each player chooses an action, u, simultaneously with her

rival, in each of two periods. The overall payoff to each player is given by:

player 1: R'(iiy,12) + BIR (u1,uz) + o P (uq, ug, i, i2)) (1.1)
player 2: R%(ii,12) + ,B[R2(u1,u2) + ag P?(uy, ug, i, iiz)) (1.2)

where i is player j’s choice in period 1, and u; is player j’s choice in period 2. Ri(-)isa
concave one period payoff function, symmetric across players. The concave function Pi(.)
captures the dynamic component of the game; the link between period 1 and period 2. We

restrict P’(-) to a generalized adjustment costs form, namely
Pl (uy, ug, iy, fiz) = —(g(u1,u2) — g(i1, @2))” (2)

where g(-) is affine. The discount factor is § and a; > 0 and a3 > 0 are parameters which

determine the strength of the dynamic interaction.
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As an example of a model with the above structure, consider a model of Cournot

competition with adjustment costs to changing output levels. In this case,
R(q) = (a — b(gi + ¢j) — w)g; (3.1)

Pl(q §) = —(g; — &)* (3.2)
First period choices are known when the second period decisions are made, so the appro-
priate equilibrium concept is Perfect Nash. When a; = a3 = 0, the model reverts to a one
period game with payoffs R’(-), repeated for two periods.

We begin with an asymmetric case, in which a2 = 0 and in which P1(-) is independent
of %z and uz. In this game, adjustment costs confer a strategic advantage only to player
1 3. The structure of this asymmetric game is consistent with the analysis of Fudenberg
and Tirole (1984). The solution to this model is well known, so that we present only the

relevant details here. We can write the period 1 problem for player 1 as
max{ R’ (i1, iz) + B[R’ (w1 (1), uz (1)) + 0 P* (ua (d2), -, iy, )]}

where u1(#%;) and uz(%;) are Nash equilibrium functions from the second period of the
game. Letting subscript ; denote the derivative of a function with respect to its jt*
argument, and using the envelope theorem, the first order conditions in the first period
can be written:

B+ fauPl + ﬂR;g—:;Z ~ 0 (4.1)

R =o. (4.2)

where R} = R{(ﬁl,ﬁz). Using standard comparative static techniques, we can evaluate

Ouy /0t in equation (4.1) and rewrite the first order condition as:

R! 4+ Boy Pl + %R;Pbﬁﬂ =0 (5)

where in these equations R{k and P,Jk denote second derivatives of the return functions.

Q = RZ,(R}; + a1 Pl}) — R}, R?, and is positive in a stable second period game.

3 The analogy here is a model in which only one player can commit; for example the well known entry
deterrence model of Dixit (1980).



The conventional analysis of such a strategic game, as pioneered by Fudenberg and
Tirole (1984), would examine the sign of the final term in equation (5), the strategic
term. This term indicates how the equilibrium differs from the equilibrium of the open
loop version of the game, in which the final term would not appear. The Fudenberg and
Tirole (FT) analysis classifies the sign of the strategic term as demonstrated by Table 1
below. “Investment makes player 1 tough,” in the context of our Cournot adjustment cost
example, means that an increase in production in period 1 increases the costs of reducing
production in period 2, and so acts as a commitment to overproduction in the second

period, which in turn makes the rival worse off.

Table 1: FT Classification

Investment Makes Player 1

Tough Soft
R2P13 <0 R2P13 >0
Ry >0 Underinvestment Overinvestment
(Strategic Complements) (Puppy Dog) (Fat Cat)
Ry2<0 Overinvestment Underinvestment
(Strategic Substitutes) (Top Dog) (Lean & Hungry)

An alternative method for classifying the outcomes of these games is to examine the
derivative of first-period Nash equilibrium strategies with respect to a;, evaluated at a; =
0. The sign of this derivative suggests the effects of dynamic elements (small adjustment
costs facing player 1) on the equilibrium of the two period game. A positive derivative is
associated with overinvestment and a negative derivative with underinvestment.

The solution to the two period model when a; = 0 is just the repeated Nash equilib-

rium characterized by the first order conditions
Rj'('v')=0 J=12

Let the solution for a; = 0 be denoted (u$,u3). It is straightforward to show that

Oty o0u;  —pRn
0o |gzg Ocx  A? FuafaFys ©)




where all derivatives in (6) are evaluated at (u$,u$) and A = (Ry1)? — (R12)?. Given the
symmetry of the solution, we have dropped the identifying superscripts.* Given concavity
of R(-) and stability of the one period game, we have

a~
6a1

= Szgn R12R2P13 (7)

Therefore, the classification given in Table 1 is again valid for this derivative approach.

Consider a more general asymmetric game in which o = 0, but P!(-) may now
depend on 4, and up. If %y enters player 1’s payoff function in the second period, then
both players’ choice in the first period affects the Nash equilibrium in the second period.
In this game, both players have a strategic incentive to deviate from the equilibrium of the
repeated game. We follow our earlier methodology and study the sign of the change in the
first period equilibrium choices with the introduction of a small dynamic element.

Evaluating the derivatives at a; = 0 gives:

Cpue -

oy ERuRuRz[Pla + Py4] (8.1)
and
i
6221, = -ﬂ—Rz[(Rlz) P13 4 (R11)* P4] (8.2)

where A is defined above.’ Concavity of R(-) implies that

7 O

Sign 3(11 = SignR12R2[ P13 + Py4) (9.1)
and
. Quy . 2 2
S’Lgnaa{1 = SzgnRz[(Rlz) Pi3 + (Ru) P14]. (92)

Equation (9.1) allows the classification given by Table 2 for the general two period game
with asymmetric dynamics. The table indicates how first period perfect Nash equilibrium
choices of player 1 in the presence of asymmetric adjustment costs will differ from his

equilibrium choices in the two period repeated game (when a; = 0).

