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Abstract

At each date, the two players play an R & D investment game "followed"
by a Cournot quantity setting game. Each player’s R & D investment augments
the common stock of technical knowledge and lowers goods production costs for
each player. Profits gross of R & D investment expenditures are quadratic in
the state (knowledge here) for each player. R & D investment costs are
assumed quadratic in each player’s investment. The Nash feedback and Nash
open-loop solutions differ in general with the feedback solutions being "more

competitive”, i.e., yielding lower production costs in the steady state.

* Thanks to E. Dockner for comments. An earlier draft was presented at the
Montreal meeting of the Society of Economic Dynamics and Control, June, 1992.
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Introduction

We extend the two stage duopoly R & D game to one in continuous time
with repeated forward looking play. At each date the two players play an
R & D investment game and the outcome of this play yields a technology for
goods production. Goods production "follows" in a Cournot game in
quantities, given the current technology at the same date. The two stages,
R & D investment by i followed by the quantity of output decision by i, of
Spencer-Brander [1983] and d’Aspremont-Jacquemin [1988] occur at each date of
the dynamic duopoly game. There are spillovers in R & D investment. Though
each player invests in R & D, there is only one stock of R & D at each date
and this stock defines each player’s current production cost. In other words
at each date, a dynamic R & D duopoly investment game is followed by a static
duopoly production game. With a linear market demand schedule, we have a
gross profit function quadratic in the state variable for each player.
Investment costs are treated as quadratic, leaving us with a quadratic
objective function for each player. This leads to the open-loop Nash and
feedback Nash solutions differing. We establish that the stock of R & D is
larger under the feedback Nash solution. It can be viewed as "more

competitive".

The Model
At each date t, the two players play an R & D investment game and
realize profits from a simultaneous "downstream" Cournot quantity "game" in

which current production costs depend directly on the outcome of the R & D



investment game. With a linear market demand curve, each player’s current
profits gross of R & D expenditure are quadratic in the R & D stock or state
of technology for production. We have then the inverted market demand
schedule p(t) = a« - q,(t) - q2(t), « > O where q;(t) is the current output of
firm i and p(t) is current market price of output. Firm i’s gross profit is
w; = p(t)g;(t) - Kq;(t) i=1,2
where K is the unit cost for producing output. (K will be lowered by
investment in R & D in the R & D investment game.) In a Cournot duopoly
"game" in quantities, each firm maximizes m; given q; parametric. This

yields equilibrium quantities

qi = a;K , « > K i=1,2
which in turn yields
w; = [K? - 2aK + ?]1/9 i=1,2 (1)

(which yields m; = qf).

At each date, firm i expends cI; + %I? on R & D where c is a
non-negative parameter. Each firm then maximizes

F; =m - cl; - 31 i=1,2 (2)
by choice of R & D intensity I;. These investments in new knowledge cause
the state of technical knowledge to improve or production costs Kq; with
state K to decline in

K=slA-1, -1, -K] (3)
where s is a parameter representing the speed of decline in K in response to
investments and A is a positive parameter. K can be thought of as the
inverse of the technical knowledge stock and I; is a flow of investment in
improved technical knowledge. Note that there is net and gross investment in
technical knowledge. Thus in a steady state (K=0), "replacement" investment

I, + Io = A - K is required. Investment in excess of this replacement level



is cost reducing for production. Given initial K,, investments {I}, {I.}
bring K(t) down to its steady state level. At that level we assume I?, I?
positive. We assume positive spillovers from i’s investment in R & D to j
via the commonality of stock K. We thus build in imperfect appropriability
as intrinsic, and symmetric in the sense that a player’s current investment

of a unit of I; has the same effect on K as the investment of a unit of Ij.

