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calculate approximate asymptotic distribution functions for a number of
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workers to calculate approximate P values for these tests. The results of the
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large number of different test sizes. Finally, regression methods are used to
estimate approximate distribution functions with simple functional forms.
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1. Introduction

Tests of the null hypothesis that a time-series process has a unit root
have been widely used in recent years. The most common of these tests,
based on the work of Dickey and Fuller (1979) and Said and Dickey (1984),
are known as Dickey-Fuller (DF) tests and Augmented Dickey-Fuller (ADF)
tests, respectively; see Dickey, Bell, and Miller (1986) for an illuminating
exposition. One problem with these tests is that they have nonstandard
asymptotic distributions, for which only a few critical values have been
tabulated; Fuller (1976) is the classic reference. The aim of this paper is
to calculate approximate asymptotic distribution functions for these and a
number of related tests. Using these, empirical workers can easily calculate
approximate P values for a large number of commonly used tests.

The simplest unit root tests are DF tests. Suppose we wish to test the
null hypothesis that the series y; has a unit root. Then DF tests may be
based on OLS estimates of any of the following regressions:

(1) Ayt = (= 1)ys—1 + uy

(2) Ayt = Bo+ (a— 1)ys—1 + u;

(3) Ays = fo + b1t + (o — 1)ys—1 + uq

(4) Ays = Bo + it + Pat® + (a — Dyi—1 + uy,

where Ay; = y; — y¢—1, t is a linear time trend, u; is an error term, and
a is a parameter that equals unity under the null hypothesis. There are
two types of DF tests, 7 tests and z tests. For the former, the test statistic
is the ordinary ¢ statistic for & — 1 to equal zero, and for the latter it is
T (the sample size) times & — 1. I shall refer to the 7 statistics based on
equations (1) through (4) as T, Tc, Tet, and 7.4, respectively, and to the
corresponding z statistics as zne, z¢, 2ct, and zqe. The subscripts stand
for “no constant,” “constant,” “constant and trend,” and “constant, trend,
and trend squared,” respectively. This notation is not entirely standard,
but it is much easier to remember than other notations that are commonly
used.

Each of equations (1) through (4) will be appropriate under different
assumptions. Equation (1) makes sense for & < 1 only if y; has (population)
mean zero. It is therefore hard to imagine ever using (1) with economic
time series data. The other three equations are less restrictive. For each
of them, the 3; coefficient with the largest value of j must be equal to
zero under the null hypothesis, since otherwise the series y; would be of a
different order under the null and alternative hypotheses. Thus (2) allows
Y+ to have a nonzero mean, (3) allows it to have a trend, and (4) allows it
to have a trend that changes over time, under both the null and alternative
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hypotheses. Equation (4) is less commonly encountered than equations

(2) and (3), but it may well be a plausible specification in some cases, as
Ouliaris, Park, and Phillips (1989) have argued.

Each of the eight test statistics defined above has a different, nonstan-
dard asymptotic distribution that does not depend on the u;’s being either
normally distributed or homoskedastic. The assumption of serial indepen-
dence is essential, however. The easiest way to relax this assumption is to
use ADF 7 tests, in which enough lags of Ay; are added to equations (1)
through (4) to whiten the residuals. The 7 statistics, computed as ordinary
t statistics, remain asymptotically valid in the presence of serial correlation
when this is done, provided the number of lags of Ay; is allowed to increase
at an appropriate rate. The usual z statistics are not valid, however, and
since it is relatively difficult to compute valid ones, ADF z statistics are
rarely used. A second approach is to use “nonparametric” 7 or z tests, as
proposed by Phillips (1987) and Phillips and Perron (1988). These tests
turn out to have exactly the same asymptotic distributions as the corre-
sponding DF and ADF tests.

Engle and Granger (1987) showed that tests of the null hypothesis that
two or more integrated time series are not cointegrated can be performed
in much the same way as unit root tests. Suppose that Y denotes a T x k
matrix of observations on k time series that are believed to be I(1) and
may be cointegrated. Then if y; denotes one column of Y, Y; denotes
the remaining k¥ — 1 columns, and X denotes a matrix of nonstochastic
regressors such as a constant and possibly one or more trend terms, we can
always use OLS to estimate the equation

(5) Y1 = XB+ Yim +v.

If the variables in Y are cointegrated, equation (5) is a cointegrating equa-
tion and the error vector v should be stationary. If they are not coint-
egrated, however, ¥ must have a unit root. Thus the null hypothesis of
noncointegration may be tested by using a DF or ADF test on the residu-
als from OLS estimation of (5). For the former case, the test regression is
simply

(6) Ay = (a — 1)D4—1 + residual,

where 7y denotes the ¢*! residual from OLS estimation of equation (5),
and Ad; = Uy — U4—1. Notice that X, is not included in this regression.
Including it would make no difference asymptotically and little difference
in finite samples. Tests based on (6) are called Engle-Granger or EG tests.
When there is serial correlation, lagged values of Ay must be added to the
right-hand side of this equation to whiten the residuals, and the resulting
tests are called Augmented Engle-Granger or AEG tests.
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The asymptotic distributions of the EG and AEG 7 tests computed
in this way depend on k, which is defined as one more than the number of
elements of 7; that have to be estimated. This may be less than the number
of possibly cointegrated variables if some elements of ; are known. They
also depend on the form of the matrix X, which will typically consist of
a constant, a constant and a linear trend, or a constant, a linear trend,
and a quadratic trend, by analogy with (2) through (4). These asymptotic
distributions are not the same as those of the DF and ADF tests, unless no
elements of 7); have to be estimated, so that £ = 1. Phillips and Ouliaris
(1990) have proposed nonparametric 7 and z tests based on regression (6).
They have the same asymptotic distributions as the corresponding EG and
AEG tests.

