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ABSTRACT

This paper develops structural estimation techniques which can be
applied to experimental game data to consistently estimate and test models
of strategic choice. I assume that the true game is a Bayesian game of
incomplete information and that the observed actions are supported by an
equilibrium of this game. The implied structure permits estimation of the
distribution of player types. This method provides a unified framework for

rigorously testing hypotheses about behavior in games within the theory.

Behavior observed in coordination game experiments is inconsistent
with the joint hypotheses of rational play and complete information of
the game. One possible explanation is that some players are altruistic;
another is that subjects are learning as they play the game. Neither can
be clearly rejected or supported with usual empirical approaches. The
structural approach adopted in this paper does give clear evidence regarding

the importance and validity of the alternative explanations.



I. Introduction

This paper develops structural estimation techniques which can be
applied to experimental game data in order to consistently estimate and
test models of strategic choice. I assume that the true game, which in-
cludes all repetitions of the announced game in the experimental session, is
a Bayesian game of incomplete information and that the observed actions
are supported by an equilibrium of this game. The structure implied by this
assumption allows one to estimate the distribution of player characteristics
which determines the equilibrium outcomes of the game. Questions about
behavior in games can be formally stated in terms of the players’ character-
istics; hence a consistent statistical test of the theory’s predictions can be
constructed as a restriction on the set of possible relevant characteristics,

or types.

In experiments on games, the observed outcomes typically include vi-
olations of the equilibrium predictions of the complete information game.
One explanation for the deviations is that they are random mistakes or
errors. But a subject who takes account of the errors that we observe can
often do better by choosing an action other than that predicted by the
Nash equilibrium of the complete information game. So play of the pre-
dicted Nash equilibrium strategy is not synonymous with rational choice nor
is deviation from that prediction necessarily an indication of irrationality
or ineptness. In many experimental games the deviations from the equilib-
rium prediction are not distributed among other options as a “mistakes”
story would indicate; instead the observed actions differ systematically from
the prediction and are consistent with an equilibrium of a game in which
some assumption of the intended game has been relaxed. Also the devia-
tions from the predicted equilibrium path typically decline with experience

in the experimental session, indicating that learning may be an impor-



tant component of a model of strategic behavior. A statistical approach
which does not incorporate alternative explanations for the observations
into the model can be expected to generate misleading estimates and test
statistics. The expectation of an opponent’s errors or uncertainty about
an opponent’s preferences or uncertainty about the extent of an opponent’s
knowledge about ones own rationality affect the best response — in that
sense actions labelled “deviations” are informative about the equilibria of

the true game.

Unlike the Nash equilibrium of the assumed complete information
game, the Bayesian equilibrium of the true incomplete information game
does not provide directly refutable predictions. Anything which is indi-
vidually rational, or non-dominated, can be supported as an equilibrium
outcome as the players’ priors and risk attitudes are varied. In the exper-
imental setting, where preferences may not even be a monotonic function
of the monetary payoffs, one cannot identify the dominated actions; any
outcome at all can be supported by a Bayesian equilibrium. Since there
are no zero probability events, there is support within the theory for any

observed path.

Thus, statistical analysis of the data does not require specific, typ-
ically unjustifiable, assumptions which & priori eliminate certain paths.
Given the Bayesian game framework one can maintain minimal assump-
tions and let the data indicate the extent to which other assumptions are
justified. Modelling the experimental sessions as Bayesian games provides
a rich theoretical structure in which to analyze the data and implies a sta-
tistical framework for making inferences and testing hypotheses. Under
the assumption that the observed path is supported by a Bayesian equilib-
rium, one can determine the subjects’ types from that path.! An additional

assumption that the experimental subjects’ types have been drawn indepen-

1 Identification problems may arise; some types may play the same strategy. These issues

are addressed in later sections.



dently from the set of possible types leads directly to a completely specified
and tractable empirical model.? The parameters I estimate are the propor-
tions of different types of players in the population and players’ beliefs on
the distribution of types; most hypotheses are stated as restricting one or

more of these parameters to zero.

This analysis follows in the tradition of work by Palfrey and Rosenthal
[1988] and Camerer and Weigelt [1988] in viewing the true game as one of
incomplete information and making inferences about players’ beliefs. Pa-
pers by Blume, Holt, and Salant [1987] and McKelvey and Palfrey [1992]
also explicitly model the true game as one different from the game the ex-
perimenters intended and obtain parameter estimates to describe the true
game under the assumption that subjects are playing an equilibrium of that
game. In Blume, Holt, and Salant players are assumed to be playing an
epsilon perfect or proper Nash equilibrium of a voting game; they estimate
the probability of trembling and learning parameters which describe the de-
cline of the rate of trembling with experience. In McKelvey and Palfrey the
players are assumed to be playing a sequential equilibrium (with trembles)
of a centipede game with two types of players, selfish and altruistic. Each
player can have different beliefs about the proportion of altruistic types but
is assumed to believe that all other players share his beliefs. The players’
probability of trembling may decline over time. They estimate the propor-
tion of players who are altruistic, average beliefs about the proportion of

altruists and the trembling and learning parameters.

The econometric approach I use is closely related to structural esti-
mation procedures such as those developed in Miller [1984], Wolpin [1984],
Pakes [1986], and Rust [1987]. Brown and Rosenthal [1990] use an approach

2 In principle, one may prefer to assume that the distribution of the subjects’ types differ
from the population distribution; some types may be more likely to respond to a call for
subjects. For example, the subjects may be the least risk averse of the pool from which

they are recruited.



similar to the one in this paper to analyze a complete information game

with a unique mixed strategy equilibrium.

The innovation of this paper and Holt [1988] is to apply structural esti-
mation techniques to the model of the session as a Bayesian game of incom-
plete information. This approach provides a unified and explicit method for
determining which forms of incomplete information are important to the
outcomes of a game. It differs from previous work incorporating consider-
ations of incomplete information in several ways. First, I assume that the
observed session path is exact equilibrium play and from that determine the
informational structure and distribution of types which are consistent with
the observed actions. In particular, unlike McKelvey and Palfrey [1992],
the type as defined in the theoretical model is the same type that I identify
in the empirical analysis. For example, an equilibrium prescribes a play
path for an altruistic type; in this paper the subjects who are identified
as altruistic types are observed to play that precise path, rather than that
path with an error rate of 15 or 20 percent. I analyze apparent mistakes and
learning behavior by allowing for various learning types that have imprecise
information about the game. Second, I require that the players be correct
in their assessment of others’ beliefs; common beliefs are indeed commonly
held. Third, there are no a priori limitations on the types of players or the
forms of incomplete information which can be incorporated in the analysis.
Finally, as in the Brown and Rosenthal analysis of a complete information

game, I fully develop the statistical model which is implied by the theory.