The Open Loop Case

In this case, the current value Hamiltonian for player i is
H = m(K) - cI; - 312 + mys[A - I, - I, - K] i=1,2

Necessary conditions are

HiIi=—c—Ii-mis=0 (4)
-m; (t) = -rm + gg - gg - ms (5)
and lim e "*m;(t) = 0 (8)
t->00
It follows that
m; (t) = Ife"(s*")(T't] (Z—Két) - z—g]dr (7)

From (7), we observe that m,(t) = my(t) since each has the same right hand
side. Thus I;(t) = Io(t) = I(t) from (4). We can differentiate (4) to get

ms and substitute in (5). This yields

i =-(r+s)(-c-1) + 235 - ggg (8)

Stationary strategies involve I = K = 0. 1In Appendix I, we sketch a result

on convergence of K, to K*¥. From (3) and (8) we obtain

-(r+s)c - % s(A-a)
I* = 5 (9)
r + § S
(r+s) (Av2c) - 222
K* = 5 (10)
r + § s



As s>, the speed of response of K to investments in R & D approaches

infinity (instant response). In this case (10) becomes

A+ 2c - é%
L - _ 8
K- = 5 (11)
9

This turns out to be the same value of K as would emerge in a static, Cournot
R & D game between our two players. That is, each player substitutes
K=A-1I; - I, from (3) into w;(K) and then maximizes m; - cI; - }I% with I;
treated as parametric. The solution value for K is the same as that in (11).
Thus the limiting value for K in (11) corresponds to the solution to a static
Cournot duopoly game in I, and I,. This conforms with our intuition.1 of
central interest is the comparison of the steady states under feedback

strategies with the open loop case above.

Feedback Nash Strategies

To find feedback strategies I;(K(t), t) we form the value function for
each player and solve by dynamic programming:

) 2_ 2
r‘V'(K) = max {%

-cly - 31 + sWIA - I; - I - K]}
I;

i=1, 2; i#j (12)
where V} refers to the derivative of V'( ) with respect to K. Maximization
in (12) with respect to I; yields

I; (K) = -[c + sV{] i=1,2 (13)

When we substitute from (13) in (12), we obtain

There is an "opposite" static duopoly game in which each player treats K as
parametric. In this case I = I, = -c and K= A + 2c. In (10) when lig is
taken, we obtain this value of K. r



2_ 2 iy2
Vo= K 2gK+a + (c + sVi)e - (C+Sgg)

+ sVk[A - K + 2c + sV} + sV{] i=1,2; i#j (14)
Note that both Vi and V§ appear in (14). These are the intrinsic
interdependencies between each player’s optimization.

We propose "candidate" solutions V'(K) for (14) and proceed to solve.
Since our "candidate" solutions turn out to "work", we obtain solutions to
(12) which yield steady state Nash feedback values for I;, I,, and K. Our
"candidate" for V'(K) is

2

VI(K) = & - ¢:K + g i=1,2 (15)

which yields
Vi = wiK - ¢; i=1,2 (16)
Substitution from (15) and (16) in (14) yields, after some simplification
(see Appendix II),
ré - r¢;K + ry, % = Kz_zg—sz + [3s?u; - swy + sPuipylKP
+ [s¢: - sPpiwi - sPPiu; - sPPsu; + spi[A+2c]]K
+ 1c? + (%S¢i + s¢; - (A + 20))s¢,
i=1,2; i#J (17)
A solution requires that the left and right hand sides of (17) must be equal
for all values of K. In particular, the coefficients on K? on each side of
(17) must be equal, and the coefficients on K, and the constants. These
relationships (requirements) on parameters in (17) allow us to solve for
values of &;, ¢;, and u; (i=1,2) which satisfy (17) and in turn define the
value functions in (15) exactly. The (13) yields solution values for I; and
I,. Using (17) we obtain (Appendix III):
(2s+r)+ [(Zsﬂ')z-gsz]%

= i=1,2 (18)
6s?

and



-uis(A+2c)+gg

¢ = i=1,2 (19)
s-3u;s+r
We also show that p; = p, and that "the minus case" in (18) is valid for our
problem.