It is clear from the above discussion that the asymptotic distributions
of the statistics which I will call 7.(k), zc(k), Tct(k), 2ct(k), Teee(k), and
zctt(k) for k = 1,2,..., are of considerable theoretical and practical inter-
est. Those of the statistics Thc(k) and zp.(k) are of theoretical but not
practical interest. Nevertheless, there exists at present no easy way for ap-
plied workers to obtain these distributions. A few tables of accurate critical
values for the unit root case may be found in Fuller (1976), while Engle and
Yoo (1987) and Phillips and Ouliaris (1990) provide some rather inaccurate
critical values for the cointegration case. MacKinnon (1991) provides rea-
sonably accurate critical values for the 7, and 7. tests only. It is possible to
compute the asymptotic distributions of z statistics analytically, as Nabeya
and Tanaka (1990) do for the unit root case, but the methods employed are
not at all easy.

In this paper, I obtain simple approximations to the asymptotic distri-
butions of the statistics 7.(k), zc(k), Tct(k), 2ct(k), Teee(k), and zcee(k) for
k =1,2,...,6. Results are also obtained for 7,.(k) and zn.(k), but since
those test statistics are of no practical interest, they are not reported to
save space. The first step is to use a very extensive series of Monte Carlo
experiments to estimate a large number of points on the finite-sample dis-
tributions of the test statistics for a number of finite sample sizes. Then,
following MacKinnon (1991), response surface regressions are used to ob-
tain the corresponding points on the asymptotic distributions of the test
statistics. All of this will be discussed in Section 2. Asymptotic distri-
bution functions for many of the statistics will be presented graphically in
Section 3. Finally, simple approximations are fit to these points, in order to
make it possible to calculate approximate P values. These approximations
will be presented in Section 4.

The use of Monte Carlo experiments to obtain asymptotic distribution
functions is somewhat unusual. However, this approach has several advan-
tages over alternative approaches such as those used by Perron (1989) and
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Nabeya and Tanaka (1990). The latter approaches both depend on ana-
lytical results that will be different for each of the 48 test statistics dealt
with in this paper. The approach used by Nabeya and Tanaka works only
for z statistics, and has been applied by them only to the zp.(1), 2z.(1),
and z.(1) statistics. The approach used by Perron requires rather heavy
asymptotic theory, but still requires extensive Monte Carlo experiments to
approximate the asymptotic distribution functions. In contrast, the Monte
Carlo approach used in this paper works for any test statistic that converges
to some asymptotic distribution at an appropriate rate. It is conceptually
simple and reasonably easy to implement, provided enough computing re-
sources are available.

It might well be argued that finite-sample distributions would be more
useful than asymptotic ones. In fact, MacKinnon (1991) presented response
surface estimates that can be used to obtain finite-sample critical values for
any sample size, and the response surfaces estimated in this paper could
be used in the same way. However, finite-sample critical values, like any
finite-sample results for unit root and cointegration tests, depend critically
on very strong assumptions about the error terms of the test regressions.
As Gregory (1992) and others have shown, deviations from the assumptions
of homoskedasticity and serial independence can affect the finite-sample
distributions of unit root and cointegration tests quite severely, and the
direction of the effects is not at all easy to predict. The only distributions
that do not depend on nuisance parameters are the asymptotic ones that
are calculated in this paper.

2. Monte Carlo Experiments

The results of this paper were obtained from a very extensive set of
Monte Carlo experiments. Because the objective was to obtain accurate
estimates of asymptotic distributions, the design of the experiments was
somewhat unusual. In particular, the total number of replications was ex-
tremely large. In order to make it feasible to store and sort the experimental
results for several different test statistics at once, however, the number of
replications in a single experiment was limited to 50,000. This number is
large enough that any bias in estimating quantiles should be negligible, but
it is not nearly large enough for a single experiment to yield accurate results.
For example, in 100 different experiments, each with 50,000 replications,
estimates of the .01 critical value for the unit root 7. test for T' = 100 varied
from —3.455 to —3.532, with a mean of —3.497 and a standard deviation
of 0.017. Thus there is evidently quite a bit of experimental randomness in
the results of a single such experiment.



Two different programs were used to run the experiments. All eight
unit root test statistics (four 7 tests and four z tests) were computed to-
gether using one program, and all forty cointegration test statistics (eight
different tests for each of five values of k) were computed together using
another. The data for both sets of experiments were generated by indepen-
dent random walks with NID errors. For each sample size, 100 experiments
were done for the unit root tests, and 50 experiments were done for the
cointegration tests. The number of experiments was less in the latter case
because computation costs were much greater, and experience with the unit
root case had shown that accuracy would still be adequate.

The choice of how many sample sizes, and which ones, to use in the
experiments was somewhat arbitrary. Small values of T involve lower com-
putational costs than large ones but provide less information about the
asymptotic distributions of interest. At least three different values of T
must be used, because the response surfaces have three parameters. It is
highly desirable to use more than three values of T, of course, since that
makes it possible to perform specification tests. However, it would have
been inconvenient to use a very large number. In the end, 14 different val-
ues of T' were used: 50, 60, 75, 100, 125, 150, 200, 250, 300, 400, 500, 750,
1000, and 1250. Thus the total number of replications was 70 million for
the unit root tests and 35 million for the cointegration tests.

The amount of computation required to perform all these experiments
was substantial but by no means unreasonable by today’s standards. Only
about 190 hours of CPU time were required on an IBM RS/6000 Model 550
workstation. This is roughly equivalent to 2000 hours on a 486/33 personal
computer or 6000 hours on a 386/33. Disk storage could have been a greater
problem than processor time, because storing 8 times 70 million unit root
test statistics plus 40 times 35 million cointegration test statistics would
have required an enormous amount of disk space. Therefore, no attempt
was made to store the actual test statistics. Instead, for each experiment of
50,000 replications, 199 estimated quantiles (.005,.010, .. .,.990,.995) were
calculated and stored.! This strategy dramatically reduced the disk storage
requirements to only about 70 megabytes.