4 Given the symmetry of the solution and of the payoff functions, we also have R-:: =R;Z = R,; R}, =R2,;
Rl, =R2 ; Pl,= P2,; P},

21’ 24’

5 Note that (8. 1) reduces to (6) when P,y =0.



Table 2: Two Stage Asymmetric Dynamics - Player 1

Ry[Pi3 + P14} <0 Ry[P1s + P14} >0
R >0 (813 /8a1) < 0 (88 /8ay) > 0
Ri2 <0 (0u$/0a1) >0 (043 /0a1) < 0

Note that when player 2’s first period choices have no effect on second period returns
(P14 = 0), Tables 1 and 2 are identical.

We also consider the symmetric two period game,® in which both players face the
same adjustment cost function, given by (2), and a; = az = a. In this game, both players
have a strategic incentive to deviate from the equilibria of the repeated game. The first
order conditions for period 1 choices for the symmetric problem are identical for the two

players and can be derived as:
Ry + BaPs + %I-(Rz + aP,)[P13(Riz + aPiz) — Pis(Ry1 + aP11)] =0 (10)

where ® = (Ry; +aP11)? — (Riz + aP;3)?. From this equation, we can obtain the following
derivative which captures the effects of adding a small dynamic component to the payoffs
of both players:

du; | _ 0uj  B(Ru — Riz)
Oa = 0o A?

Ry(R11Piy — Ry P13)  forj=1,2 (11)

a=0
where A is defined as in the a,symmetric‘ case. Stability of the one-period game requires
|R11| > |Ri12| and, therefore, Ri1 — Ri2 < 0. Hence, we have

. 0

. auj .
Szgn aa = SzgnRz[R12P13 - R11P14].

As in the asymmetric game, equilibria in the symmetric game can be classified according

the sign of this derivative. This classification is presented in Table 3.

6 An early example of symmetric, simultaneous two period competition is Brander and Spencer (1983).
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Table 3: Two Stage Symmetric Dynamics: j=1,2

R, <0 Ry >0
(R12P13 - R11P14) >0 (6&;’/601) <0 (6&;’/8a1) >0
(R12P13 - R11P14) <0 (617.?/60[1) >0 (6&;’/6a1) <0

Tables 2-3 provide classifications of two-period games in which adjustment costs are
paid in the second period either by a single firm (Table 2) or by both firms (Table 3).
Adopting the classification system introduced by Fudenberg and Tirole, these tables allow
us to predict the outcomes of various types of strategic interactions. We now turn to an
analysis of infinite horizon games with adjustment costs.

ITII. The Infinite Horizon Game

Consider a quadratic, infinite horizon version of the two-period game analyzed in the
previous section. In this section, we determine the effects of small asymmetric and sym-
metric adjustment costs on steady state variables. In addition, we suggest a classification
method for Markov perfect equilibria analogous to the classification scheme for two-period

games. Let the strategy vector at time t be given by
ut = (uf ul) e Ry

where u; is the choice variable of player j at time t. For expositional purposes, time
superscripts will be suppressed henceforth. Let u; denote the current choice and let #;
denote the previous period choice for player j. Hence, (u %) denotes the 4x1 vector of
current and previous period choices.

The one-period payoff function for player j=1,2 is written:
Q’(u @) = R (u) + a; P (u @0). (12)

The function Q7 (u i) is restricted to be quadratic in its arguments. The function P’ (u i)
reflects dynamic elements and when a; = a; = 0, the game is a repeated game. In this
_environment, # is the state vector and player j faces the following dynamic programming

problem:

V(i) = max {Q’(u @) + BV’ (u)} (13)
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where V(.) is the value function for player j and § is the discount factor. A first-order
necessary condition for a solution to this problem is

00 Vi _

o i =0 o (19)

Kydland (1975) has shown existence of a linear solution for linear-quadratic discrete
time dynamic games with finite horizons. Existence results for infinite horizon games are
less general. We focus on equilibria with linear solutions and show, in the appendix, that
such equilibria exist in a neighborhood of a; = a2 = 0, where it is trivial to show that the
equilibrium coincides in each period with the equilibrium of the static game. Furthermore,
equilibria in this neighborhood will be continuously differentiable functions of o; and
ag. Since linear Markov perfect equilibria are continuous functions of these dynamic
parameters, the limit of these equilibria when these parameters approach zero will be the
same as the eqﬁilibrium of the static game. This is in contrast to discontinuities found in
differential games such as those analyzed by Driskill and McCafferty (1989), Fershtman
and Kamien (1987), Reynolds (1987), and others.

In the case of linear strategies, equilibrium Markov strategies are affine, and value

functions are quadratic. The derivatives of the value functions can be written as:

ovi C

— = a1j + bijuj + crju; fori#yj (15.1)
Ou;

ovi .

Su. = 2 + byjui + c1ju; fori#£j (15.2)

where ayj, azj, bij, bzj, and c¢;; for j=1,2 are to be determined by methods described
below. Given (14), (15.1), (15.2) and the quadratic form of the R’(-) and P’(-) functions,
the first-order condition for player j=1,2 is a linear equation in (u1,us,@1,us). Assume
further that the second order conditions for j=1,2 are satisfied. The system of equations
given by (14) can be solved for the current choice variables, u, as a function of the previous
period (state) variables, . The solution yields Nash equilibrium current period choices,

conditioned on the state vector u:

i=Fi+G (16)
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where F is a 2x2 matrix of coefficients, and G is a 2x1 matrix of constants. Note that
these matrices depend on the coefficients in the derivatives of the value functions given by
(14). The matrices are derived in the appendix.