Substitution from (16) in (3) and solving for the case of K = 0, yields

K = A+2c-2s¢

1-2ps (20)

where we have now removed subscripts on ¢ and u. Clearly in light of (20),

s¢ and sy are of interest. Now from (18)

1
(2s+r)-[(28+r)%-57]2

Su = (21)
6s
2 .. 1|vVv3 -1
and 1lim sp = 3 |/
s-500 / 3

which we denote by 8. From (19) we obtain

-us(A+2c) + g%
s¢ = T —sep e T (22)
s
and
-B(A+2c) + gg
lim s¢ = 1-38

s->00

which we denote by ¥. Then
A+2c-2y (A+2c)(1-B) - ég
lim K = 48— = ~(1-3p)(1-28)

sS->00

4 6 +VvV 3

o 9
(A + 2c) - 3 (23)
6 +VvV 3 v3 +2

2 There is the problem of K going negative as s » w. (Kamien and Fershtman
[1987] suffers from this problem also.) E. Dockner has proposed
restricting attention to limiting cases of s » 0. We will report on this
in the future in a somewhat different model.



We can label the right side of (23) Kf where F is for feedback. K" is to be

compared with its open loop counterpart K' in (11). There,
Lo _ 4al9
K- = [(A + 2c¢) 9]5.

There are non-negativity requirements on K- and K as well as on the

corresponding values for I in A - 2I = K. For K- = 0, (A + 2c) must be

4o

greater than or equal to 9 For the corresponding I = 0, we require K- = A
or a = A + g c. The two non-negativity requirements yield
9 9 9
A+Zcsas 2 A+ 5 c- (24)
There is a corresponding relation on A, ¢ and « for Kf =z 0 and the related I.

However, (24) will suffice in our analysis here of K" and Kf. We divide the

K" and K relations by A + 2c to get

K* 9 4(a
A+2c ~ B 5[A+Zc] (25)

- N
A+2c B [A+2 ]
N PRV B PRV [

We sketch (25) and (26) in Figure 1.

KF

(26)

K
A+2c K~
A+2c
A
A+2c

v

A+2c

Figure 1



The non-negativity condition on Kf defines point b in Figure 1. Inspection
of the relations defining K* and K* yields K* > 0 at b. Point a in Figure 1

is defined by the non-negativity condition on I corresponding to K'. At a

6-2/3 |

one can compute K equal to A - |————|c which is less than K" = A at
2 +

V3
18 - 5/3 |

that point. At d, [ « ] = T§ Hence parameters A, c, and «

A+2c 6

must be such that a/(A+2c) falls between a and b in Figure 1 in order that
K, k" and the corresponding I’s are non-negative solutions to the
appropriate open-loop and feedback problems. Hence K- > Kf in two
corresponding solutions (with same parameters). This is our main result.
Roughly speaking the feedback duopoly relative to the open loop duopoly is
more competitive in the sense that more technical knowledge is produced (K"

smaller than K-).

The Price of K

K is a stock in our model. m; is the shadow price of a unit of this
stock in the open loop case. From (4) we observe m;s = -I; - ¢ < 0. The

price is negative because more K implies a higher cost of production. Here,

a lower stock is more profitable at the margin. From (3) we obtain I = A%E
L
in the steady state and hence in the limit as s»w, we have sm; = - A;K -

Vi is the corresponding shadow price for K in the feedback case. In (13) we

have sVi = -I; - ¢ which upon substituting for I as above, yields

i A+KF i 11wl F
sVg = - 5~ ¢ It follows that mjs - Vs = 3[K- - K'] > 0. But recall,
each price is negative, Hence |Vg| > |m;|. The larger negative price in the

feedback case implies that a unit "disposal" of K is more valuable. A unit

of K commands a higher negative price because in the feedback equilibrium Kf



has been brought lower (a desirable outcome) than K. The negativity of
these asset prices is not the novelty. Rather they are asset prices which
reflect the commonality of asset K to each player’s individualistic

investment in K.

Reformulation and Extension

E. Dockner has proposed a reformulation of the R & D investment-cost
reduction relationship. He introduces knowledge stock N which depreciates
(evaporates at rate A). Then N = I, + I, - N. Our cost parameter K is
inversely related to N(t). Let K = -AN. Then we obtain
K = A[A% -I, -1 -Z§ ]. The limiting case of interest becomes that for
which A > 0. One can then establish that the feedback case is more
competitive than the open loop case. Other interesting results on efficiency
and free-riding can also be obtained.