The estimated finite-sample quantiles from the Monte Carlo experi-
ments were used to estimate response surfaces in which the quantiles of
the asymptotic distributions of the various test statistics appear as para-
meters. Consider the estimation of the pt* quantile for some test statistic.
Let ¢?(T;) denote the estimate of that quantile based on the i*! experiment,

1 The .001,.002,...,.009 quantiles were also calculated, because the left-hand
tail is the most interesting part of the distribution, but these were not used
in estimating the approximate distribution functions discussed in Section 4.
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for which the sample size is T;. Then the response surface regressions have
the form

(7) ¢P(Ti) = Boo + ST + BT % + 65

The first parameter here, 8, is the p** quantile of the asymptotic distri-
bution. It is what we are trying to estimate. The other two parameters
allow the finite-sample distributions to differ from the asymptotic ones and
to approach them as the sample size increases. The functional form (7) was
determined empirically in MacKinnon (1991). As will be explained below,
there is strong evidence that it fits well. However, various other functional
forms, involving terms such as T;7'/2 and T;73/2, were also tried. These
sometimes performed about as well as (7), but never performed substan-
tially better. In many cases, the estimate of 8, was small and insignificant,
but it was retained for all the response surfaces because it was highly sig-
nificant for some of them.

Equation (7) was estimated 199 times for each of 48 different test stat-
istics. There were 1400 observations for each of the unit root tests and 700
for each of the cointegration tests. Although the ¢;’s are certainly correlated
for adjacent values of p, there is no reason not to use single-equation estima-
tion methods, because the same regressors always appear on the right-hand
side of (7). Because each experiment involved so many replications, the ran-
dom error terms €;, which arise from experimental error, were quite small,
and the response surfaces therefore fit extremely well. In this circumstance,
almost any sensible estimation method would have yielded essentially the
same results. Because there was some evidence of heteroskedasticity (quan-
tiles tended to be estimated more precisely for larger values of T), I chose to
use a form of GMM estimation (Hansen, 1982). The estimation technique
that was used is a variant of the one proposed by Cragg (1983). Using
matrix notation, we can rewrite (7) as

q=XB+e, E(e') =N,

where ¢ is a vector of 700 or 1400 observations on ¢?(T;), X is a matrix
with three columns having typical elements 1, T;"', and Ti“2, and §2 is a
diagonal covariance matrix. Let Z denote a matrix of 14 zero-one dummy
variables, corresponding to the 14 different sample sizes. These may be
thought of as instruments, although in this case the regressor matrix X
lies entirely in the subspace spanned by the columns of Z. Then Cragg’s

GMM estimator can be written as

(8) B=(X'2(2'022)'2'X)"'X'2(2' 22)2q,



where §2 is a diagonal matrix, the principal diagonal of which consists of
the squared residuals from an OLS regression of ¢ on Z.

Because the columns of the Z matrix are dummy variables, the esti-
mator (8) is extremely easy to compute. There are two steps. The first step
is to regress ¢ on Z. This simply involves computing the sample means §7
of the ¢P(T;)’s for each of the 14 different values of 7. At the same time,
one computes the estimated standard error 7 of each §%.. The second step
is to run a weighted least squares regression with 14 observations, in which
the §4’s are regressed on 1, T~!, and T2, using the inverses of the &7’s
as weights. This regression may be written as

(9) 43/861 = Boo(1/67) + BL(T ™ /67) + Bo(T % /6T) + vr.

It is easy to verify that this procedure yields B as defined in (8). The
covariance matrix of 8 may then be estimated by 1/s? times the usual
covariance matrix from OLS estimation of (9), where s? is the OLS estimate
of the variance of vr. Since that variance is actually unity, it makes no sense
to estimate it in this case.

In addition to accounting for heteroskedasticity, this GMM estimation
procedure automatically generates a statistic for testing the specification of
the response surface equation (7). The objective function that is minimized
by (8) is the quadratic form

(10) (¢-XB)'2(2'22)"" 7' (¢ - XB).

The value of this objective function is just the sum of squared residuals
from regression (9). Standard results about GMM estimation imply that,
under the null hypothesis that (7) is a correct specification, expression (10)
is asymptotically distributed as x?(11). There are 11 degrees of freedom
because there are 14 instruments and 3 parameters.

The GMM specification test statistic (10) provides a simple way to
test the functional form (7) against the very general alternative that the
conditional mean ¢F. varies in any imaginable way with T', while allowing
the variance of §. around that mean, 0%, to differ for every 7. Because
the experiments involved so many replications, the ¢2.’s were very small,
and these tests were consequently very powerful. To illustrate this point, I
deliberately introduced an error into the data for T' = 500 for 7.¢(1). When
all the .05 estimated critical values were increased by 0.01 for this sample
size only, the value of the GMM test statistic rose from 3.16 to 125.79. The
former value is not significant at any level, since it is well below the mean
of the x2(11) distribution, while the latter exceeds any imaginable critical
value for that distribution. Thus the GMM specification test appears to
be able to detect even quite small discrepancies between the data and the
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response surface postulated in (7). The results of the GMM specification
tests for all 48 x 199 = 9552 sets of estimates will be discussed below.

The Monte Carlo experiments used a great many pseudo-random num-
bers, and I have not yet said anything about the random number generator
that was used. Initially, I simply used a good multiplicative congruential
generator, one of the ones suggested by L’Ecuyer (1988). This generator
worked satisfactorily when I used it in MacKinnon (1991). However, when
(7) was estimated using a full set of Monte Carlo results, the GMM test
statistics were disturbingly high. Most of them exceeded 24.73, the .01 crit-
ical value for the x2(11) distribution, and many of them exceeded 31.26, the
.001 critical value. I initially thought that the response surface regression
might not fit satisfactorily for small values of T. However, omitting smaller
values of T from the regression did not improve the results. Instead, to my
surprise, omitting larger values of T' did improve them.

