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1. Introduction

Asset pricing theories explain risk premia on financial assets as
compensating'investo:s for risk exposures or risks that investors cannot
diversify. The theories differ in their specificatign of these
undiversifiable or systematic risks. In the Sharpe [1964], and Lintnef [1965]
Capital Asset Pricing Model investors are only exposed to the risks of the
market portfolio. The Arbitrage Pricing Theory of Ross [1976] has investors
exposed to a finite set of factor risks. While in the consumption betg models
of Merton [1973] and Breeden [1979] invéstors face real consumption risk. 1In
these theories investors reduce.risk by diversifying their portfolios across
the universe of assets.

This paper focuses on another dimension of diversification and the
resulting asset pricing model, more akin to insurance. By aggregating acroéé
the risk exposures of a large number of in§estots we derive an asset pricing
model that averages out many 1ﬂvestot specific risk concerns. Hence even if
investors have to take positions in many specific risks and diversification
is incomplete at the individual investor level, many of these nondiversifed
_risks need have.no impact on the market prices of assets. For emphasis and
exactness we model an economy with infinitely many investors, in which each
single investor is insignificant.

Formally, we define, in a general and abstract setting, the concept of
investor specific risk exposures in equilibrium in terms of measurability with
respect to an appropriate investor specific o-algebra of events. We then
identify these investor specific risk exposures and relate them to
personalized asset pricing models. An asset pricing model for the economy or

a market asset pricing model is obtained by aggregating personalized asset



variables defined on the probability space (Q,¥,P), where Q is a set of
events, ¥ is a o-algebra of events and P is a probability measure. For
generality we suppose that preferences are defined over an attainable convex
set xicv .

| Each investor i€l is supposed to have a monotone increasing, continuous
and quasi-concave utility function u defined on Xi.l Cash flows at time 1
“are obtained by holding assets at time 0. There are a finite set J of assets
indexed by j, with claims to time 1 state contingenf: cash flows ZJEV for all
j-ll...,J.2 Let the vector a denote investor i’s holdings of the J assets,
the as;péiated time 1 cash flow is given by the linegr operator Z[a]-{JZJaJi

that maps R’ into V. Each investor also has an initial endowment of assets

a*.

"It is easily shown that the set of feasible asset portfolios for i, Ai-
2-1(X1nZ[RJ]), is convex. Define -induced preférences on A1 by
u:(ai)-ui('z[ail). These induced preferences imherit the properties of being
continuous and quasi-concave from u, and the linearity and cdntinﬁity of  the
operator Z. Furthermore, we also suppose nonsatiation of u: or the absence of
bli;s points.

Consider an economy with a countable infinity of :I.nvestors.3 One may
therefore suppose, without loss of generality, that I, the indexv set for the
investors, is the set of all natural numbers or positive integers. Since we
wish to model individual investors as insignificant in the infinite et;.onomy,
we follow Aumann [1964] and Ostroy [1984], by modeling investors as ha;ring
zero measure. Accordingly we take the space of investors to be a finitely

additive non-atomic measure space (I,4,u), where 1 is the set of positive

integers, # is the algebra of all subsets of I and p is a finitely additive



So for example the function h(i)=1/1i is strictly positive and null. Null
perturbations have no effect on the limits of average allocations taken over a
sequence of econoﬁies with a popﬁlation tending to infinity and the weighting
of single investors approaching_zero. It is precisely for this reason, that
from the perspective of the limit economy, such perturbations are admissible
without disturbing the limit equilibrium.

The definition of equilibrium used by Weiss [1981] is in terms of these
equivalence classes for allo;ations. Equiliﬁria have the property that
investors may deviate from their utility maximizing allocations by a
null function without disturbing the market qlearing condition of the limit
economy.