E. Dockner also proposes investigating a differential game of output

market sharing by the duopolists but no R & D spillovers. The basic

structure parallels that in Dockner [1992].

10



Appendix I: The dynamics of K(t) in the Open Loop Solution
Differentiate (3) with respect of time to obtain
K+si; +si,+K=0 or K+2si+K-=o0.

Differentiate (4) and combine with (5) and (3) to obtain

2 2
2si = -25°m + és_E - ég—i - 25°n
o 2 2 .
e pep [ _SA,SKK], 4% 4’2 2 _sA sk, Kk
= —asr [ ©"2s%2s2s| ' 9 g % [ €25 T2s? Zs]
Then our differential equation in K, K and K becomes
" - 5 2 as*x
K + (1-r-s)X + [—rs - 35 ]K = (r+s)[-2sc - sA] + 5

The particular solution of this second order linear differential equation is

K* expressed in (10) above. The homogeneous part has the characteristic

equation x> +Bx+C=0 where B

(1-r-s) and C = (—rs - gsz]. Since C < 0,

the solutions X, x are both real. Hence convergence to K* from K(0) is
monotonic and we assumed K(0) > K*. Convergence requires that the root of the

quadratic is negative. That

11



Appendix II (Obtaini Equation (17
We substitute expressions for V'(K) (equation (15)) and Vi(K)
(equation (16)) in (14) to obtain
Pai-r¢iK+P“i§i = % - (-c+s¢;-spiK)e - 3(-c+s¢;-spiK)?
+ (sp;K-s¢; ) [A-K~-(-2c+s¢;-sp;K+s¢;-sp;K) ] i=1,2; i=#j
The principal simplification in (Al) occurs when one discovers that

2
-c(-c+s¢;—;sK) - L(-c+sg;-spK)? = -L(s¢;-sp;K)? + 95

Given this, (17) in the text follows by direct methods.

12
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Appendix III (u; and its properties)3

In (17), we set the coefficient for K? on the left hand side equal to

the corresponding coefficient on the right hand side. This yields

r
§+ 378 - sw ¢ SPmpy = oL
which becomes
s?uf + (2s%u; - 2s - r)y; + g= 0 i=1,2; i#j (A2)

We wish to prove that u, p2. It will follow that ¢, = ¢, and &, = &>
and then that I¥(K) = I%(K) or that the solutions are symmetric. To
establish py = pp, we subtract the two equations in (A2). This yields

(1 - p2)[s?(my + p2) - (2s + )] =0 (A3)
Thus either p; = pp or s?(uy + g2) = 2s + r. We now show that the condition
s2(uy + M) = 2s + r contradicts the condition for convergence of K(t) to its
steady state value. Equations (3), (13) and (16) yield.

K - sKls(uy + p2) - 11 = s[A + 2c - s(¢y + ¢2)]
a first order differential equation with constant coefficients. For K(t) to
not explode, the coefficient s?(u; + pp) - s must be negative. That is
s2(py + p2) < s. This contradicts s?(u; + p2) = 2s + r above. Hence we
conclude py = pup = 0 or py = Mo = M.

Now we wish to establish that the smaller value for p in (18) is

"admissible" because this root is compatible with convergence

(non-explosiveness) of K(t). First we observe that with r = 0, the larger

3+ V3

root is u* = 95

With gy = g = u, the convergence criterion is

2us - 1 <O0Oor p< Eé' Since u* > Eé’ it violates the convergence

criterion and is thus not "admissible". With r = 0, the smaller root is

3 The strategy of proof here draws on Kamien and Schwartz [1990; pp. 279-280]
which in turn is a textbook report on Fershtman and Kamien [1987].

13



Cal/E

B =g which does satisfy the convergence criterion. Also
(dp™/dr)r=o = -2/(15s?) < 0 or p~ is a maximum at r = 0. Hence p~ is the

"admissible" root and we indicate it in the text simply by pu.

14
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