The problem, of course, was that the random number generator I was
using was not capable of generating enough different pseudo-random num-
bers. Like all good multiplicative congruential generators that use 32-bit
signed integers, it had a period of about 2.15 x 10°. After that many
numbers had been generated, the same sequence was reappearing. But
for T = 1250, the largest sample size, the unit root experiments required
6.23 x 10° numbers, and the cointegration experiments required 18.75 x 10°
numbers. Thus, for the larger sample sizes, the results were not indepen-
dent across the 50 or 100 experiments, and the §7’s were not as accurate
as their estimated standard errors, the d1’s, indicated. As a consequence,
the GMM test statistics were too large.

To test this explanation, I redid some of the unit root experiments
using a much inferior random number generator, one of the portable ones
with a period of less than 10° discussed in Press, Flannery, Teukolsky, and
Vetterling (1986, Chapter 7). Even though the number of replications was
relatively modest (50 experiments for each sample size, with only 10,000
replications each), I obtained GMM test statistics that were absolutely
enormous, between 10% and 10%. This result confirmed that the GMM test
statistics have excellent power to detect a poor random number generator.
It also showed that the generator I used originally, although inadequate,
was not nearly as bad as it could have been.

The solution I adopted was to use two different pseudo-random num-
ber generators, combined in a somewhat unusual way. Both generators
were taken from L’Ecuyer (1988). One had a multiplier of 40,692 and a
modulus of 2,147,483,399, and the other had a multiplier of 40,014 and a
modulus of 2,147,483,563. The two generators were started with different
seeds and allowed to run independently, so that two independent uniform
pseudo-random numbers were generated at once. A modified Box-Muller
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procedure was then used to transform these two uniform variates into two
N(0,1) variates.? Because each generator has a different modulus, the fact
that each sequence of uniform variates will recur after roughly 2.147 x 10°
iterations does not imply that the same sequence of N(0,1) variates will
do so, since the uniform variates from the two generators will be paired
up differently each time the same sequences of uniforms reappear. The fi-
nal results of the GMM specification tests, which will be discussed shortly,
confirm that the combined generator does indeed work well.

Because there were 48 different test statistics and 199 quantiles for
each, the response surface regression (7) was estimated 9552 times. It
would not be possible to present all these results here. However, to give
the flavor of the results, here are estimates for two different test statistics
at p = .05:

For 7,4(1) : ¢% = —3.41064 — 4.4755 T~ — 4.9224 T2

(0.00045) (0.1389) (7.1711)
SSR = 3.155
For z¢4(1) : ¢% = —21.7100 + 128.134 T~! — 483.787 T2
(0.0055)  (1.545) (76.785)
SSR = 7.978

Estimated standard errors are in parentheses, and SSR is the sum of squared
residuals from the weighted least squares regression (9), which is the GMM
test statistic. Notice that T2 is insignificant in the regression for 7¢(1)
but highly significant in the regression for z,:(1). This term was generally
more significant for the z tests than for the 7 tests, although it was often
significant for the latter as well.

It is possible to calculate asymptotic critical values analytically for z(1)
tests, and a few such values have been published in Nabeya and Tanaka
(1990). It is of interest to compare these true values with the estimated ones
obtained from regression (7). As can be seen from Table 1, the estimated
critical values are extremely close to the true ones, and the magnitudes of
the discrepancies between them are entirely consistent with the estimated
standard errors of the former. This appears to provide strong evidence that
the technique used in this paper works well, at least for the z(1) tests.

2 This procedure is described in Press, Flannery, Teukolsky, and Vetterling
(1986, Chapter 7). Note that not every pair of uniform variates yields a pair
of normal variates. Approximately 22% of the time, the latter cannot be
computed and the uniform variates have to be discarded. Thus the combined
generator will produce about 3.35x10° N (0,1) variates before the individual
generators start to cycle.



Table 1. True and Estimated Critical Values for z Tests

.01 True .01 Est. .05 True .05 Est. .10 True .10 Est.

Zne —13.6954 —13.6827 —8.0391 —8.0352 —5.7137 —5.7112
(0.0096) (0.0038) (0.0025)

ze —20.6259 —-20.6207 —14.0936 —14.0927 —-11.2506 —11.2469
(0.0105) (0.0047) (0.0033)

Zct —29.3586 —29.3763 —21.7112 -—21.7100 —18.2453 —18.2388
(0.0114) (0.0055) (0.0039)

The most convincing evidence that the response surface regression (7)
fits acceptably well comes from the GMM specification test statistics. Since
there are 9552 of these, it is not feasible to report them individually. In-
stead, they are summarized in Table 2. Asymptotically, these statistics
should follow the x2?(11) distribution. Under that distribution, they should
have mean 11 and variance 22, and they should exceed their nominal .05
critical value (which is 19.675) 5% of the time.

Table 2. Descriptive Statistics for GMM Statistics

Cases Number Mean Variance Rejections (.05)
All test statistics 9552 12.04 26.60 .083
Unit root statistics 1592 10.98 22.38 077
7(1) statistics 796 10.88 19.69 .065
z(1) statistics 796 11.08 25.05 .089
All cointegration statistics 7960 12.25 27.17 .085
(k) statistics, k > 2 3980 11.61 23.10 .061
z(k) statistics, £ > 2 3980 12.89 30.43 108

It can be seen from the table that the GMM statistics conform remark-
ably well, if not quite perfectly, to the x2(11) distribution. If the statistics
had been independent, it would have been easy to test whether the numbers
reported in the table differ significantly from the corresponding theoretical
values. However, they are emphatically not independent. First of all, for
any given test statistic, for example, the 7.(2) test, the GMM statistics
tended to be very similar for neighboring values of p. Secondly, one set of
random numbers was used to generate all 8 unit root tests, and another
set was used to generate all 40 cointegration tests, so that there must also
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be some dependence across test statistics. In these circumstances, conven-
tional tests on the means, variances, or rejection frequencies of the GMM
test statistics would be invalid, and would be likely to overreject the null
hypothesis.