A competitive equilibrium for the asset exchange economy over the
- infinite set of investors I is defined as follows: .:

Definition: An- attainable allocation is a p integrable function
a:I — R’ such that a.LeAi for all i and

Ja,du1) = [adu(d) .
Definition: An attainable allocation is budget feasible for the price
system peRq.if there exis;s a subset ACI with p(A)-p(I) and a null function
h:I ——> R’ such that |

pr(ai - h) - p-i1 for all ieA.

where the superScrigt T denotes transposition. The definition of bﬁdget
feasibility permits individual exceptions to the budget constraint fér a null
set of investors and for a non-null set by a null aggregate.
Definition: A competitive equilibrium is an attaiﬁable allocation a and
a price system p. such that a" is budget feasible for p’ and for some

subset ACI, p(A)=p(I) and null functions h":I —— R’ , k':I — R’



marginal utilifies.
Lemma 1. For each i€Il, there exist random variables ¢i(w), ¢:(w)evf ¢1,¢§=0
a.e. in v with respect to P, such that,
(1) | du (a}) /08, = [¥'(0)Z, (0)P(dw)
*, 0 i
(2) du, (a,)/3a,, = [¥ (©)Z, (2)P(dw)
Proof. See Appendix.

The random variables ¢i and ¢: are the marginal utilities of state
contingent cash flows evaluaﬁed at the cash flows arising from the
equilibrium and optimal asset holdings a: and a: respectively.

Theorem 2. For all i, the market price of traded assets
*
pJ satisfies,
* )
= E Z
(3 p, = E'[A2,]
Proof.  Since u: is maximized for all i with respect to the budget

constraint, the first order condition implies that

' ., 0 R
(4) du (a)/da,, = vp, -
The result follows from (1) defining A: - ¢:/1:.l

Define the linear valuation operators, Q:[x], Qi[x] by

(5) Q:[x'] - EP[A:x] for xeV
and
(6) o'[x] = E[A'x] for xev

where A! = ¢i/1:.

The random variables A: and \' are state price functions (Duffie [1988])
and define the state contingent discouqt to be applied to future or time 1
cash flows in determining their contribution to current values. The

linear operatof &' defined by (6) provides a personalized valuation of x



thousand dollars in these four states. If the investor’s equilibrium state
price function turns out to be insensitive to weather conditions in the
distant country but responsive to her state of health, with the state price
function taking on for example the values .1, .1, .3, and .3 in the states GC,
GS, BC, and BS thén the weather in the distant country is not a risk
concern while her state of health is. The personal valuation of x, Q‘[x] is
the same as the personal valuation of Er[x|state of health], or the cash flow
1.5, 1.5, 3.5 and 3.5. The investor may be thoght of as first averaging out
eventg with respect to which no risk adjustment turns out to be necessary in
equilibrium, and then prices the resulting cash flow, taking account of
personally required risk compensations. Note in this context that even if the
utility function is insensitive to weather in éhe distant country, the state
price'functioﬁ may be-sensitive to such events if the traded cash flows 2% are
responsive to such events.
Definition: VThe o-algebra 5! defines investor i’s risk exposure in
equilibrium if §' is the smallest v-algebfa satisfying

#'[x] = ®'[ E'[x]|5'] 1.

If the value of x to i, at the margin equals the value to i of the
expectation of x conditioﬁal on &', then investor i is marginally,.'.?1
conditionally, risk neutral. Hence investor i's risk concerns or relevant
risk exﬁosures are captured in the o-algebra g,