The model is developed in Section II and the empirical model is pre-
sented in Section III. Section IV describes the coordination game exper-
iments and Section V develops a specific model for analyzing that data.
There are competing hypotheses which are loosely consistent with the ob-
served behavior in coordination games. One is that there are some players
who are altruistic in the sense that they care about fair outcomes or maxi-
mizing joint payoffs — or there are people who believe that there are some

altruists in the population. The other is that players are learning over
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the course of the experiment. Less structured analyses provide no way of
testing the validity of the alternative explanations. However, modelling
the behavior explicitly in the Bayesian game framework allows a rigorous
test of these hypotheses. We obtain very strong evidence that there are no
players who care about fair outcomes or maximizing joint payoffs and there
are no players who believe others have these preferences. On the other
hand, learning behavior obtained strong support. Section VI presents and

discusses these results. Section VII concludes.



I1I. The Model

The model is motivated by the observation that explanations of ob-
served behavior in experimental games are informally presented as, and
can be formally formulated as, questions about the players’ types. Equi-
librium strategies and the game form implicitly define a mapping from the
type space into the action space. Therefofe, given the observations of ac-
tions in a particular game, one can use that mapping to infer the players’

types.?

Ledyard [1986] points out that “[any] observed behavior can be ra-
tionalized as the outcome of a Bayesian equilibrium of some game.” Fur-
ther, without resorting to strong assumptions on the form of beliefs and
preferences, one can only rule out dominated strategies with Bayes-Nash
equilibria. In the experimental setting, where true preferences may not be
represented by the monetary payoffs, dominated strategies are not unam-

biguously identified.

Assumption: The observed session path is a history of a Bayesian equilib-

rium of the session-game.

This assumption assures that all observations are explained within the
theory while more restrictive models of behavior can still be identified. The
observed path identifies the players’ types or the subsets to which their

types belong. The data reveals which, if any, restrictions or additional as-

3 The observed action path in an experimental session does not always identify a unique
type for a player. This is less of a problem than one might expect, primarily because
experiments are typically designed so that the types of interest in the analysis will take
different actions at some point in the experiment. Secondly, other information about
a player, such as his play in a different exerimental session, can be used to make a
determination of type. In this paper, I select the type combination that maximizes the

likelihood function in the instances of non-unique identification.



sumptions on the game are justified. So, for example, if everyone is playing
the Nash equilibrium of the complete information game, this is revealed
by the data. More generally, we obtain evidence on whether “there are
natural restrictions on utility [and beliefs] which prevent the uninformative
explanation that all experimental and market generated observations are

Bayesian equilibrium outcomes.”*

The session-game.

The experimental session is modelled as a multi-stage game with in-
complete information in which both the subjects and experimenters are
players. The experimenter-players may or may not have (perceived) payoff-
relevant roles. The first move is by nature — certain subjects show up, sub-
jects are randomly assigned roles, and so on. The next stage may be one
in which information is revealed, perhaps by an experimenter-player giving
instructions for the experimental game. The specificity of the instructions
vary widely — some might be considered correlation devices while others
will just provide enough information to make some aspects of the subse-
quent stage-games known to the subjects. The instructions include the
information that subjects’ payoffs are a function of their own and other
players’ actions and how the payoffs are jointly determined. This stage is
sometimes followed by practice games — an unpaid training period. This
stage can also, in some cases, serve as a signalling or correlation device.
Next, the subject takes the part of a player in the announced game for a
set of repetitions. Typically some feedback regarding performance and con-
tribution to expected total payoff is given at the end of each repetition. For
example, a player may be informed of the points earned in that repetition
where the points will be converted to dollars at the end of the session by
some known, perhaps stochastic, process. Finally, subjects are informed of

their actual earnings and the session is terminated.

%4 Ledyard [1986].



Describing the session-game formally requires considerable specific in-
formation about the procedure used in running the experiment as well as
a clearly delineated procedure. Supposing the least amount of information
and for simplicity in notation, we write all repetitions of the announced
game in the session as the true game of incomplete information. There are
n players, or subjects. There are R repetitions of the game in the session.
Let hl € H] give the history of the game for player ¢ at repetition r. This
will include all moves that player : has made through repetition (r — 1).
It also includes all moves of the other players which player 7 has been able
to observe through repetitions (r — 1). Let S; be the set of pure strate-
gies available to player :. So S; is a function from histories into the set of

available actions.

The move by nature at the beginning of the game determines an n-
vector of types t = (¢1,...,tn). The type, t;, describes i’s private informa-
tion about the way he will play the game, or equivalently, summarizes those
characteristics which affect his play of the game. Let T; be the set of all
possible types for player i; Vi; t € T = xT;. In finite games, one can only
distinguish among a finite number of subsets of T}; so without loss of gener-
ality, #7; < oo. I assume that the true distribution over T; places non-zero
probability on each point in T;. Note that no possible beliefs or payoffs are
being excluded a priori. Therefore it follows from Ledyard’s [1986] result

that the players do not assign zero probability to any information set.

The equilibrium of the Bayesian game of incomplete information is
a function from the players’ types to strategies, such that each player’s
strategy choice maximizes his expected utility conditional on his own type

and his beliefs about the other players.

A player’s strategy is s; € S;T' A Bayesian equilibrium of the game in

pure strategies is s = (s1,...,Sn) such that, for all 7, for all ¢; € T;,

si(ti) € arg max D p(twiltiui(smiltai)s i), 1)
1 1 t~"
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where p is the players’ beliefs about the distribution from which the types
are drawn. The equilibrium can also be written as a mapping from the
players’ types into histories; it therefore defines a sequence of histories for

each type, i.e. for each subject.
Recovering types from observed histories.

While it is common to include, in the type description, beliefs and
beliefs about beliefs and so on, the tractability of the method of analysis
used in this paper relies on maintaining a clean separation between beliefs
and other characteristics which define a type. For the remainder of this
paper, I use ‘type’ to describe the set of relevant characteristics minus
beliefs. Both beliefs and the distribution of types are estimated. In the
application to coordination games, I assume common priors over the set of
types because of the small amount of data. The algorithm is easily adapted
to the case in which different types have different beliefs.

The types of the experimental subjects are inferred from the observed
session path by the process of checking (numerically) for beliefs p and type
combinations ¢ that are consistent with observing {hE,..., A2} in equilib-
rium. Let 6 = (61,...6n), where 8, gives the proportion of the population
who are of type m, fully characterize the distribution of types. Then this

process yields estimates of § and the players’ common beliefs, p.