In a steady state, & = @ = u. Solving the system of equations given by (16) under

this restriction yields steady state values as functions of economy parameters:
ia=I-F)"'G=MG (17)

where M = (I — F)™!. The value of the program in steady state equilibrium (discounted
value of R?(u #)) is given by

Vi= (ﬁ) Ri(a a). (18)

Our purpose is to determine the effect on these steady state choices and returns of the
presence of dynamic elements as captured by a; > 0.

Substituting the Nash equilibrium functions into equation (13) yields
Vi) = Q4(a(@) @) + BVI(3(3).

Differentiating this with respect to #; and using the envelope theorem gives

oVl _ [an 6Vj]aﬁ"+an forij. (19.1)

35, = 5w TP 5w, T o

Symmetrically, we have for 7 # j

J J 11 B4i; J
avi [BQ L4 ]8u,+6Q (19.2)

di; | Ou Ou; | 0u;  u;

Using the method of undetermined coeflicients, we compare the two derivatives (15.1) and

(15.2) with (19.1) and (19.2) and obtain ten non-linear equations in the ten unknown

parameters ayj, azj, b1j, b2j, c1j for j = 1,2. When a solution to this system of equations

exists, steady state Markov perfect equilibria (MPE) given by equation (17) exist. The
details are presented in the appendix.

We consider two cases. The first case is one in which the dynamic elements are

asymmetric across players (a; > 0,2z = 0). As in the two-period model, if the adjustment
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costs function facing player 1 is independent of uz and 4z, then only player 1 has strategic
power, and player 2’s behaviour is passive. If, however, player 2’s previous choice enters
player 1’s adjustment costs, then both players have strategic power, but this power is
asymmetric across players as a; # ag. A second case we analyze is one in which the
dynamic elements are symmetric across players (a; = az = a). In this case, both players
operate with identical adjustment cost functions and identical strategic power.
III.A: Asymmetric Dynamics
We seek to determine the effects on steady state choices and returns of small adjust-
ment costs facing only one player. Letting a; = 0, we differentiate steady state choices
given by equation (17) and returns given by (18) with respect to a; and evaluate these
derivatives at a; = 0. The signs of these derivatives indicate the qualitative effects on
steady state MPE of dynamic elements facing a single player in the infinite horizon game.
Let a superscript o denote the value of a variable evaluated at oy = a2 = 0. Then, dif-
ferentiating the steady state levels given by equation (17) with respect to o and evaluating
the derivative at a; = 0 yields Vj =1,2:
70 o - 0
ZZI_ laa g +G236 L » 9GS n » 0G3

6 i2 80{1 )
Equation (20) suggests that we must evaluate the derivatives of G and M with respect to

(20)

to ay evaluated at a; = 0. The full derivation is contained in the appendix for general

quadratic dynamic function P7(u ).
In the case when PJ(u i) is restricted to the generalized adjustment costs form as in

(2) above, we show in the appendix that the derivatives can be written as:

du¢ (—BR
azi - ( i 211)R§R12[P13 + Pi4] (21.1)
and
a—o
_aZi = (——[fl)}zg,[(ﬂn)zp13 + (R11)* P14 (21.2),

where A = (Ru)2 — (R12)2 > 0. Note that we have adopted the following notation under
symmetry of R7(-) and P’(-),
0*R’ 0*R’

Ry = —= Rio =
o 1 6u§ 12 Ou ;0u;
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52 P P &2 pi
B 8u;0; T Bu,ou;

Comparing equations (9.1) and (9.2) with equations (21.1) and (21.2), it is evident

that the classification given by Table 2 in the two-period model extends to a classification
of steady state MPE in the infinite horizon model. Here, we adapt the Fudenberg and

Tirole terminology for the infinite horizon game as presented in Table 4.1.

Table 4.1: Infinite Horizon Asymmetric Dynamics - Player 1

( Investment Makes Player 1)

(Tough) (Soft)
R3(Py13+ P14) <0 R3(Py3 + P14) >0
Ry12>0 (0ug/0a1) <0 (0u$/0a1) >0
(Strategic Complements)  (Markov Puppy Dog) (Markov Fat Cat)
Ri12 <0 (0ug/0a1) >0 (0u$/0a1) < 0
(Strategic Substitutes) (Markov Top Dog) (Markov Lean and Hungry)

This classification scheme affords a straightforward analogy with the two-period games
analyzed in Section II in the FT classification. The term R3(Pi3 + Py4) is the same as
the corresponding term in Table 2 for the FT taxonomy, and by analogy, we label it

"7 and Rj, determines whether strategies are

“investment makes player 1 tough or soft
strategic complements or substitutes. The combination of these effects determines the
appropriate behavior for firm 1 in the MPE steady state so as to induce a softer behavior
by firm 2 in the steady state. Table 4.2 provides a complete classification of player 2’s

behavior in a steady state MPE.

7 An alternate definition of “investment makes you tough/soft” for the infinite horizon dynamic game

J(.
is Bgu(' ) >/<0. However, we cannot explicitly evaluate this term, and since we are focusing here on
t

the parallels with two stage competition, we have adopted the usage described in the text. Slade’s
empirical papers (1990) and (1992) also include a discussion and interpretation of “investment makes

you tough” in Markov dynamic games.
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Table 4.2: Infinite Horizon Asymmetric Dynamics - Player 2

R <0 R >0
((R12)* P13 + (R11)2P14) >0 (0u3/0a1) < 0 (0ug/0a1) >0
((R12)*Pys + (R11)*Pra) < 0 (8u8/801) > 0 (8ug/ay) < 0

What is perhaps surprising is that the effect of strategic behavior in this infinite
horizon dynamic game is exactly the same both qualitatively and quantitatively as in the
two stage game which we studied at the beginning of the paper. In the infinite horizon
game, a change in the current period action affects not only current payoffs and payoffs
in the subsequent period (as in a two stage game) but payoffs in all future periods. The
latter effect is captured through the value function. What our analysis shows is that
locally around zero adjustment costs, the strategic effects from the two different games are
identical.