‘The example motivating this definition suggests that §' is related to the
sensitivity of equilibrium marginal rates of substitution to events; This
suggestion is confirmed in Theorem 3 below. Specifically, let F - a(Ai) be

the smallest o algebra with respect to which Ai is measurable.
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let Q-(qk,k-l,...,O) be a countable orthonormal basis for V. Since V is
self dual, 2! 1s in the closed linear span of Q and we may write that
. (7)> ' '\1 = 2:1 ¢1;kq'k :
'Define -
Q' = ( q ¢, ,=0)

as the set of basis elements that is actually required to span A, For
purposes of simplification or empirical approximation we may suppose that Q‘
is finite. Standard arguments now enable us to derive the per;onalized asset
pricing model
(8) | B+ A
where p is the vector of mean refurns on the traded assets, ﬂ1 is the matrix
of asset beta’'s with respect to elements of Q1 and 1: and 11 are constants.
Expression (8) is written as an apprqximation for this economy on two counts.
First, asset prices are approximately given by the opefators 61, with the
difference being arbitrarily small for all but finitely investors, and second,
an approximation may be involved in getting Q1 to be finite.

The number of factors involved in the linear representation (7) may be

unduly large if Ai is infact a nonlinear function of a few factors,

say
i
(9) . AT = A(Sl,...,Sx“))
where Sl,...;sxu) are the K(i) factors needed to describe nonlinearly the

variations or measurability of X‘. Equation (8) provides us with a K(i)
dimensional nonlinear representation of Ai.s This may be further reduced to a
linear model by introducing as separate factors the products of powers of the
the primary factors in the nonlinear representation. The representation (9)

clearly subsumes (7) and allows for more powerful dimensional reductions of at



‘of the insured, by essentially an application of the law of large numbers.

It is first established that the average of personalized values equals
market prices. This is.done by showing that the operator o'- Q: is a null
operator in that for all x, Qi[x] - Q:[x] is a null function of i. For this
theorem we employ a condition on -the norm boundedness of the first and second
Fréchet differéntials of the ui's.

Assumption 2. Suppose that u is twice Fréchet differentiable and that there
exists a constant'c such that, "Dui[x;-]" and "Dzui[x;-J" is uniformly bounded
by C for all x and {i.

Theorem 4. Assumption 2 implies that o' - §: and Q: - Q: are a null
operators. |

Proof. (See Appendix).

Suppose Assumption 2 and let & be the #verage of the éperatofs Q‘, more

pfeciSei}
o[x] = [ &' [x]du(1).
" The norm boundedness of Qf under Assumption 2 implies that & is a continuous
linear functional on V and hence there exists A such that
(10) | ®[x] = E'[ Ax ].

Define M as the smallest q-algebra with respect to which A is measurable.
We will show that, uﬁlike the operators Qi, ® agrees with market prices for
traded assets. Furthermore there is a precise relationship between the
o-algebra M and the o-algebras (F'=5', iel) whereby M is considerably smaller
than the union of the ¥''s. Hence M is a candidate for a relatively

parsimonious specification of market risk exposures or systematic risks.



The tail algebra can be considerably smaller than the union of individual
o-algebras a(Ai). Hence many risk factors relevant to individual
investors need not be important in the mafket place for pricing assets. A
sufficient condition useful in providing examples where M is considerably
smaller is given by the fdlloﬁing theorem. |
Theorem 7. If Dc¥', for all i and the sequence of a-algebras.yi are
conditionally independent,-conditional on D then # = D,
Proof. This is a consequence of the conditional zero-one law (See Appendix).
The variables defining D measurability can be likened to risks accounted for
in determining insurance premiums, the additional variables needed to define
9i-measurabi11ty are personal risks that the insurer avoids through
aggregating across the pool of insurers. Hence life insurance premiums may
vary with smoking habits as this item has been isolated as an important p;rt
of D, while many other factors affecﬁing personal life risks,lelements of ?1,
are ignored for the purposes of setting life 1nsuraﬁce premia.