The algorithm begins with a preliminary analysis of each players’
observed action path and a tentative assessment of the players’ possible
type(s). That is, there are some assignments of types that can be ruled out

a prior: and doing so when possible increases the efficiency of the algorithm.

The second step is to enumerate the possible equilibrium strategies for

each type.

The third step is to put together all theoretically feasible type-strategy



combinations for each session. For example, in the coordination games il-
lustrated in Table I, we might observe some players choosing action 1 at
every repetition and others choosing action 2 at every repetition. Consider
just two of the possible types: type 1 has ui(s,t) = y; and type 2 has
ui(s,t) = yi +y; where y; represents point payoffs to player ¢ and y; repre-
sents the payoffs to :’s opponent. Then a feasible type-strategy combination
has all type 1 players using strategy ‘always play 1’ and all type 2 players
using strategy ‘always play 2’. The converse is also a feasible type-strategy
combination; however, some type 1 players with strategy ‘always play 1’
and other type 1 players with strategy ‘always play 2’ is not feasible. There
is no attempt to check whether the type-strategy combinations are sensible

given the payoffs at this step.

The fourth step is to generate a value for p and then, given that value
and one of the feasible type-strategy combinations, compute the implied

distribution over actions.

Finally, for each p, each session, and each feasible type-strategy com-
bination, check that no player wants to deviate from the proposed strategy.
(This is a check that a set of inequalities hold.)

If more than one type-strategy combination survives this check for one
or more of the sessions then another step is required. The algorithm has
now generated at least one combination for each session, for the given p.
Construct all possible overall type-strategy combinations across sessions;
select that one which maximizes the likelihood function conditional on p.°
In the coordination game data, for representative values of p, there were

from one to three type-strategy combinations per session.

Repeat from step four for (almost) all values of p.

5 The next section describes the estimation procedure and the appendix contains a detailed

algorithm for both the type detection and the estimation procedures.
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This algorithm is implementable for any game since it is essentially an
exhaustive set of consistency checks, but it may not be the most efficient
algorithm for all applications. There are simplifications that can be made
in some cases; for example, optimal bidding strategies are simple functions

of (some aspects of) the player’s type.

This process generates, for each p, an assignment of a type to each

player in the set of experimental sessions.
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II1. Estimation

Each of Z experimental session has n players, each taking an action at
R repetitions.® The sequence of actions for one player is one observation.
The observed session path, the n x R actions, is used to construct h = {hf},
the set of histories realized in the session. Then, the process described in
the preceding section finds a type combination ¢ and beliefs p which are

consistent with the observation of A in equilibrium.

I assume that the n players’ types are drawn independently from the
population of types. The distribution of types is given by 6 = (61,...,0m)
where 6, is the proportion of type m players in the population. Summarize
the draw of n types by ¢ = (g1,...,9m) where gn, is the number of type
m players and ). gm = n. Then the probability of obtaining a particular
draw of types is given by

n!
—gl!-o-gM! .0?1...0%‘_

For the multinomial, E(g) = n#; var gm = nbn(l — 6,); and cov
(91,9m) = —nbify, for all | # m. Also note the marginal distribution of
any gm is binomial with parameters n and 6,,. Finally, since ¢!,...,¢7%,
the summaries of the type draws for the Z sessions, are independent k-
dimensional random vectors each with a multinomial distribution with pa-
rameters n and 6 then ), ¢g* = G has multinomial distribution with pa-
rameters nZ = N and 6. The assignment of types consistent with h in
equilibrium does depend on beliefs; therefore, g is a function of p. The
likelihood function, conditional on p, is the joint probability function:

N!

6 The number of players, and the number of repetitions may in fact vary across sessions

in some experimental data. The extension is straightforward.
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Note that this parameter sub-space is an (M — 1)-dimensional sim-
plex. There are M first-order conditions characterizing the maximum of

the constrained log likelihood function:
Gm/Om =

where ) is the Lagrange multiplier on the constraint that the 6,,’s sum to
one. Sample frequencies are unbiased estimators and A = N in this case.

It is straightforward to show that
N2 — 9) ~ N(0,%)

where the diagonal terms in ¥ are 6,,(1 — 0,,) and the off-diagonal terms

are —0;6,,.

The true likelihood function, L(k|6,p), is continuous with respect to
6, but not with respect to p. That is, the mapping from session paths
into types is a discontinuous function of p. The (unconditional) likelihood
function is

N! Gi(p) G
[t} p OMM(P)

L(h|6,p) = G1(P)!"'.GM(p)! !

Maximum likelihood estimates for § and p are obtained in a two step
process. First I compute the set of §’s that maximize the conditional like-
lihood functions — that is, for each p, obtain f|p which maximizes the
likelihood function conditional on that p. In this first step, the estimator
for 6., conditional on p is G (p)/N.

In the second step, I find the maximizing value(s) for p. This is a
search over a surface in an M — 1 dimensional simplex made up of flat
spots and discontinuities. Recall there are convex subsets of p which are
consistent with the same type combination in equilibrium, which generate
the same G and the same estimate of §. The method I use to find the set
of p’s that maximize the likelihood function makes use of the fact that the

identification of types required checking p exhaustively.
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The estimation procedure embeds the type detection algorithm. For
each p, carry out the stages described in the preceding section and obtain
the assignment of types. Then compute G and obtain é|p and evaluate
the likelihood function. Finally, keep an ordered list of likelihood function
evaluations with pointers to the associated élp and p or set of p’s. Note
that one cannot sort only on the value of the likelihood function since
there may be more than one flat with the same log likelihood value (each
with a different conditional estimate of 6 and set of p’s). So the pointer
list should have both |p and the value of the likelihood function. The
appendix contains a detailed description of the combined estimation and

type detection algorithm.