The effect of asymmetric dynamics on the value of the game for the two players can
be obtained from (18) and the first order conditions:

VI (u° 1 0ug e
BCE? ) = (1 —,H)R;BZ; for i #3. (22)

Hence, whether or not a player is better off in the presence of asymmetric adjustment
costs relative to the repeated game depends on how his rival responds in the steady state

to adjustment costs and how that response affects the player’s one-shot payoffs.

II1.B: Symmetric Dynamics

We now turn to the case where both players face identical adjustment costs; a; =
a2 = a. We evaluate the sign of the derivatives of steady state MPE with respect to «
at @ = 0 to examine the qualitative effects of small adjustment costs facing both players.
Differentiating the steady state levels given by equation (17) with respect to a and evaluting

the derivative at a = 0 gives

oas oMy OM%5 9GS . OGY
Ta =G+ G5 + Myt + My 5o (28)
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The full derivation of the derivatives of the matrices on the right-hand side of equation
(23) is contained in the appendix for general quadratic dynamic function Pi(u ).

In the case when P7(u i) is restricted to the generalized adjustment costs form as
in (2) above, we show in the appendix that the derivatives can be written as follows for
J =12

ou’ Ry — R
?9_0-[’_ = (ﬁ%?_)) R3(R11 P14 — Ry2P13) (24)

where A is defined above.

Comparing equation (11) with (24), it is evident that Table 3 extends to a classification
of steady state MPE in the infinite horizon game. We again adapt the Fudenberg and Tirole

terminology to the symmetric game as presented in Table 5.

Table 5: Infinite Horizon Symmetric Dynamics

R} <0 R; >0
(R12P13 - R11P14) >0 (6'&;/60{) <0 (6123’/601) >0
(Markov Puppy Dog) (Markov Fat Cat)
(R12P13 — R11P14) <0 (311‘;/80!) >0 (aﬂ;/aa) <0

(Markov Top Dog) (Markov Lean and Hungry)

From (19), it is clear that the effect of symmetric dynamics on the value of the game

for the two players is again given by equation (22) with a; replaced by a:

ovVi(a°) 1 o, 0U? ., ,
£ _<1—ﬂ)R2 5a for i # 3. (22")

Hence, the same factors affect whether players are better or worse off in the presence of

symmetric adjustment costs.
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IV. Applications

In this section we present examples of infinite horizon dynamic games and classify
each game according to Tables 4-5. In addition to these qualitative results, we compute
the relevant derivatives for each game and suggest quantitative effects of small adjustment

costs.

Dynamic Cournot with Quantity Adjustment Costs

Consider a standard Cournot duopoly with linear inverse demand:

p=a—blq + )

and constant marginal costs w < a. Suppose each firm faces a quadratic adjustment cost

to changing its quantities of the form:
aj(a; — 4)*.
Then, the functions R’(-) and P’(-) are given by
Ri(g) = (a— b(gi + ¢;) — w)gj
Pi(q ) =—(g; — &))"
Taking derivatives and evaluating yields:
Riy=-2b  Rip=-b . P3=2  Py=0

R;:-bq,—=(w;a) <0

In both the asymmetric and symmetric dynamics cases, Tables 4 and 5 indicate that these
are Markov Top Dog games and steady state MPE in the presence of adjustment costs
will differ from equilibria of the repeated game as those tables suggest. In the asymmetric
dynamics case, substituting the above derivatives into (21.1) and (21.2) and simplifying
yields the derivatives

051 4B(a—w) 072 (a —w)
day 272 >0 Oa; —26 27b2

< 0. (25)
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Thus, the presence of asymmetric adjustment costs leads to a steady state equilibrium
with equilibrium quantity higher for firm 1, and lower for firm 2, than in the repeated
game without adjustment costs. Note that this is true although in the steady state no
adjustment costs are actually incurred. Their existence confers a strategic advantage to
firm 1 which allows it to increase production in the direction of the one shot Stackelberg
quantity. From (22), it is clear that because of this effect, the firm with adjustment costs
is better off in the presence of such costs while its competitor is worse off.

The analogy with the asymmetric two period game is close, and the forces driving
the results are similar. Investment in this game consists simply of increasing production
which, because of adjustment costs, makes producing less next period more expensive.
The RS < 0 term indicates that increases in production by firm 1 reduce profits for firm
2. The term R;2 < 0 shows that the game is one of strategic substitutes. Hence, if
firm 1 seeks to induce a softer behavior from its rival through it production strategy, the
firm should overproduce relative to the repeated game outcome. Because quantities are
strategic substitutes, firm 2 will underproduce relative to the repeated outcome. Equation
(25) also implies that the firm with adjustment costs will increase her quantity more than
her rival will decrease his quantity in the MPE steady state. Hence, total output will be
larger in the presence of small asymmetric adjustment costs and prices will be lower.