If we define by Qy the basis elements needed to span A in equation (11),
then by standard arguments we may derive the exact asset pricing model
(13) b=, + B
where B is now the matrix of asset beta'§ with respect to the elements of QF.
Unlike expression (8), equation (13) is exact as the qperatorl(ll) gives asset
pricés exactly. Since M is contained in the tail algebra of the F''s, the
number of factors'repfesented in (13) is expected to be considerably smaller
than the union of all the factors represented in the personalized asset

pricing models.
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Zla] = a’a + SBa + u'a
where a is the vector of coefficients a, and B is a matrix with K rows
B=(B,,3€J).
The single investor’'s utility functién‘may now bé written as

U1 - ui( ara1+ STBa,i + u.rai + Y, S, v‘).
It follows from the specification of u, and the Frechet differentiability of
ﬁi with respect to the traded time 1 cash flow w that the Frechet differential
of u, Sul(w,h) takes the form

su (w,h) = [, (w,5,v)h(w)P(dw)

from which it follows that investor i’s state price function has the form
Al - Ai( ata1 + SIBa1 + u?a; + Y, o S, v )
where A'= ¢1/1:.

The risk factors priced by investor i in equilibrium are therefore given

by
g - o( at ) C-a(S,vi-,u.ra1 + yl) - X!

where o(X) for a vector of random variables X also denotes the smallest
o-algebra with respect to which the vector X is measurable. Within this
general framework we can discuss a number of special cases that have received
attention in the literature.

First consider models in which both v' and y, are absent. For example,
Ross [1976], Connor[1984], Milne [1988] discuss the diversification of -
the idiosyncratic components u'al by essentially setting out conditions under
which u’a' is zero for each i. The factors then reduce to S with no necessity
of invoking a law of 1arge numbers. - The associated conditions on preferences

and asset returns are however quite strong. Milne [1988] also discusses

approximate asset pricing models with ua' approaching zero as the number of
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11 - x'1 + ¢S + yi

S+ v
i

(e B |

P, =k *+¢§
Substituting back into (19) we obtain-
0 A= Z[a] +x, +ES + YK+ ES + V).
Now perform the regression (16) and substitute into (20) to obtain the form
(17). To defive (18) we require conditional independence of (u?a£+ yi,vi),
conditiﬁnal on S. This might require us to expand S to include portfolios
that are useful in predicting ZJ in the regression (16) even thougb they may
not be significant in explaining I..1 or p,. Under multivariate normality of
(S, u, y, v) the conditional independence follows from the orthogonality of
(u,y,v) and S obtained on the three regressions for 25, 11' and p, on S.

The factors relevant for asset pricing suggested by our model of an asset
exchaﬁge economy include thoseifacto:s that-explain the cross sectional“
variation across investors of effects on marginal utilities or the investor
specific duals A, This may usefully be contrasted with the mﬁre traditioﬁal
approach of focusing solely on explaining the cross sectional variation across
assets of asset returns. Tﬁe-important insight into asset pricing gained from
our analysis is precisely the proposition that empirical work on asset'pricing
needs to focus on factors relevant in explaining the investor specific pricing
duals A' across i in addition to identifying factors_explaining ZJ across the
set of assets.

Once we have established the validity of (18) for some set of féctors S,
a traditional K factor approximate asset pricing model may be derived by
invoking a first order approximation to thé function A using familiar
afguments (See Breeden [1979], Grossman and Shiller [1982], Madan [1988],

Milne [1988) and Back [1990]).

21



that arise from incomplete diversification of personal risks across the space
of assets. Personalized investor specific asset pricing models reflect the
multitude of these risks. By averaging across the pool of investors, in a
manner akin to how insurers average risks across the pool of the insured,
market risk exposures and asset pricing models are derived. It is observed on
invoking a lawkof large numbers applied to an infinite population of investors
that many personally relevant risk considerations can be eliminated from the
market asset pricing ﬁodel.

Examples illustrating the effects of undiversified labor income and taste
specific price indices afe provided. An important insight into asset
pricing gained from our analysis is the proposition that work on asset pricing
needs to focus on identifyingAand*explaining investor specific risk exposureé
cross sectionally across tﬁe pool of investors in addition to explaining the
variation of asseﬁ cash flows. In this sense the approach outlined here is
jointly focused on both the pricing dual and the primal aspects of asset cash

flows.



that is the limit of measures relevant for finite economies and reflects the
limits of averages.