Obtaining standard errors for conditional estimates of 6 is straightfor-
ward. The method that can be used to obtain actual standard errors will
depend both on the experimental game and the experimental design. In
some games, the strategy choices are quite sensitive to changes in p and
in others they are very insensitive. Regardless of the class of games, when
there is sufficient variation in game payoffs in the set of experimental ses-
sions, G(p) approaches a continuous function. In the coordination game
analysis presented in this paper, the flats in p were very large. I do not
obtain standard errors; instead, I numerically determine a confidence re-
gion on a dimension-by-dimension basis. From a point in the set of p’s that
maximize the log likelihood function, I search outward in each dimension
until the new value of the log likelihood is significantly different from that

at the maximizing value according to the likelihood ratio test.
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IV. The Coordination Game Data

The data analyzed are from experiments run by Cooper, DeJong,
Forsythe, and Ross. The focus of the experiment,’ is a symmetric, simul-
taneous move, complete information game with multiple, Pareto-ranked
Nash equilibria. The game has two players, each of whom has three choices
available. Several versions of the game are used but all share these basic
characteristics. The purpose of the experiments was to obtain information
about the selection of equilibria in this type of game. In these games even
an assumption that everyone always plays a Nash equilibrium strategy is
insufficient to predict the outcome. Table I gives payoff matrices for the
coordination games analyzed. In all these games both (1,1) and (2,2) are
trembling-hand perfect and proper Nash equilibria. The equilibrium (1, 1)
is Pareto dominated by (2,2). The symmetric outcome (3,3) is a coop-
erative outcome which pays an amount greater than the Pareto dominant
Nash equilibrium in some of the games and an amount between the two
Nash equilibrium payoffs in others. In one game, the cooperative outcome
is also a Nash equilibrium and Pareto dominates (2,2). However, it is not

trembling-hand perfect.

The coordination games differ only in payoffs to dominated strategies.
Under the assumption of complete information the theory predicts these
payoffs should have no effect on behavior in the games. However, as we
describe below, there are marked and systematic differences in the outcomes

of the games — evidently related to the payoffs to the dominated strategies.

There are eleven subjects in each experimental session. The sessions

are conducted as follows. There is a random, anonymous assignment of

7 The experimental results are discussed in Cooper, DeJong, Forsythe, and Ross [1990].

See also Cooper et al, [1989] for a more detailed discussion of the results.

15



players to groups of two,® and each pair plays a symmetric, simultaneous
move game with a unique dominant strategy equilibrium. This random
assignment to play the dominant strategy game is repeated ten times al-
together. Following these first ten stages of the game, the players are ran-
domly assigned (again in groups of two) to play one of the coordination
games. Son =11, Z =7, N = 77, and R = 30. This random assignment
to anonymous opponents in the (identical) coordination games is repeated
twenty times altogether. Payoffs are assigned according to the Roth-Malouf
[1979] procedure. The anonymity and random assignment of opponents rule
out certain kinds of signalling behavior and path dependence. However, a
player can clearly learn about the game and about the distribution of types

of the other players.

8 One player is idle at each stage.
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Table I

1 2 3

320, 320 440, 420 500, 180

420, 440 600, 600 660, 360

180, 500 360, 660 420, 420

Dominant Strategy Game

1 2 3

350, 350 350, 250 1000, 0

250, 350 550, 550 0,0

0, 1000 0,0 600, 600
Game 3

1 2 3

350, 350 350, 250 700, 0

250, 350 550, 550 0,0

0, 700 0,0 600, 600
Game 4

1 2 3

350, 350 350, 250 700, 0

250, 350 550, 550 1000, 0

0, 700 0, 1000 600, 600
Game 5
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Table I (con’t)

1 2 3

350, 350 350, 250 700, 0

250, 350 550, 550 650, 0

0, 700 0, 650 600, 600
Game 6

1 2 3

350, 350 350, 250 700, 0

250, 350 550, 550 0,0

0, 700 0,0 500, 500
Game 7

1 2 3

350, 350 350, 250 1000, 0

250, 350 550, 550 0,0

0, 1000 0,0 500, 500
Game 8

1 2 3

350, 350 350, 250 1000, 0

250, 350 550, 550 0,0

0, 1000 0,0 1000, 1000
Game 9
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Table I1

Nash Equilibrium and “Cooperative” Outcomes

Game Nash 1 Nash 2 Coop.
3 0.51 0.04 0.01
4 0.51 0.01 0.03
5 0.00 0.85 0.02
6 0.00 0.64 0.04
7 0.02 0.75 0.00
8 0.09 0.46 0.00
9 0.15 0.00 0.35
overall 0.18 0.39 0.06

Table II provides a summary of outcomes observed in the sessions.
Overall, a Nash equilibrium outcome is observed 57 percent of the time.®
The first Nash equilibrium outcome is observed 18 percent of the time, and
the second (Pareto dominant) Nash equilibrium outcome is observed 39
percent of the time. The cooperative outcome is observed only in only 6
percent of the plays. However, the pattern differs markedly between the
games. In the two games (three and four) for which the payoff to action
2 when the opponent chooses the dominated strategy is zero, nearly 51
percent of the outcomes are the first Nash equilibrium and only about 2
percent are the second. In other games (five and six), one may actually be
better off choosing action two when the opponent chooses the dominated
strategy. In those games, the second Nash equilibrium outcome occurs 75

percent of the plays on average.

There are two more games (seven and eight) in which the payoffs are

9 Cooper et al find support for Nash equilibrium behavior despite this proportion of Nash
equilibrium outcomes because they consider equilibrium choices instead of outcomes.
Overall, 85 percent of the choices were either action 1 or action 2 — both of which are

Nash equilibrium strategies.
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identical to the first set of games (in that the payoff to action 2 against
the dominated strategy is zero) except that the payoffs to the cooperative
outcome are now lower than the payoffs in the second Nash equilibrium
outcome. Yet the frequency with which the second Nash equilibrium is
obtained is quite high — about 60 percent of the outcomes are the second
Nash equilibrium, while only about 5 percent are the first Nash equilibrium.
An obvious interpretation for this result is that the players’ assessment of
the probability the opponent will play a dominated strategy is lower in
these games.
Table II1

Empirical Distributions of Actions and Best Replies

Game Act 1 Act 2 Act 3 BR pct BR
3 0.71 0.20 0.09 1 0.71
4 0.71 0.14 0.15 1 0.71
5 0.02 0.92 0.06 2 0.92
6 0.07 0.79 0.15 2 0.79
7 0.13 0.86 0.01 2 0.86
8 0.30 0.68 0.02 2 0.68
9 0.38 0.03 0.59 1 0.38
overall 0.33 0.52 0.15 0.56

Table IIT indicates that, except for the game with three Nash equi-
libria, the percentage of actions which were best replies to the empirical
distribution for that particular version of the game is quite high — ranging
from 68 to 92 percent. The empirical distributions and best replies (and
proportion of players choosing the best reply to that empirical distribution)
change across games in a way which suggests that players are responding

to the information conveyed by the payoffs to the dominated strategy.