The existence of symmetric adjustment costs leads to a steady state equilibrium with
both quantities exceeding the equilibrium levels of the repeated game. From (22'), it is
clear that this overproduction makes both firms worse off than if adjustment costs were
zero, and the equilibrium was simply static Cournot, infinitely repeated. In a differen-
tial game with “sticky prices”, Fershtman and Kamien (1987) derive a similar result in
which firms overproduce relative to the static Cournot equilibrium in which prices adjust
instantaneously. Driskill and McCafferty (1989) examine a differential game analog to the
game presented here and also derive the overproduction result in the closed-loop equilib-
rium. In our discrete time game, however, in contrast to the these models, the closed-loop
equilibrium does approach the static Cournot equilibrium as adjustment costs approach

Zero.
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Dynamic Cournot with Price Adjustment Costs
Suppose that each firm faces a quadratic adjustment cost in price, rather than quantity,
changes. One interpretation of this model is that there are “menu costs.” In this case P(-)

takes the form: . ,
Pl(q §) = —(p;j(9) — 5i(9))

= —(=b(g1 + ¢2) + b(¢1 + 52))2'

Taking derivatives and evaluating yields:
Py = Py = 207,

with the derivatives of R(:) as in the previous game.
In the asymmetric case, Table 4 indicates that this is again a Markov Top Dog game.
From (21.1) and (21.2), we have

01 8B(a—w) >0 072  —10B(a—w)
Oa; 27 Oa; 27

<0 (26)

In contrast to the Cournot game with quantity adjustment costs, the game with price
adjustment costs is characterized by lower total output and higher prices than in the
repeated game without adjustment costs.

In the symmetric dynamics case, Table 5 indicates that this is a Markov Puppy Dog
game. The existence of symmetric adjustment costs on prices leads to a steady state
equilibrium with both quantities lower than the equilibrium levels of the repeated game.
From (22'), it is clear that this underproduction makes both firms better off than if ad-
justment costs on prices were zero. The existence of price based adjustment costs allows
both firms to move toward the collusive outcome; effectively, adjustment costs operate as

joint commitment device to reduce output.
Dynamic Bertrand with Price Adjustment Costs

Suppose that we simply switch the role of prices and quantities in the above games so

that direct demand functions are given by

g; = a — bp; + cp;
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where products j and i are now imperfect substitutes, and ¢ < b. Such demand functions
can be derived from quadratic utility functions defined on the two products, or from a
spatial model of differentiated products on a Hotelling line. Adjustment costs on prices
are given by:
aj(p;j — b;)"-

Again this can be interpreted as a “menu costs” game. In this case, we have

R(p) = (a — bp; + cpi)p;

Pi(p ) = —(pj — B;)’

So that, evaluating the relevant derivatives gives:

R11 =-2b R12 =c

Py3 =2 Py=0

ac
2b—c¢

Rg=cﬁj= >0

Tables 4 and 5 indicate that this is a Markov Fat Cat game in both the asymmetric and
symmetric cases. Hence, both firms price higher in the presence of asymmetric adjustment
costs than in the repeated game. For quantitative effects, substitution into (21.1) and
(21.2) yields the following derivatives

op; 4Pabc? Opo 2Bac?

Bar _ (2b—c)P(ct 2072 0 By (2b—c)P(c+20)? 0. (27)

Equation (27) indicates that the firm with adjustment costs increases her price by more
than her rival. It can be shown that these effects result in a lower quantity of good 1
and a higher quantity of good 2 in the MPE steady state. From (22), we see that both
firms are better off in the presence of asymmetric menu costs. Because prices are strategic
complements, even firm 2, which is a passive player following a strategy of a one shot Nash
best response in each period, is still made better off by the adjustment cost function of its

rival. The same results are found in the analogous two period game.
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When adjustment costs are symmetric across firms, steady state equilibrium prices
are higher than those in the repeated static game. Each firm raises price in the current
period to commit to a higher price next period and hence induce the rival to set a higher
price next period. Output of both goods will be lower than in the repeated game. Finally,
as in the asymmetric case, both firms are better off in the presence of symmetric menu

costs.
Dynamic Bertrand with Quantity Adjustment Costs

We maintain the model of price competition between differentiated products, but
consider adjustment costs based on the change in quantities between the current period
and the previous period. The adjustment costs can be considered to be incurred by the
firms directly, because of the nature of capacity; or, the model can be thought of as one of
consumer lock-in, in which consumers incur costs of switching their choice from period to
period.® In either case, adjustment costs are based on quantities, not on prices.

In this case, the P’(-) functions are
P(p 5) = —(¢i(p) — §;(p))*
= —(=bpj +cpi + bp; — cpi)?

The derivatives off R7(-) are unchanged, but the relevant derivatives of P7(-) are now:
P13 = 2b2 P14 = —2bc

and

Ri2Pi3 — R11P14 = —2b26 <0

Table 4 indicates that the asymmetric game is again a Markov Fat Cat game, whereas
Table 5 indicates that the symmetric game is a Markov Lean and Hungry game. For the
quantitative effects in the asymmetric case, substitution into (21.1) and (21.2) yields the
derivatives:

op1 4pBab®c?

0P _ 2Bab?c?
da;  (c—20)(c+20) ~

By (c— 263 (c+ 25 ~

0 0 (28)

8 For a completely specified model of switching costs which utilizes a Markov perfect equilibrium, see
Beggs and Klemperer (1992).
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Again, these asymmetric effects suggest that output of firm 1 will be lower in the MPE
steady state while output of firm 2 will be higher than in the repeated game. It is also
immediate from (22) that both firms are made better off.

In the symmetric case, the strategic dynamics lead to a steady state equilibrium in
which prices are lower than in the non-strategic case. From (22') both firms are made
worse off, in contrast to the asymmetric case. The intuition behind the symmetric result
is as follows. A commitment by a firm to a low price in the current period works, through
the substitutes effect, to reduce the current quantity of the rival. That, in turn, implies a
higher current price for the rival, and a lower quantity, which increases the cost of the rival
increasing quantity next period, and effectively commits her to a high price next period.
With one firm acting alone, this would increase profits, but as usual in symmetric games,
the prisoner’s dilemma effect leads to an equilibrium in which both firms are worse off with
lower steady state equilibrium prices.