We first define a sequence of finitely additive measures B, on the set of
all subsets of I as follows:

B _(A) = [ANL(n)|/n

where L(n) = (k|1l<k<n), |X| denotes the cardinality of the set X, and B is
the proportion of elements less than or equal to n that belong to A. It is
clear that B is a finitely additive measure on the set of all subsets of I.
Since B, is a function from & the set of all subsets of I into the unit
interval I we may think of p_as an element of the set Id. If we endow 1‘4
with tﬁe product topology of the Euclidean topology on I then 14 is a compact
Vset by Tychonoff; s theorem. Therefore the set (pnlnzl) has an apcumulation
point u. ‘ Note t_:hat p(A)-limnyn(A) wheneirer this limit exists. Hence, since
.for all finite sets A, limnpn(A)-O the p ﬁeasure of all finite sets is zero.

For the finite additivity of p; suppoée that A1 and A2 are two disjoint
sets with A-Alqu. Since p is an accumulation point there exists a

subsequence B such that 1imkpn (A1)-"(A1)’ limkpn (Az)-p(Az) and also
k x X

l:Lmkpn (A)-p(A)‘.b Now, by the finite additivity of the pn's, we have that for -
k .

all k, B (A1)+pm (Az)-pu (A), and it follows on taking limits that
x k k .

#(A)-#(Al)ﬂt(Az) .
To observe that g is non-atomic, observe that for each m we may define

sets C1’ C . Cm such that keC1 just if {1 = 1 + k mod m. For each i and n

2t
equal to mN, pn(ci)-l/m, while for n exceeding mN, we have that
N/(mN + m-1) < pn(Ci) < (N+1)/(mN + 1)

Since as n and N tend to infinity these upper and lower bounds converge

to 1/m, it follows thaf: pn(Ci) converges to 1/m and so y(Ci) equals 1/m for
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Definition. An allocation a® is budget feasible for the group B
for prices p, if there exists a real valued null function h such that, for
almost all ieB,pa:+h1$pai
Definition. An alldcation aB is preference maximal for B if,
a) a® is budget feasible,
b) for every allocatioﬁ c? of B, if cB)n aB, then there exists SCB, u(S)>0,
such that the restriction of c® to § is not budget feasible for S.
Definition. A Weiss competitive equilibrium (WCE) for an Asset Exchange
Economy is a price vector p*eRJ, and an allocation a such that:
1) for all BcCI, u(B)>0, the restfic;ion of af to B is preference maximal for
B; . |
2) fadp(i) = [ adu(i) = a.
The existence of competitive eﬁuilibrium for such an economy can be
established using a modification of the arguments in Weiss to account for
short sales along the lines of Milne [1976]. |

We now establish the equivalence between a competitive equilibrium and a
WCE under assumption 1.

Supéose first that we have a competitive equilibrium. Therefore there
. exists ACI, p(A)=up(I) and h:, k1 null functions satisfying

1) p(a, - h) =pa,
and 1) ul(a, - h) = u (a) - k
Define the real valued function hi-'p'h:, and
note that as h: is null, so also is hi. It follows from property i) that
p'a' -h =< p'a ‘
1 1 1

for all ieAnB, which is almost everywhere in B for all B of positive measure.