The outcomes and payoffs in the introductory dominant strategy game

repetitions are very similar across games and across players. In all sessions,
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the dominant strategy equilbrium is realized over 85 percent of the time.
There is no correlation between the outcomes in the dominant strategy
game repetitidns and the outcomes in the subsequent repetitions of the
coordination games. Therefore we have strong indications that the differ-
ences observed in the coordination games are in fact related to the different
payoffs and induced differences in beliefs about actions instead of being
an artifact of drawing very different samples of players to play the various
games. Finally, there are noticeable changes in the actions chosen over time

and these patterns of change are different in different games.

The descriptive statistics reported in Tables II and III are consistent
with the interpretation of the true game (the experimental session) as one
of incomplete information. If the session game were actually a complete
information game comprised of 20 repetitions of one of the games shown in
Table I, then we would expect no systematic differences in outcomes across
games 3 through 8. The differences we do observe suggest that players may
be uncertain about their opponents’ preferences or unsure about how to
play the game, or both. The changes in actions over time and the differ-
ences in temporal patterns across games indicate that the behavior could
be consistent with Bayesian updating of priors as information is obtained

during play of the session-game.
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V. A Simple Model for Coordination Games.

The behavior observed in coordination game experiments is inconsis-
tent with the joint hypotheses of rational play and complete information
of the game. One explanation for the observed play is that some players
have preferences for fair outcomes or beliefs that others prefer fair out-
comes. Another explanation is that the subjects begin the session with
some uncertainty about the game and learn over repetitions of the game in
the session. Both explanations are consistent with the observed patterns
of play in the experiments and neither can be clearly rejected or supported
with the usual empirical approaches. We develop a model which is capa-
ble of giving clear evidence regarding the importance and validity of the

alternative explanations.

The questions I consider in specifying the model are: Are there players
with preferences for fair outcomes — that is, are there players whose utility
functions are increasing in the opponent’s experimental payoffs as well as
their own? Do players’ expectations (perhaps erroneous) that there are
altruistic types explain some of the behavior we observe? Are there players
who are uncertain about the game and who learn as they play? Can we
disentangle the effects of altruistic players from learning players and beliefs

about altruistic vs. learning players?

Consider a model in which we can restrict our attention to six relevant
subsets of T;. The first subset contains only one type: type 1. Type 1
players are perfectly rational and fully informed about the game and have
beliefs, p, about the distribution of types. The utility associated with a
given outcome is assumed to be represented by the points earned in that

outcome.
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The second subset also contains one type: type 2. Type 2 players have
a preference for fair allocations. These types differ from type 1 players only
with respect to their preferences. A type 2 player has utility associated with
an outcome given by u; = ), iYi— lyi — y;| where y; and y; indicate the
points awarded players ¢ and j at the outcome. Several other specifications
of the utility function for type 2 players were also used. The results were
insensitive to these variations. All variations included either the sum of the
payoffs (positively) or the absolute difference between payoffs (negatively),

but not necessarily both.

There are several equivalent interpretations of the less informed types.
In the underlying model these types simply have more uncertainty about
the possible types of other players in the game. So types 1 and 2 place
positive probability only on those types that are actually in the game while
the less informed types place positive probability on those plus some other
types. (This could be a difference in the priors or in the information.) As
a consequence, the less informed types have beliefs about the distribution
of actions taken in equilibrium which does not match that induced by the

true distribution of types.

The direct way to characterize the uninformed types is according to
their beliefs about types. (I have assumed that the preferences of types 3,
4, and 5 are represented by their experimentally generated payoffs.) For
any given beliefs about types, there is an equivalent characterization in
terms of some learning algorithm. That is, for any learning algorithm there
exists a type with preferences and beliefs such that that type’s equilibrium
behavior yields the same action path as the learning algorithm and vice
versa. I choose to describe the less informed types in terms of learning

algorithms instead of their observationally equivalent beliefs over types (and
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implied equilibrium play). For the informed types, the situation is the same.
Their equilibrium strategies depend, not directly on the less informed types’
beliefs about the true game, but on the induced distribution over actions

taken by those types in equilibrium.

Players whose types are in subset three are rational Bayesians who are
incompletely informed about the game and update their priors over actions
during the course of the game.!® Players in subset three are assumed to
have utility represented by points earned. These types have uniform beliefs
over actions, ¢, at the beginning of the session by the principle of insufficient
reason. Their updated probability of observing an action at repetition r
is a function of h, an initial weight on priors (described below) plus the

number of repetitions, and is given by:

(@) = 61(®) + 3] 755

for a observed in r — 1 and

gr(b) = qr_l(b)[@:l_—l)]

for actions b not observed at r — 1. This is an implementation of fictitious
play. If beliefs over the mixture of actions the player faces at each period
is from the Dirichlet family, then the updating rule above is the correct
Bayesian updating rule. For players who do not know what action the
opponent will take in each repetition and who believe that their own action
will have no effect on future play, a myopic best response is the proper
behavior rule. In these experiments, since the players are assigned randomly
and anonymously to opponents, a player might reasonably believe his action

will not effect the play of his future opponents.

10 These priors over actions are perhaps induced by priors over payoffs or over some other

aspect of the game.
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The players begin as though they have a fixed weight on the priors over
actions — a player with very low weight on the priors might have h = 3
while a player with high weight on the priors might have A = 30. Suppose
they each begin the session with uniform beliefs over three possible actions.
Then upon observing action 2, the updated beliefs will be (1/4,1/2,1/4)
for h = 3 and (10/31,11/31,10/31) for h = 30. The weight on the priors is
an indication of the amount of confidence the player has in the priors. For
example, a player who comes to one of these sessions after previously par-
ticipating in fifty similar sessions would place a higher weight on the beliefs
with which he begins this session. On the other hand, an inexperienced
player would place a lower weight on his beliefs entering the session. The
types in this subset differ only with respect to the initial value of h they
use. From this point on, I will refer to these types collectively as type 3
players. I also tested an alternative model in which all but € weight was on
actions one and two. The results changed very little and netted no change

in the number of players judged to be type 3.

Types in subset four are like those in three except that there are min-
imal restrictions on beliefs. The only behavioral constraint for these types
is: if the action taken at repetition r is different from the one taken at r —1
then the action at r must be a best response to the opponent’s play at »r—1.
Types in subset 3 do satisfy this restriction; the behavior of types in subset
4 is a generalization of types in 3. Therefore in the assignment to types, I
assign a player to type 3 if his behavior is consistent with both and to type
4 if it is only consistent with 4. The types in this subset differ with respect
to their initial priors and with respect to their updating rule. I will refer

to these types collectively as type 4 players.