The above analysis suggests that information about static payoff functions and ad-
justment costs allows us to predict how MPE steady states will differ from the equilibrium
of the repeated game. In particular, steady state equilibria need not be explicitly calcu-
lated to qualitatively analyze the effects of adjustment costs in strategic environments.
Although our analysis is restricted to adjustment costs close to zero, in most applications,
steady state MPE are monotonic functions of adjustment costs.? We now examine links

between steady state MPE and equilibria of static conjectural variations games.
V. Conjectural Variations and Markov Perfect Equilibrium

Conjectural Variations equilibria have been employed in Industrial Organization for
a long time, since well before more rigorous game theoretic models of oligopoly became
popular. A symmetric conjectural variations (cv) equilibrium to a duopoly model is char-

acterized, for example, by first order conditions of the following type:
Rl(u) + AR} (u) =0 (29.1)

Ri(u)+ AR}(u) =0 (29.2)

9 We have verified this through simulation.
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where R’(u) is the same quadratic payoff function used elsewhere in the paper and A =
Ou;/Ouj = Bu;/Bu; is called the coefficient of conjectural variation and is specified exoge-
nously. For example, if the above game were in quantities with standard payoff functions,
then A = 0 yields the Cournot equilibrium, A = —1 yields the competitive equilibrium,
and A\ = +1 yields the cartel (perfectly collusive) outcome.

Although the idea of conjectural variations games is conceptually flawed,!? it has
proved very useful in empirical work. Where X is estimated, as part of a structural system
such as (29) above, it is a way of parameterizing the degree of competition in a particular
£.11

marke

Suppose we write the solution to (29.1) and (29.2) as
u*(A) =LA+ K (30)

where L, K are 2x1 vectors of coefficients and constants. Then it is clear that we can
match the cv equilibrium to the steady state MPE of our infinite horizon dynamic game.
By equating (17) and (30), we could solve for the value of A that would make the steady
state MPE value and the cv equilibrium value the same. The following equation, then,
implicitly defines a cv parameter as a function of economy parameters, A(a, f):

LX(a, ) + K = M(e, )" G(a, B) = u(a,, B), (31)

where the matrices M and G have been written to emphasize the dependence of the steady
state MPE on the level of adjustment costs and on the discount factor. Provided that
A(a, B) is a well behaved function, every steady state MPE consists of infinite repetition
of a cv equilibrium for an appropriate value of A. In a differential game, Dockner (1992)
analyzes a similar function and more fully characterizes relationships between economy
parameters and the magnitude of the cv parameter.

The importance of this result is not a theoretical one; rather it provides a different, a

perhaps sounder theoretical underpinning for the use of cv equilibrium in empirical work.

100 A cv equilibrium is not a well specified game; see for example Shapiro (1989).
11 For an excellent discussion of the theoretical problems and empirical usefulness of the cv concept,
see Bresnahan(1989).

21



If the market under study can be regarded sensibly as a dynamic game, then the estimated
cv parameter captures a well defined property of the strategic interaction, which can be
matched to a MPE of a fully specified game.

The sign of A can be used as another way of classifying equilibria to the dynamic

game. Equations (30) and (31) can be rewritten as:
u*(Ma, B)) = (e, B). (32)

Noting that A(0,3) = 0 and differentiating (32) around this value yields

oA

\=p O

ou
Oa

_ ou*

Y

a= A=a=0

From (29.1 ) and (29.2) we can compute

_ (RIZ - Ru)R2
A=0 A

where the derivatives of R(-) are evaluated at A =0 and A = (R11)? —(Ri12)® > 0. Finally,

ou*
o\

since Rj2 — R11 > 0 by stability, we have

= SignR; g—;\l

Sign-a—u-

E™ (33)

a=0 A=a=0

Recalling that A(0, 8) = 0, the preceding analysis suggests that the steady state MPE
of the symmetric game can be classified according to the sign of A. Letting X be an
empirical estimate of A for a particular industry, then we can classify the steady state

MPE of the equivalent infinite horizon dynamic game according to Table 6.

Table 6: CV Parameter Classification

Ry <0 Ry >0
A>0 (0u3/da) < 0 (8u3/0ar) > 0
(Markov Puppy Dog) (Markov Fat Cat)
A<0 (0a2/8a) > 0 (0u3/0a) < 0
(Markov Top Dog) (Markov Lean and Hungry)
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Thus, to classify oligopolies in this way requires both an estimate of A\ and knowledge of
R,. The latter might be obtained either as part of a prior hypothesis, or as a result of a

joint estimation procedure.
VI. Conclusions

This paper has illustrated that the presence of adjustment costs in an infinite horizon
dynamic game introduces a strategic incentive to deviate from the equilibrium of the
repeated static game in a steady state Markov perfect equilibrium. This occurs even
though no adjustment costs are paid in the steady state and such deviations will not arise
in perfectly competitive or monopolistic environments. In addition, the limit equilibrium
as adjustment costs approach zero is the same as the static Nash equilibrium. This result
appears to be particular to discrete time games and is in contrast to discontinuities found
in continuous time games.