Hence a' is budget feasible for all B, u(B)>0.



clauses for entry into I'. For any such h, let k be defined by
| k =u(a) - u(a -h)

We wish to show that if k is not null then a’ contradicts preference
maximalit::y_ of a" for some set of positive measure. |

Suppose that k is not null. Since a: - hi is budget feasible for i, k1
is non-negative. k not null, implies that there exists a set of positive
measure B such that k1 exceeds a constant c for all i in B. Consider now the
restrictions to B of a° and (a' - h), a°|s and (a'- h)'n respectively. For
all ieﬁ, u:(a:) > ru:(a:- h) + ¢. By Assumption 1, choose § such
that |a - b| < § implies '|u:(a) - u:(b)|s c/4. Since for null functions s
and t:1 the norms are almost everywhere less than §, we have that
‘ u:(a: - si) > u:(a: -h + tz) for almost all ieB. Equivalently,

ao)n'(.a' - h)

As the points a" and a'-h are in the samé equivalence class modulo null

functions this implies that
. a°>na'

However, a°|B is budget feasible for all subsets S of B, and so we have a

contradiction of a' being preference maximal for B. Therefore k must be null.

3. Proof of Lemma 1.

Since u: = ui(Z[ai]), the differential of u: with respect to a, is

the Fréchet differential of u evaluated at x:-Z[a:] applied to the
differential of Z with respect to a, which :Ifs_Zd. The Fréchet differential
of u evaluated at x: is a linear operator which by the self duality of V is
gievn by an element of V that we denote A*(w_), with the application to Z:I
beiﬁg as described 1ri (1). Nonnegativity of a! follows from A.4. The

construction of A:(w) is similar, except that we now work with allocation a’



Let a’i - a: - h: with a" and h' satisfying the conditions of theorem 3.

Since u:(a:) - u:(a’i)sk; it follows that
Wi(dl(a'i)) < u:(a:) - Au:(a'i) < ki

Now .'d.i(a'i )=a implies that Wi(d,_(ﬂ ))Z‘I’i(a) as Wl is monotone increasing. It
follows then that kiz\lfi(a). Since 'Ifi(a) :ls» positive for positive a, di(a'i)
ﬁot null implies l&1 not null. But as by theorem ka is null, we must have that
di(a’i) is null.

Now choose a: in A' so that ||a'1 - a:"s di(a'i) + 1/1 and. theorem 1 holds
for a: with a’i- a: being a null function. This implies that Z[a;] - Z[a:] is
a null function and by an argument similar to that used for ot - @:,. we have

that @: - @:is a null operator.

5. The Conditional Zero One Law.

Consider a complete probability. (Q,¥F P) and a complete o-field DCF.
Suppose xl,xz, ... are random variables on (Q,¥,P) which are conditionally

independent given D. Write for n>m,

F' = o(X ,X_,...,X)
m m  mtl n
and
® .. ]
E=n 7
: n=1 "
THEOREM € =D
© o
Proof =~ Suppose A€t. Then Ae?:l -U 97:._ By the monotone class theorem

n=1

there exist sets Ane?: such that P(AAAnID) —> 0 as n—>« ., That is ,

lim P(A |D) = P(A|D)

and
I%m P(A nAnli)) = P(A|D)

But Ae€§?°°+1, and so A and A are conditionally independent given D.
n
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FOOTNOTES

1The utility function could represent the utility of consuming the entire
cash flow at time 1 or it could represent the optimized utility of a dynamic
program beginning at time 1. The utility function could also be used to
represent the immediate one period objectives of institutional investors,

firms or other members of the investing community.

2Extending the results of this paper to the case of infinitely many assets is
~ an interesting and useful research problem. There are however technical

difficulties associated with the double infinity of assets and investors.

3We restrict to a countable infinity of individﬁals since the law of large
numbers does not hold for a qohtinuum, (See Judd [1983], Feldman and Gilles

[1985]).

'aThe measure space is atomic if some subset of positive measure cannot be
split into two sets of strictly lower measure. We shall take our measure

space of individuals to be non-atomic, and hence single individuals must have

' Zero measure.

SWe are indebted to Ravi Bansal, Wayne Ferson and Mark Weinstein for

discussions on these aspects of representing linear pricing rules.

6For a recent empirical implementation of such a nonlinear representation for
a linear pricing rule the reader is referred to Bansal and Vishwanathan

(1992).
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