At least part of the (relatively modest) discrepancy between the empir-
ical and theoretical distributions of the GMM statistics can be attributed
to finite-sample effects. A small Monte Carlo experiment demonstrated
that the GMM statistics for regression (7) could be expected to overreject
the null hypothesis to some extent, even when it was true, especially when
there were only 700 observations. This effect might well be great enough
to account for the discrepancies observed for the unit root tests and for
the 7(k) tests for k = 2,...,6. It was not large enough to account for the
discrepancies observed for the z(k) tests for k = 2,...,6, however. In the
case of the latter, there does appear to be some evidence that the func-
tional form of (7) may not be quite correct. However, it still provides an
extremely good approximation. If it did not, the GMM test statistics would
on average have been very much larger than they were.

3. Asymptotic Distributions

The primary purpose of this paper is to obtain simple formulas that
may be used to compute approximate P values. That will be done in the
next section. The results from the response surface regressions of Section 2
may be used to plot the asymptotic distributions of the various unit root
and cointegration test statistics. The shapes of these distributions are of
considerable interest in their own right, and knowing what they look like
will be useful for obtaining approximations. Therefore, this section presents
results from some of the response surface regressions in graphical form.

Each of Figures 1 through 4 plots the cumulative distribution functions
of several unit root or cointegration test statistics. These are obtained by
Joining the estimates of B, from the response surface regressions (7) for all
available values of p.> No smoothing at all was done. Nevertheless, because
the estimates of S, are so accurate, all the curves appear perfectly smooth
to the naked eye.

Figure 1 shows the asymptotic c.d.f.’s of the four unit root 7 statistics.
For comparison, the c.d.f. of the standard normal distribution is also shown.
Two things are evident from the figure. First, as we know from the critical

3 In addition to the 199 values of p from .005 through .995, the values p =
.001,.002,...,.010 were used in drawing all the figures. This means that the
left-hand tail is slightly more accurate than the right-hand tail for all the
distributions.
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values that have been tabulated, adding more nonstochastic regressors to
the DF test regression causes the asymptotic c.d.f. to move to the left. Sec-
ond, the distribution of 7. is somewhat asymmetrical. As more regressors
are added, the c.d.f.’s become progressively more symmetrical and steeper.
Thus the distribution of 7 looks as if it might be approximately normal,
with mean roughly —2.63 and standard deviation roughly 0.72. In fact, as
we shall see in the next section, this is a pretty good approximation, except
in the tails.

Figure 2 shows the asymptotic c.d.f.’s of the four unit root z statistics.
These look very different from their 7 counterparts, since they are grossly
asymmetrical and have very long left-hand tails. As more regressors are
added to the test regression, all the c.d.f.’s move to the left, and they
become somewhat less asymmetrical, but they also become flatter rather
than steeper. Moreover, it is clear that a normal approximation will never
be a good one.

Figure 3 shows the asymptotic c.d.f.’s of the six statistics 7¢¢(1) through
Tct(6). These look very similar to each other, except that they move steadily
to the left as k increases. The effect of adding another stochastic regressor
is qualitatively similar, but not identical, to the effect of adding another
nonstochastic one. Much the same can be said about the asymptotic c.d.f.’s
of the six statistics 2z.¢(1) through z.(6), which are shown in Figure 4.
These are highly asymmetrical for all values of k¥ and have very long left-
hand tails.

4. Convenient Approximations

In this section, I obtain simple formulas that may be used to compute
asymptotic P values for the ¢, ct, and ctt varieties of the 7 and z tests
for k = 1,...,6. To save space, I omit the nc varieties, which are of
no practical interest. There are, in principle, many different ways to use
estimated quantiles to obtain approximate c.d.f.’s. The one that I use seems
to work reasonably well, but I do not claim that it is optimal in any sense.

Figures 1 and 3 suggest that, if one wishes to approximate the asymp-
totic distributions of 7 statistics, the normal distribution is a good place to
start. Suppose that X is a random variable distributed as N(u,0?). Then,
if p = Pr(X < z), we know that

(11) P=‘I’(($—M)/U) =<I’(’70 +mz),

where ®(-) denotes the cumulative standard normal distribution function,
Yo = —p/o, and v; = 1/0. Suppose we knew two or more points (z;, p;)
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on the c.d.f. of X. Then we could use (11) to calculate the parameters of
the distribution. The easiest way to do so would be to write

(12) ®~!(p;) = 70 + maz;.

The parameters vy and 4; could then be found by solving two linear equa-
tions in two unknowns, the two equations being equation (12) for j = 1, 2.

The preceding discussion has made two assumptions that are untenable
in the present case. The first of these is that the functional form of the c.d.f.
to be estimated is precisely that of the normal distribution. One obvious
way to relax this assumption is to add additional terms in powers of z; to
equation (12). The third term would be 729!:?, the fourth term would be
'ygx‘;, and so on. Ideally, the number of such additional terms should be
quite small.

Another possibility would be to use some sort of spline regression; see
Poirier (1976) and Eubank (1984). The idea would be to divide the domain
of X into a number of segments and estimate different approximations for
each segment, constraining them to be equal at the “knots” where the
segments meet. The problem with this spline approach is that there may
well be quite a few parameters to estimate, and it would therefore be very
difficult to write down the results for 36 different test statistics in a compact
form.

The second untenable assumption is that points on the c.d.f. of interest
are known exactly. Although the Monte Carlo experiments discussed in
Section 2 yielded remarkably accurate estimates of 199 points on the c.d.f.’s
of each of the 7 statistics, these estimates do contain some experimental
error. Instead of points (zj,p;), we actually have points (z7,p;), where

* * and e is an error term. Thus, if equation (12) held exactly,

Tj =Tjte€; j

we would have
(13) 37 (pj) = 10 + Mz — e} =0 + M1z} + e

This has the form of a linear regression model. Unfortunately, it is a model
that has several statistical problems. First, there will inevitably be some
heteroskedasticity, because the e}’s do not have constant variance. How-
ever, since z} is just the estimate of B from equation (9) for the p}h
quantile, consistent estimates of the variances of the e}’s are available. Sec-
ond, there will inevitably be serial correlation, because the estimates of S
for nearby values of p will surely be correlated. This problem is harder to
deal with, because it is not obvious that the serial correlation would be
expected to follow any standard ARMA process.