The fifth subset contains one type; that type uses a very simple learn-
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ing algorithm.!! The basic idea of this learning algorithm is: if things are
going as well as possible for the player then he will not change his action;
if he gets a payoff worse than expected then he will change; in ambiguous
circumstances, he may experiment but is not required to do so. So, for
example, in game 4, a type 5 player might believe that everyone will coor-
dinate at (3,3); if he gets a payoff of zero, he will change his action. The
detailed algorithm is provided in the appendix.

The sixth subset contains all types not included in subsets 1 through 5.
While in terms of a partition of the type space this element can be thought
of as a residual type, it plays an integral role in the formal model and sta-
tistical analysis. In the statistical analysis, including these types excludes
the possibility of encountering an observation out of the support. Further-
more, correctly computing the equilibrium mapping requires consideration
of these types. That is, equilibrium strategies depend on beliefs about all
types, including those in this subset.

The learning types described above are myopic; this specification seems
natural given the particular experimental design which produced the data.
Recall these subjects played ten other players in random order and anony-
mously; while they played each other player twice, the order of meeting was
completely unpredictable. So though a learning type’s choices early in the
session could have an impact on later play, it is clear that overall uncer-
tainty about the game overwhelms attempts to predict the effect of early
choice on the distribution of actions one would face later in the session.
The belief revision process assumes that the players are facing a station-

ary distribution; this is inconsistent with the learning types being perfectly

11 The learning algorithm is related to one developed in Kelly and Glymour [1989].
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rational but a tractable alternative is not obvious.

27



VI. Results

Results are reported in Tables IV and V. An important feature of the
results is that the mapping from session paths into types varied little with
changes in p. The unconditional estimates of 6 are given in Table IV.
The range of p which support those estimates of 6 has p; € (0.95,1.0); p,
through ps can take any value consistent with such a high p;. They indi-
cate that that approximately 29 percent of the population play a Bayesian
equilibrium strategy of the repeated game and care only about their own
experimentally generated payoffs in the game. About 24 percent of the
players are learning about the game; 19 percent are type 4 players and 5

percent are type 5.

The estimates of § with the second highest value of the likelihood
function are identical except for the estimates of the proportions of types 2
and 4. These estimates are given in Table V. About 3 percent are playing
a Bayesian equilibrium strategy of the repeated game but have preferences
over the sum of their own and their opponent’s experimentally generated
point payoffs. Now only 16 percent of the players are estimated to be type
4. The range of p consistent with these maximum likelihood estimates of is
quite large and includes p equal to 8’s reported in Table V. I can reject the
hypothesis that p; < 0.95 at the 0.005 level of significance using the —2ln\
test.
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Table IV

Unrestricted Estimates of § and p

index 6 std. errors
1 0.29 0.052
2 0.00 0.000
3 0.00 0.000
4 0.19 0.045
5 0.05 0.025
6 0.48 0.057
InL = —30.58
Table V
Estimates with p equal to 6
index 6=p std. errors
1 0.29 0.052
2 0.03 0.019
3 0.00 0.000
4 0.16 0.042
5 0.05 0.025
6 0.48 0.057

InL = —35.22
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I checked the robustness of these results by testing other assignment
rules, estimating with other learning specifications, and analysis of simu-

lated data.

The assignment rule I use gives precedence to types 1 and 2. Between
types 1 and 2, the algorit;,hm chooses the type-strategy combination across
sessions that maximizes the value of the conditional likelihood function.
Type 3 gets precedence over type 4 because type 3 behavior is a subset of
type 4 behavior. Type 3 also gets precedence over type 5 because in my
detection algorithm, a type three would pass the checks for type 5 behavior.
This is because type 5 is allowed to experiment but is not required to to
so. The appendix gives the necessary details. Type 4 is given precedence

over type 5, primarily to enable clear comparisons with type 3.

The preliminary assessment of types found 18 percent whose behavior
was consistent with being type 3; but they were also all playing in a way
consistent with being a type 1. The preliminary assessment also found that
25 percent of the players were playing in a way consistent with being type
4; approximately 9 percent of those players are also consistent with either

type 1 or type 2.

When I changed the order of precedence between types 4 and 5; the
estimates of 6;, 03, 03 and s were unchanged. The new estimate of 8, is
0.17 and the new estimate of 65 is 0.04. At uniform p, the log likelihood
value was —34.641.

I report two alternative checks on types one and two. Instead of choos-
ing the type-strategy combinations that maximize the likelihood function
I consider arbritrary assignment under two conditions: in the first, the al-

gorithms looks for type 1’s first; in the second, it looks for type 2’s first.
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In both cases, the first combination that passes the equilibrium check is
selected. Both are run with p; < 0.95 since that is a more robust region

for comparing alternate specifications.

The first case, with type 1’s getting arbitrary precedence, is quite sim-
ilar to the results when the maximizing combination is chosen. We have:
6, = 0.26, 6 = 0.03, 65 = 0.05, 8, = 0.17, 65 = 0.04 and 6 = 0.45.
The log likelihood value is —46.169. The second case, in which type 2’s
get arbitrary precedence gives quite different results. We have: 6, = 0.19,
0, = 0.21, 63 = 0.0, 64 = 0.10, 65 = 0.04 and 6¢ = 0.45. The log likelihood
value is —43.132.

These results illustrate some adv'antages to this method of analyzing
experimental games. First, one has consistent estimators of parameters
which have a clear interpretation within the theory. Second, there is a best
test for hypotheses which are clearly stated within the theoretical frame-
work. Thus, one can distinguish between different plausible explanations

and rigorously test whether they are supported by the data.

As discussed in previous sections, there are competing hypotheses
which are loosely consistent with some observed behavior in coordination
games. One is that there are some players who are altruistic in the sense
that they care about fair outcomes or maximizing joint payoffs — or there
are people who believe that there are some altruists in the population. The
other is that players are learning over the course of the experiment. Con-
sider a perfectly informed, selfish player’s choice if he believes that some
proportion of the population is altruistic. A naive altruistic player will
choose action 3 in games 3 through 6. The best response is to select action
1 in games 3 and 4 and action 2 in games 5 and 6. This is in fact consistent

with summary statistics reported in Table III. At the same time, a model
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of players who view this as a game against nature, start the session with
positive probability on facing an opponent’s choice of action 3, and learn
over the course of the session can also explain exactly the same switching

between actions 1 and 2.

However, using the Bayesian game framework, one can test the alter-
native explanations rigorously. This analysis yields very strong evidence
that there are no players who care about fair outcomes or maximizing joint
payoffs and there are no players who believe others have these preferences.
On the other hand, learning behavior obtained strong support. Recall that
we always assigned a person to type 2 if their behavior was consistent with
both that and a learning type. Thus these results against altruistic prefer-

ences obtain even when the altruism argument is given an advantage.