A classification scheme for steady state Markov perfect equilibria, based on properties
of payoff functions, was shown to be identical to that of analogous two stage games. This
classification is useful in that it implies that steady state equilibria need not be explicitly
calculated to qualitatively analyze the effects of adjustment costs in strategic environments.
Finally, it is argued that estimated conjectural variations parameters may capture a well

defined property of strategic interaction in a dynamic game.
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APPENDIX

Given the symmetric and quadratic structure of payoffs, we may write the first partial

derivatives of R(-) and P(-) as follows where u; denotes own choices and u; denotes rival’s

choices:

R; = By + Ryyuj + Rigu;
R; = By + Ryauj + Raau;
Py = Dy + Pyiuj + Piau; + Piaiij + Pr4t;
P, = Dy + Piauj + Pau; + Paziij + Pauti; (A1)
P3 = D3 + Pisuj + Pasu; + P33t + P34ti;
Py = Dy + Piguj + Pagu; + Pyt + Pyqt;

Here B and Dy, for k = 1,2 are the coefficients on uj in R(-) and P(-) respectively, and
D, for k = 3,4 are the coefficients on @x—3 in P(-).

Solving the first order conditions given by equation (14) in the text with the derivatives
of the value functions given by equations (15.1) and (15.2) determines Nash equilibrium

current choices conditioned on the state vector u:

t=Fi+G (16)
where
Pz o P By + a1Dq + Ba
F=H a1l73 114] GzH[ 1 141 11
[021314 az P3 Bi + a2D; + Baiz
and
H= 1[—(Ru +a2Pi1 +Bbi2)  Riz+ a1Prz2 + fen (42)
U| Riz+asPia+Peciz —(Rii+ a1Pi + Bb)
and

U = (Ry; + a1Pi1 + Bb11)(Ri1 + a2 Piy + Bbiz)
—(Ri2 + a1 P12 + Ber)(Raz + az Pra + Ber).

Using equations (15), (19), and (A1), we can write the following for j = 1,2, 7 # j:
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B; + Ry2%; + Raotti+
arj + by +c1jii = | +0;(Dy + Proity + Paati + Postly + Paatls) | Iy
+B(az; + bajili + c14;)

+a;(Ds + Piaiij + Pagil; + Paatij + Psafi;)
and : A
B; + Riguj + Raati+
agj + bajil; + c1jij = | +a;j(Dy + Pr2ilj 4 Paotli + Pasiij + Poatli) | Fii
+B(azj + bgjii + c1jd;)

+a;j(Dyg + Pratij + Paatii + Paaiij + Paati;)
Substituting for @; and i, from equation (16), rearranging, and matching coefficients gives
the following for j=1,2; 1 # j:

a1; = Gimj + Ga27ej + (B2 + &; Dy + Baz;)Fij + o; D3

azj = G161j+ G265 + (B2 + a; D2 + Bagj)Fii + oDy
bij = Fjjm1; + Fijv2; + aj(PesFij + Ps3) (A3)
byj = Fjib1j + Fiibaj + aj(Pasa Fis + Pya)
c1; = Fjimj + Fiivzj + o (PaaFij + P34)

where
71 = (Rig + ajPia + Berj)Fij + ajPis 725 = (Roz + ajPay + Bbej)Fij + o Pas

61; = (Ri2 + ajPia + Bc1j)Fii + 0jPis 635 = (Ra2 + ajPaa + Bbyj) Fii + o Pas

(A3) represents a non-linear system of ten equations in the ten unknown coefficients con-
tained in the derivatives of the value functions given by equation (15). If these equations
can be solved for explicit solutions, those solutions can be substituted into (A2) and (16)
to solve for Markov perfect equilibria.

We first show that a solution to the system of equations given by (A3) exists in a
neighborhood of a; = a2 = 0. Let superscript o denote the value of a variable evaluated

at a3 = ag = 0. From equations (A2)-(A3),
F,';:aszbf]=c‘1’1=0 VZ,]
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—B;

Gi=Gi=W=%=F+ Ry

U=A= (Rn)2 - (R12)2

and

HO = 1 [—Ru Ri2 ]

A| Rz —Rn
(Note that H° is symmetric.)
In addition, for z € {a1j, azj, b1j, b2j,c15}, 3 = 1,2,

OF;
oz

=0 Vi, j

and
6'yfj _ 875’]- _ 66{’1- _ 65§j

5 — 0z - 0z 0z 0 Vi

Given these relationships, it is easy to show that the Jacobian of the system of equations
given by (A3) evaluated at oy = az = 0 is a 10x10 identity matrix and is nonsingular.
The implicit function theorem, then, implies that the coeffcients of the derivatives of the
value functions are continuously differentiable functions of a; and a; in a neighborhood
of a3 = az = 0. Furthermore, steady state equilibria given by equation (17) exist and are
continuously differentiable functions of a; and a; in a neighborhood of zero adjustment

costs.

Asymmetric Dynamics
Equations (21.1) and (21.2) are derived in this section. Let a2 = 0. Differentiating the
steady state levels given by equation (17) with respect to a; and evaluating the derivative

at o = 0 gives

ou; . (OFp  OFy)\ | 0G3

6a1 - Gl( 6a1 + 60[1 + 6011 (A4.1)
and

oug ([ 0Fs 6F2°2) dGS

6a1 - Gl( 6a1 + 60!1 + 6a1 ) (A4-2)
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From equation (A2),

OFY. 0 OFY. o
OF?. o OF?. o
Note that
O0F;; —Ri aFl"j
: S —— ] :: 1 2
aal R11 8a1 fOT J ’
Also from equation (A2),
0G3 0H?, 3Hi’2 a3, ady
= B —Li2 H° | D H?
ot ( PR e ﬁ +AH B
and
ey —-Bl(aal + 5 Do + H3y | D1 +ﬂ + BH3, Doy

(45)

(46)

(A7.1)

(A7.2)

Noting that R = By + G{(R12 + Rz2), and using equations (A3) and (A5), we have

a o
aau = Pi3H?R) + G5(Pi3 + Pa3) + Ds
o
0a?
_Balf = P14Hf1R2
abs, a3, ac,
ey 33 ey 44 ey Psy
obg, 0Obg,  Bciy _ 0
3011 - 6a1 B 3a1 -
ov
B R11(Py1 + BPs3) — Ri2(Pi2 + BP3a)
Oay A Oa; A
0HY,  —Hig: oHg, —(Pu+ PP+ Hiigs;)
6a1 o A 8a1 - A
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(A8.2)