A third problem is that the regressand of equation (13) is non-

stochastic, while the regressor z} is stochastic and correlated with the error
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term ej. At first glance, this seems to be an extreme form of the classi-
cal errors-in-variables problem. Nevertheless, because the standard errors
of the e}’s are extremely small, we can simply ignore this problem. The
estimated standard errors vary a certain amount, tending to be larger for
values of p close to 0 and 1, but the largest ones are less than 0.0022, and
most of them are between 0.0002 and 0.0005. Let y denote the vector of
observations on ®~!(p;), * the vector of observations on z}, @ the corre-
sponding vector of unobserved z;’s, M, the projection matrix that takes
deviations from the mean, and e the vector of error terms. Then the OLS
estimate of v; from regression (13) is

1= (") M2*)" (=) M.y
= ('M,z+e'M,e + 2a:'MLe)—1(:c' .y +e'M,y).

It is easy to evaluate the second line here, and its counterpart for ~g, for
sensible values of the parameters and the variance of the e;’s. When one
does so, one finds that any bias in the estimates of vy and ~; is tiny, generally
less than 0.00001 in absolute value for both parameters. Essentially, this
is because e’ M, e is very much smaller than &' M,z. Thus it appears to
be quite safe to ignore the errors-in-variables problem and simply estimate
some variant of equation (13).

The fact that the error terms are so small can be used to justify ig-
noring the other two problems as well. Taking heteroskedasticity and serial
correlation into account would yield more efficient estimates, of course. But
efficiency is not much of a concern when the error terms are tiny. Never-
theless, I did in fact take heteroskedasticity into account by using weighted
least squares, with weights equal to the inverses of the estimated standard
errors of the e}’s. This is approximately correct even if higher-order terms
are added to the right-hand side of regression (13), as long as the coefficients
on those higher-order terms are small relative to 7;.

Even though the asymptotic distributions of the 7 statistics appear to
be approximately normal (see Figures 1 and 3), estimation of (13) does not
yield entirely satisfactory results. For example, letting 7 denote the value
of the test statistic and p the corresponding P value, here are some results
for 7.(1):

(14) & !(p) = —1.8951 + 1.2236 T
(0.0074)  (0.0043)

R?=0.9977 DW =0.002
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(15) ®'(p) =—1.7760 + 1.0448 7 — 0.0578 72
(0.0066)  (0.0083)  (0.0026)

R? =0.9993 DW = 0.006

(16) & !(p)=—1.7325 + 0.8898 7 — 0.1836 7> — 0.0282 73
(0.0039)  (0.0079)  (0.0056) (0.0012)

R? =0.9998 DW = 0.037

On the one hand, these equations all fit remarkably well, as evidenced by
extremely high R?’s (in terms of the weighted data). On the other hand,
they also have extremely low Durbin-Watson statistics, which suggests that
they are severely misspecified. The first two equations are certainly mis-
specified, since 72 and 73 are both highly significant in the third. So is the
third, because higher powers of 7 are highly significant when added to it,
and so, by a similar argument, are models that are much more complicated

than the third.

Although equations (14) through (16) are not satisfactory from a stat-
istical point of view, they might be perfectly satisfactory for some purposes.
Recall that equations like these will ultimately be used in the form of equa-
tion (11), with p expressed as ®(yo + 717 + +-+). The maximum absolute
error in estimating p (over the 199 values used) is 0.0143 for equation (14),
0.0072 for equation (15), and 0.0046 for equation (16). Errors of this magni-
tude might be entirely acceptable for many purposes. Results for equations
similar to (16) are therefore presented in Table 3. The column headed
|p — p| shows the maximum absolute error in estimating p. The maximum
error becomes smaller as k increases and as the number of nonstochastic
regressors increases. This confirms the visual impression, from Figures 1
and 3, that the asymptotic distributions of 7 statistics become closer to the
normal distribution in both cases.

One problem with equations like (16) as approximations to c.d.f.’s is
that, because they involve powers of 7, they inevitably break down for
sufficiently extreme values of 7. As 7 — —o0, p should tend to 0, and
as T — +00, p should tend to 1. But that is not what happens with the
approximations of which the coefficients appear in Table 3. Instead, there is
a fairly large negative value, Tmin, at which p achieves a minimum, say pmin,
and a positive value, Tmax, at which p achieves a maximum. The values of
Prmin, Tmin, a0d Tmax are shown in the last three columns of Table 3. These
approximations should obviously not be used when 7 < Typin Or T > Tmax.
In the former case, all we know about p is that it is close to 0, and in the
latter case, all we know is that it is close to 1.
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Table 3. Approximate CDF’s for 7 Tests

Statistic Y0 71 Y2 73 |p— 5|  Pmin Tmin  Tmax

(1) 1.7325 0.8898 —0.1836 —0.02820 .0046 .00002 —6.07 1.73
7e(2) 2.2092 0.6808 —0.2705 —0.03833 .0028 .00039 —5.74 1.03
7e(3) 2.7246 0.6720 —0.2545 -0.03256 .0020 .00026 —6.30 1.09
1e(4) 3.2776 0.7667 —0.2066 —0.02452 .0018 .00007 —7.09 1.47
7e(5) 3.8227 0.8783 -0.1617 —0.01817 .0015 .00001 —7.96 2.02
7¢(6) 4.3062 0.9499 -0.1353 —0.01455 .0011 .00000 —8.70 2.50

met(1) |2.6130 0.7831 —0.2828 -—0.04285 .0022 .00091 —5.51 1.11
met(2) | 3.0348 0.8084 —0.2317 -0.03125 .0019 .00029 —6.31 1.37
met(3) | 3.4954 0.8754 —0.1840 -—0.02271 .0016 .00005 —7.19 1.79
ret(4) |3.9904 0.9717 —0.1408 -0.01650 .0015 .00001 —8.11 2.42
ret(5) |4.4318 1.0233 -0.1183 -—0.01317 .0011 .00000 —8.90 2.91
ct(6) | 4.8639 1.0739 -0.1005 —0.01082 .0009 .00000 —9.63 3.44