The estimated proportion of type 1 players, 29 percent, indicates that
a relatively small group of the population play games according to the
standard game theoretic model — even when we account for incomplete

information.
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VII. Conclusion

Modelling experimental games as Bayesian games of incomplete in-
formation and then applying structural estimation techniques provides a
promising method for analyzing strategic behavior. This method allows
an interpretation of all actions within the theory — we are never required
to simply categorize a set of actions as “irrational” or “non-Nash” or “de-
viations”. Rather all observed actions can be tied to the sets of player
characteristics which support them in equilibrium. As a result, one can
characterize systematic patterns of behavior which are unexplained by the

equilibrium predictions of the complete information game.

The empirical model is directly implied by the theoretical model. Thus
it is straightforward to adapt the statistical analysis for any specialization
of the game theoretic model. That is, there is no restriction on the sort of

strategic behaviors that can be examined in this framework.

The application to coordination games illustrates some of the advan-
tages to following this approach. Competing explanations which are consis-
tent with the observations cannot be directly refuted or cleanly supported
by naive analyses of the experimental results. However, modelling these
explanations explicitly in terms of the players’ types and estimating the
distribution of types under the assumption that the actions are supported
by a Bayesian equilibrium of the game yields clear evidence regarding the
importance or validity of the alternative explanations. In addition, this
method promises to be extremely useful in designing experiments which

fully exploit the power of the statistical analysis.
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Appendix 1

This appendix contains a description of the algorithm which determines the
players’ types given the observed action paths, finds the maximimum like-
lihood estimates of the parameters § and p, and constructs an approximate
confidence region for the estimates. There are two separable components
of the algorithm: the preliminary analysis makes tentative, feasible type
assignments and summarizes play paths; in the second component, the es-
timation procedure is inextricably linked with the process of checking for

types and beliefs that support the action path in equilibrium.
Preliminary Analysis

Check for possible assignment to types 3, 4, and 5. These alternative
type assignments are held throughout the process of checking for equilib-
ria. If a player is not one of the rational, informed types then this remains
his type assignment. If the player is possibly one of the rational, informed
types, then the assignment of type is made according to which assignment
maximizes the likelihood function (or in an arbitrary ordering to test ro-

bustness).

Checking type 3. For each player, start with uniform priors over ac-
tions, check whether the player is choosing a best response to that distribu-
tion at the first repetition. If so, then update beliefs given observation at
the first repetition and check whether the player is choosing a best response
to that distribution or the original distribution. Continue for as long as the
player is playing a best response to beliefs in the interval between the ini-
tial priors and the beliefs updated at each repetition based on the observed

actions. The updating rule is

(@) = lir2(®) + 3l ]

for a observed in r — 1 and

QT(b) = ‘b‘—l(b)[(h _I:_ 1)]
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for the actions, b, not observed. The value of A is incremented by one at each
repetition. The starting value of h indicates the measure of the strength
of the initial priors relative to the weight given new information. For each
person, the algorithm begins with o = 10 and, so long as the person’s
actions are not consistent with the implied updating rule, decrements h
until A = 1. At h = 1, the person puts little weight on the initial beliefs
and responds strongly to the new information. The maximum value of
h = 10 was chosen because experimentation and simulation revealed that
at that value, for most sequences of opponents’ actions, the beliefs change
little enough that a type 3 player would be choosing a constant action
path over repetitions. The reason for having the person choose a best
response to beliefs in a cone defined by the initial beliefs and the updated
ones is that the idea that the person is really uncertain about the correct
weight to attach to the initial priors and that & is a parameter describing
the upper bound to the weight attached to new information. Then the
person may proceed playing best response to the initial uniform beliefs
over actions for some number of repetitions until a sufficient number of
“unlikely” observations indicates that a stronger weight should be given to

the new observations.

Checking type 4. A player is given an alternative assignment to type 4
if, at each repetition, he takes the same action as in the previous repetition
or takes an action which is a best response to what he observed in the

previous repetition.

Checking type 5. Checking type 5 is a matter of checking for prohibited
transitions. Transitions which are prohibited are: a move from action 1
to action 3 except in game 9; a move to action 1 after matching on 2;
and remaining with action 3 after failing to match on 3. The prohibited
transitions vary across payoff structures as follows: in games 3, 4, and 9,
a move to 2 from a matched 3 cannot yield an improvement and so is
prohibited; and in games 5 and 6, action 2 strictly dominates 3 so a move
to 3 from 2 is prohibited.
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A player whose action path is not consistent with either of types 3,
4, or 5 is conditionally assigned to the sixth subset of types. It is possible
for a player to be assigned to more than one of the learning types. In
the primary model, players were assigned to learning types in order by the
restrictiveness of the learning algorith — first to 3, then 4, and finally 5.
Alternative specifications were also tested and the results from those are
presented in Appendix II. A simple procedure at the end of the preliminary
analysis assigns one of the learning types for each player whose behavior is
consistent with at least one of them. Recall that in choosing between types
1 and 2 or between one of the informed rational players and a learning
type, the type (combination) is chosen which maximizes the conditional
likelihood function; when the types are related as types 3, 4, and 5 are,
that approach does not seem reasonable. One interpretation of the types 3,
4, and 5, is that they are each proper subsets of a set of uninformed types
— that those in subset 3 are more informed than those in either subset 4
or 5 and that those in subset 4 are more informed than those in subset 5

along some dimensions and less informed in others.

The preliminary analysis includes an assessment of each players action
path. The action paths are summarized as: all one’s, all two’s, all three’s,
one’s and two’s, one’s and three’s, two’s and three’s, or all actions. Given
the player’s action path, a potential type assignment of 1 or 2 or both is
given to each player. This initial assignment is simple — an action path
of all one’s, all two’s, or one’s and two’s is consistent with a player being
type 1. Every action path is consistent with a possible assignment to type
2. For game 9 and for some beliefs a type 1 might also take action 3 in
equilibrium but it is not the case for this data and ignoring that possibility
(after a preliminary determination that no mis-specification results) makes

the algorithm significantly more efficient.
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Checking for Equilibrium Support of the Action Paths

The central task of the algorithm is to ascertain, for each set of histories
observed in a session, the beliefs and assignment of types that support that

set of histories in equilibrium and to concurrently obtain estimates of § and

p.