(A8.3)

(48.4)

(48.5)

(A8.6)

(48.7)



Substituting equation (A8.5) into (A8.6)-(A8.7) and adding gives

0H?, OHY
5 1 4 212 — fgo (HY, + HP,)[Pi1 + Pi2 + B(Pss + Ps4)) (A9.1)
o Oay
and
OH3, OHJ
21 4 S22 _ FO (HY + HY,)[Pi + Pz + B(Pss + Paa)). (A9.2)

6a1 60!1
Substituting equations (A5), (A8.1), (A8.2), and (A9) into equations (A7.1) and
(A7.2) gives the following:

8GS
aal

+H{, [Dy + BPisHY, RS + BGL(Pi3 + P23) + BDs)] + BH{ H{, Ry P4

= B1H{ (HY, + H},)[P11 + P12 + B(Ps3 + Pss))

and
8G3
6a 1

= B1H{(HY + HP)[ P11 + Piz + B(Pss + P3g))
4 HS, Dy + BPsHE RS + BGS(Pis + Pas) + ADs)] + B(HY, ) Ry Prs

Substituting this and equation (A5) into the expression for the derivative of the steady

state choice for each player given by equation (A4) and combining terms gives

oae . o im0 1 zro\|%
aai = H},(D1 + ADs3) + B1Hy, (HY, + Hy) [Z(Plj + IBP31)]
J=1
+BH? HYy R3[P13 + Pi4] (A10.1)
B 3 LS
602 = Hy,(D1 + BD3) + B1Hy,(HY; + HY, [E(PIJ' + ﬂP3i)]
=1

+BRS[(H{,)* Prs + (Hpy )" Pra] (A10.2)

In a game with quadratic adjustment costs on a linear function of the choice variables

of the form g(u) = a + bu; + cua, P() takes the form
Pi(u @) = —(g(u) — 9(&))*
or

Pj(u ’fb) = —-[b2(u§ + ’&% - 2u1ﬂ1) + Cz(u% + '&g - 2u2ﬁ2) + 2bc(u1u2 —_ ulﬁz - ugﬁl + ﬁlﬁg)]
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By inspection,

Dy =D;=D3=Ds4=0
Py; = P33 = —Py3 = —2b*
Py; = Py = —Ppy = —2¢*
Py = —Pyy = —Py3 = P3y = —2bc

Hence, the first two terms in equations (A10.1) and (A10.2) equal zero and the expressions

reduce to:
ou —PBR
8:; - [2211R12R§[P13 + P14] (21.1)
and
9 |
BZZ - %Rg[(Ru)zPls + (Ru1)” Prd] (21.2)

These are equations (21.1) and (21.2) in the text.

Symmetric Dynamics
Equation (24) is derived in this section. Differentiating the steady state levels given

by equation (17) with respect to a and evaluating the derivative at a =0 gives

gu . (0Fy  OFy\ , 0GE
3 “Gl( 2a " a )T Ba (A11.1)
and
dus . (0Fy  OFg\ . 0Gy
da ‘Gl( 90 T o0 )t Ba (411.2)

From equation (A2),
OFp, OF3

T 2 %8 (Pl + Pul) (a2
OF?,  OFy
_lev—z_ = 60211 = (P14H7, + Pi3HY,) (A12.2)

and

oGy _ OH?;  OHY, 0 ( dai, 0 dai,
Oa _Bl( Oa + Oa +Hn (D + B Oa + Hiz (D1 + 8 Oa (413.1)
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Ja Oa Oa Oa
From equation (A3), for j=1,2; ¢ # j:
0a$; o 8F,- ] 0
_6—015—] = Rz—é;] + G4(P1s + P23) + Ds

and using equation (A12),
0aj; 0a3,

Oa Oa
In addition, for j=1,2:
abe 3631 acg]
da Pss da Pas da P
ov

a0 = 2R11(Pi1 + BPs3) — 2R12(P12 + BP34)

0HY 0HZ —(Pu+PBPss + H) 5y

Oa Oa A

8H?, OHg  Pia+PBPsu— Hp, 9
da = Oa A

Therefore, equation (A13) implies

o0 _ 00
0a  Oa

and from equation (A1l),
oug _ oug
0a  Oda’

Substituting from equations (A12) and (A14) into (A13), gives the following:

0G8
Ja

= GS(H}, + H?,)[Pi1 + Prz2 + B(P3s + Ps4))

+[H{y + HY,)[D1 + AR (Hy Pra+ Hiy Pis) + BG3(Prs + Paa) + BDs]

9G; _ p, (31{21 + 6H22> + HY, (Dl +ﬂ6a12) + H?, (D1 +8

0a$,
0

]

«

)

(A13.2)

(A14.1)

(A14.2)

(A14.3)

(A14.4)

(A14.5)

Substituting this and equation (A12) into the expression for the derivative of the steady

state choice for player j given by equation (All) and combining terms gives

4

ou; _

Oa

=1
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(H, + HE,)(Dy + BDs) + G3(H?, + HY, [zmj +BPy;)



+B(Hyy + Hiy)R3(PiaH7y + P13 HY,) (A15)

As discussed in the asymmetric game, in an adjustment cost game on a linear function

of the choice variables, the first two terms in equation (A15) equal zero and the expression

reduces to

0u; R;1 — R
61;] _ A 11A2 l2)12§(R11P14 — R12P13) (24)

This is equation (24) in the text.
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