mett(1) | 3.3784 0.9197 —0.2238 —0.03180 .0021 .00041 —6.24 1.55
ett(2) | 3.8109 1.0131 -0.1605 —0.02126 .0016 .00005 —7.23 2.20
mett(3) | 4.2292 1.0763 —0.1225 —0.01526 .0014 .00001 —8.21 2.86
Tett(4) | 4.6461 1.1291 -0.0973 -0.01163 .0011 .00000 —9.12 3.55
Tett(5) | 5.0308 1.1549 —0.0848 —0.00970 .0009 .00000 —9.86 4.03
Tett(6) | 5.41563 1.1863 —0.0736 —0.00820 .0008 .00000 -10.55 4.57

Using the results in Table 3 to compute asymptotic P values is very
easy. Given a value of one of the test statistics, say 7, one first verifies that
it is less than Tmax and greater than i, and then calculates

h=7+m7 477+ 737°

using the appropriate set of 4;’s from the table. One then calculates p as
®(h), the standard normal c.d.f. evaluated at h. In effect, we are computing
the P value for a standard one-tailed test of the null hypothesis that A > 0,
where h follows the standard normal distribution.

It is possible to make the errors in estimating p for the left-hand tail of
the distribution very much smaller at the cost of increasing them elsewhere.
Since the left-hand tail is the part of the distribution that is primarily of
interest, it may make sense to do so. Trial and error suggested that if
only the first 30 observations (for p = .005 to p = .150) were used, very
good results could be obtained from a model like (15) with only a constant,
7, and 72 as regressors. The results were good in the sense that R? was
essentially unity, and the maximum absolute error in estimating p within
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Table 4. Approximate CDF’s for 7 Tests when p is Small

* *

Statistic Yo 71 Y2 p T Tmin

Te(1) 2.1659 1.4412 0.03827 .495 —1.586 —18.83
7e(2) 2.9200 1.5012 0.03980 .380 —2.285 —18.86
7¢(3) 3.4699 1.4856 0.03164 .295 —2.877 —23.48
7c(4) 3.9673 14777 0.02632 .255 —3.330 —28.07
7e(5) 4.5509 1.5338 0.02954 .375 —3.399 —25.96
7¢(6) 5.1399 1.6036 0.03445 .480 —3.498 —23.27

Tet(1) 3.2512 1.6047 0.04959 .255 —2.657 —16.18
7ct(2) 3.6646 1.5419 0.03645 .265 —2.998 —21.15
et(3) 4.0983 1.5173 0.02990 .250 —-3.372 —25.37
Tet(4) 4.5844 1.5338 0.02880 .360 —3.447 —26.63
7et(5) 5.0722 1.5634 0.02947 480 -3.510 —26.53
7et(6) 5.5300 1.5914 0.03039 490 -3.763 —26.18

Tett(1) | 4.0002 1.6580 0.04829 .280 —-3.034 -—17.17
Tett(2) | 4.3534 1.6016 0.03795 .315 —-3.275 —21.10
Tett(3) | 4.7343 1.5768 0.03240 .310 -—-3.582 —24.33
Tett(4) | 5.2140 1.6077 0.03345 .535 —3.436 —24.03
Tett(5) | 5.6481 1.6274 0.03345 .920 —2.760 —24.33
Tett(6) | 5.9296 1.5929 0.02822 .325 —4.343 —28.22

the sample was extremely small (less than 0.0001 in all cases). The DW
statistics were always less than two, but were consistent with the amount
of serial correlation that could be expected to arise from the design of the
Monte Carlo experiments; they were never anything like as tiny as those
reported above. In many cases, 73 was still significant when added to these
equations, but not massively significant as it is in equation (16) above.
Moreover, adding it had little effect on the fitted values within the sample
and often made the equation fit worse outside the sample.

The results obtained from this approach are presented in Table 4.
These results are extremely accurate for small values of p, including values
less than .005 and greater than .150. Because Tyin is always very much
smaller in Table 4 than it was in Table 3, it is clear that these approxima-
tions should be reasonably accurate even for very small values of p. On the
other hand, this approach can yield quite inaccurate results for some large
values of p. The column labelled p* in Table 4 contains the largest value
of p for which the absolute error is less than 0.001, and the corresponding
value of 7 is found in the column labelled 7*. In most cases, practition-
ers should use the approximations in Table 4, because they are simpler and
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Table 5. Approximate CDF’s for z Tests

Statistic | 7o 7 2 X10% v3 X 10° 74 X 10° |p—p| Pmin  Zmin

z¢(1) 1.7157 0.5536 4.5518  2.2466 4.2537 .0045 .0084 —22.03
z¢(2) 2.2315 0.4164 2.2550 0.7765 1.0572 .0039 .0088 —30.87
2¢(3) 2.7220 0.3520 1.4065 0.3653 0.3819 .0024 .0070 —40.19
zc(4) 3.1785 0.3162 1.0217 0.2171  0.1876 .0020 .0060 -—48.61
2¢(5) 3.5856 0.2893 0.7802 0.1393 0.1019 .0015 .0047 -57.36
2¢(6) 3.9485 0.2675 0.6167 0.0947 0.0600 .0011 .0036 —66.16

zct(1) 2.7119 0.4594 2.3747 0.7488 0.9333 .0026 .0076 —32.85
zct(2) 3.0557 0.3899 1.6247 0.4241 0.4406 .0031 .0080 -—39.86
zct(3) 3.3848 0.3374 1.1303 0.2430 0.2108 .0026 .0071 —47.95
zct(4) 3.7066 0.2996 0.8238 0.1477 0.1080 .0018 .0053 -—57.01
zct(5) 4.0233 0.2730 0.6369 0.0981 0.0622 .0014 .0040 —65.84
zct(6) 4.3238 0.2522 0.5087 0.0684 0.0381 .0011 .0027 -—75.09