To summarize this second part of the algorithm: For each p in a grid, for
each session,

1) construct all possible type-strategy combinations,

2) compute a distribution over actions from p, the empirical distribution of
actions taken by types 3, 4, 5, and 6, and the proposed strategies of any
types 1 or 2 in this possible combination,

3) check that a type 1 and 2 players have no incentive to deviate from the
proposed equilibrium strategy,

4) put surviving type-strategy combinations in a matrix which keeps all

possible type-strategy combinations for each session, for one p.

For each p, after all passing all sessions through procedures 1 through 4,
5) find all permutations of type-strategy combinations across sessions,

6) find f|p and evaluate the conditional log likelihood for each of the type-
strategy combinations,

7) select the type combination that maximizes the log likelihood, condi-

tional on the current p.

Parts 5 through 7 are primarily an equilibrium selection mechanism.
The question of how to assign types when there are multiple equilibria is an
important question. The approach taken here — that of selecting the one
which implies the maximizing type combination — is only one that could

be applied.

Run procedures 1 through 7 for each p in a grid. For each p, the log
likelihood is also evaluated at § = p for testing the hypothesis that the
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players’ beliefs are correct (in the sense that they are the same as 9).

The grid search over p evaluates the likelihood function at 64 mil-
lion (?) points. Conditional on p, the standard errors for § are obtained
analytically. True standard errors for 6 and for p are not computed or de-
rived. Instead, approximate confidence regions for the maximum likelihood
estimates of @ and p are numerically constructed. The sample likelihood
function is searched in each direction for the point at which the value is
significantly different from the maximizing value. (This process also yields

the approximate shape of the flat which maximizes p and 6.)
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Details of Procedures 1 through 7.
Detail 1.

This procedure constructs all permissable type-strategy combinations
and also calls the procedures which implement parts 2 through 4. Permiss-
able type-strategy combinations are those that are allowed by the theory.
For example, a permissable combination is: 2 type 1 players who play all
one’s and 5 type 2 players who play all two’s while an impermissable combi-
nation is: 2 type 1 players who play all one’s and 5 other type 1 players who
play all two’s. The procedure loops through all possible type 2 strategies
looking for a player who matches. If it finds a player match it looks for all
who match — those are type 2. Within that loop it then loops through all
possible type 1 strategies looking for a player match. When it finds a type 1
match, all players are given their type assignment: type 2 with the current
loop strategy or type 1 with the current loop strategy or the default type
assignment from the preliminary analysis. The procedure also checks the
“null” strategy for each type — that is, it checks for type-strategy combi-
nations in which there are no type 1’s and for those in which there are no
type 2’s. Each possible type-strategy combination is then passed through
parts 2 through 5.

Detail 2.

This procedure computes a distribution over actions, ¢, from the beliefs
over types, p. The beliefs over actions induced by the beliefs over types
depends on the session so ¢(s) is computed for each session s. The procedure
takes one proposed assignment of types to players in a session and the beliefs

p along with some estimate of the distribution of actions taken by types 3,
4, 5, and 6.

These estimates can be obtained in two different ways: one method is

to use the empirical distribution of actions from this data and the other
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is to simulate the learning behavior against the real data and use that
empirical distribution. The problem with the former approach is that there
are proposed type combinations in sessions for which there may be no type
3 players, for example, while p3 is strictly positive. Then there is no way
to estimate the distribution of actions that the type 1 players expect to
observe when their opponent is a type 3. An alternative way of using
empirical distributions from the data is to just compute them using the
assignment to types 3, 4, 5, and 6 from the preliminary analysis. Then
the problem is that, for some sessions, one is using an estimate based on a
subject who is now in the proposed type combination as a type 1 instead
of as its preliminary type, 3. Using simulations avoids these complications.
It is straightforward to apply in the case of type 3 players but involves
some arbitrary elements when simulating types 4 and 5. In particular, with
type 4, one has to specify when the player will decide to respond to the
accumulating evidence and with type 5, one has to specify when the player
will decide to experiment (given that it is allowed). Both are determined
by a random process in which the frequency is matched to the apparent
aggeregate frequency in the data. The second method was used for the

results reported in this paper.

Given estimates of the distribution of actions taken by each of types

3, 4, 5, and 6, denoted by e(s,m), compute ¢(s) by the following rule:
q(s,a) =0

Q(sia) = q(.s,a) + 6(37m) *Pm

for m = 3...6 and for all actions a. Then, if type 1 players are playing all

one’s in this proposed type-strategy combination:

q(s,1) = q(s,1) + p1

or if they are playing all two’s in this proposed combination:

Q(s’z) = q(saz) +p1'
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Similarly for type 2 players: if they are playing all three’s in this proposed

type-strategy combination:

q(s,3) = q(s,3) + ps.

If a mixed strategy is used, then use the distribution of actions observed by
the relevant type, assume the strategy is stationary, and apply the weighted
probability. For example, suppose type 1 will play a mix of actions 1 and 2
in this proposed strategy. Count actions 1 and actions 2 taken by the type

1 players in this possible assignment — call them c1 and c2. Then
q(s,1) = q(s,1) + (c1/(cl +¢2)) - p1

q(s,2) = q(5,2) + (c2/(cl + ¢2)) - p1

Detalil 3.

This procedure checks that no player will want to deviate from the
proposed strategy by verifying that a set of inequalities are satisfied. The
procedure takes the ¢’s computed as above and the payoffs for types 1 and
2. For each possible type combination, all except types 1 and 2 are ignored,
and the types 1 and 2 are checked against the appropriate inequalities by
use of nested case statements. Processing of players continues as long as the
inequalities are satisfied — if one is not satisfied, then that type-strategy

combination fails.
Detail 4.

This procedure writes passing type-strategy combinations to a matrix
that holds all passing combinations for each session, for one p. It also

collects summary information about the data.
Detalil 5.

This is a combinatorics routine. Within the routine, for each cross-

session combination, it implements 6 and keeps a running tab on the max-
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imum value of the log likelihood function. For this data the number of
type-strategy combinations per session typically ranged from one to three
with the number of cross-session combinations averaging in the mid-fifties.
Therefore there is no problem with having an inordinately large number of
combinations to evaluate for each p. However, this point in the algorithm
seems the most likely for hitting computational constraints — especially as

the number of sessions increase.
Detalil 6.

Find 6 conditional on p by computing sample frequencies. The condi-

tional log likelihood is the log of the multinomial evaluated at 6.
Detail 7.

Select the type combination that maximizes the conditional log likeli-
hood. Begin with a comparison value set to a very negative number. Then
compare the new log likelihood value with the comparison value — keep the
larger of the two as the new comparison value, along with the associated g
and the log likelihood function evaluated at p.
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