zett(1) | 3.4216 0.4170 1.6939 0.4203 0.4153 .0027 .0075 —41.18
zctt(2) | 3.6844 0.3631 1.2347 0.2622 0.2231 .0026 .0071 —48.29
zett(3) | 3.9298 0.3179 0.8967 0.1615 0.1177 .0018 .0055 —56.75
zctt(4) | 4.1861 0.2853 0.6822  0.1059 0.0672 .0015 .0044 —65.39
zctt(5) | 4.4458 0.2607 0.5377 0.0730  0.0419 .0012 .0033 -—74.23
zct¢(6) | 4.6932 0.2403 0.4306 0.0512 0.0253 .0012 .0021 -—84.21

more accurate for small values of p. However, if 7 > 7* and accurate results
are desired, it will generally be better to use the results in Table 3.

It was considerably harder to model the asymptotic c.d.f.’s of the z
statistics than those of the 7 statistics. This might be expected in view
of the rather strange shapes of the former that are evident in Figures 2
and 4. Results based on all 199 observations are presented in Table 5.
These are similar to those in Table 3, except that there are five regressors
(the constant, z, 22, 2®, and 2*) rather than four. Note that the values of
Y2, 73, and 4 printed in the table have been multiplied by 102, 103, and
105, respectively, in order to preserve precision while conserving space. As
before, the column headed |p — p| contains the maximum absolute error in
estimating p within the range from .005 to .995.

The approximations in Table 5 perform very badly for small values
of z. What happens is that p starts to increase rapidly as z declines below
some value. As a result, the smallest value of p that can be obtained is
significantly greater than zero. This value is shown in the column headed
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Table 6. Approximate CDF’s for 2z Tests when p is Small

Test Stat. do 61 82 83 p* z*
zc(1) 2.2142 —1.7863 0.3283 —0.07727 .220 —7.96
zc(2) 1.1662 0.1814 —-0.3671 215 -13.07

z¢(3) 6.6584 —4.3486 1.0471 -0.15011 .210 -18.14
zc(4) 4.6795 —2.0163 0.3368 —0.08044 .250 —21.67
z¢(5) 1.7428 0.9638 —0.5212 240 —-26.47
2¢(6) 2.0856 1.0550 —0.5424 275 —29.83

zct(1) 4.6476 —2.8932 0.5832 —0.09990 .245 —13.46
zct(2) 7.2453 —4.7021 1.1270 —-0.15665 .250 —17.65
zct(3) 5.7487 —2.8370 0.5578 —0.10078 .335 —19.78

zct(4) 1.6604 1.0375 —0.5338 245 —27.08
zct(5) 2.0060 1.1197 —0.5532 310 —29.67
zct(6) 2.1161 1.3046 —0.5846 275  —34.58
zctt(1) 4.4599 —1.8635 0.2126 —0.06070 .345 —16.27
zctt(2) 2.0864 0.5594 —0.4626 230 -23.34
zctt(3) 2.0062 0.8907 —0.5171 245 —27.19
zctt(4) 2.3870 0.9467 —0.5324 355 —28.05
zctt(5) 2.1998 1.2828 —0.5834 275 —35.02
zctt(6) 2.1803 1.5182 —0.6206 275 =39.17

Pmin, and the column headed zpj, shows the corresponding value of z. One
should evidently never use these approximations if z < zp;y.

As with the 7 tests, it is possible to model the left-hand tails of the
asymptotic distributions of the z tests quite accurately by using only the
observations for p < .150. Figures 2 and 4 suggest that the normal approx-
imation is not a very good one. Therefore, I used approximations of the
form

(17) p = ®(8o + 611og|z| + 62 log |2|* + 63 log |2|*),

which allow the left-hand tail to be considerably longer than that of the
normal distribution. This approximation does not work well for z close to
zero, but it does seem to work well for the left-hand tails. Equation (17)
was estimated by regressing ®~!(p) on a constant and powers of log |z|.
As before, this was a weighted least squares regression. If one assumes
that 2z is measured with error and that 62 and 63 are small relative to 6y,
the error term has variance §2/2? times the variance of the measurement
error. Therefore, the weight for observation j was equal to z; divided by
the standard error of €.
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The results of estimating equation (17) for the z., z¢¢, and 2.4 statistics
are presented in Table 6. To make these results easier to use, the coefficient
03 was set to zero whenever doing so did not appreciably affect the quality of
the approximation. In all cases, the maximum absolute error in estimating
p is no greater than 0.0001 for .005 < p < .150. As before, the column
labelled p* contains the largest value of p for which the absolute error is
less than 0.001, and the corresponding value of z is found in the column
labelled z*. It would be unwise to use these approximations if z were
much greater than z*. There is no column labelled zn;, because these
approximations behave as they should in the left-hand tail; that is, p — 0
as z — —oo. When z is very large and negative, the approximations will
say, correctly, that p is very close to zero.

5. Conclusion

The results of this paper make it very easy to compute asymptotic P
values for a number of common unit root and cointegration tests. Although
these results were obtained by means of Monte Carlo experiments, they
appear to be more than accurate enough for most purposes. For each
of 36 test statistics, two different approximations are given: one that is
reasonably accurate for .005 < p < .995 and one that is very accurate for
p < .150. For the former, any experimental error is swamped by the errors
of approximation that are inevitable when one tries to use relatively simple
functional forms. For both approximations, the discrepancies between the
(unknown) finite-sample distributions of various test statistics and their
asymptotic distributions will, in practice, generally be greater than any
inaccuracies that may have arisen from either source of error.
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Figure 1. Asymptotic Distributions of 7(1) Statistics
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Figure 2. Asymptotic Distributions of 2(1) Statistics
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Figure 3. Asymptotic Distributions of 7¢;(1) through 7.(6)
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Figure 4. Asymptotic Distributions of 2.(1) through 2.(6)
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