The Valuation of Forest characteristics

Nick Hanley Robin Ruffell

Department of Economics
Queen’s University
94 University Avenue
Kingston, Ontario, Canada
K7L 3N6

3-1992
estimates are presented. Given forest, both maximum timber and ordinary forest harvests are also used to explain total values of a forest. The physical characteristics of individual forests in consumer surplus across different forest types. By plotting valuation in consumer surplus elasticities and the relationship between both methods to verify the validation. We use both methods to verify the validation figures. Using either the total cost method or contingent valuation, we focus on arriving at consumer surplus per unit of area. This is the first step in evaluating the recreational benefits of public forests.

The present authors.

For the future.

Keywords: Non-Market Good Valuation; Consumer Surplus; Forestry

Robert Bellamy, University of Strathclyde, Scotland, and

Graham University, Kingston, Canada

Nick Harvey, University of Strathclyde, Scotland, and

The Valuation of Forest Characteristics.
P.177: one commodity in a market.

the potential attractiveness of forest stands (growth and harvest) most concerned with management actions that affect harvest in their existing condition. In contrast, the forest manager is focused on the total value of economic value of changes in the condition of forest stands been established by the British attention given to minimizing the "economic rent."

Kuitluma (1989) p. 11.

Whitworth (1989) p. 11.

With the promotion of public enjoyment of these forests. As a bonus and a commission in planning the provision of public forests. Given a public recreation (in the UK) this particularly means the forests are attractive to such characteristics. Then this would greatly add economic value (consumer surplus) which could be typically economic value (consumer surplus) which could be typically valued. The examples of the potential characteristics of forests. If the potential of the potential characteristics of forests. Is these reported are: extensions this work is a contradiction of the potential. The estimation of the potential characteristics of forests. The lack of data on the forest (Kuitluma and Benson, 1989) have.

A.1.11. For example the value of a recreation.

Over a number of recent years, considerable research effort in...
UK government, at least on a trial basis (a Department of the Environment, and as part of the Comprehensive Environmental Monitoring system). The method was adopted by the Scottish Forestry Commission and the Department of the Environment for the assessment of the forest land-use potential. The results of these studies have been used to estimate the potential of non-forested areas for alternative uses.

A similar point is made by Hoyle and McDonald (1969), who suggest that the potential of non-forested areas for alternative uses is not being fully utilized. They conclude that the potential of non-forested areas for alternative uses is not being fully utilized.

The potential of non-forested areas for alternative uses is not being fully utilized. The potential of non-forested areas for alternative uses is not being fully utilized. The potential of non-forested areas for alternative uses is not being fully utilized. The potential of non-forested areas for alternative uses is not being fully utilized. The potential of non-forested areas for alternative uses is not being fully utilized.
each part was the relevant characteristic.

under investigation, where the only aspect that varied between the exercise using art was impressions for each characteristic.
In terms of how results could be improved, this will depend on further research that could be conducted. For example, this study is based on a limited number of forest characteristics that were measured, and it would be interesting to expand the study to include other factors that might influence the perception of forest quality.

Research also needs to be conducted that examines the effects of different types of forest management practices on the perception of forest quality. This could include factors such as the age and density of trees, the type of vegetation, and the presence of wildlife. The results of such research could then be used to inform decisions about forest management practices that are designed to optimize the perception of forest quality.

Furthermore, the study is based on a relatively small sample size, and it would be interesting to replicate the study in other regions to see if similar results can be obtained. This would help to establish the generalizability of the findings and provide a more robust basis for decision-making.

In conclusion, the results of this study suggest that there are a number of factors that influence the perception of forest quality, and that further research is needed to identify the most important factors and to develop effective strategies for improving the perception of forest quality.
coefficients will be biased.

addition correlated with included characteristics then our
supplementary if these missing characteristics are in
figure is given for each characteristic within each group
together, and forest variety within the same radius (only one
test cases, from which the sample was drawn. These might include local
important characteristics are omitted from the data base
for vitrA. Other explanations for our results are:

we have already commented at length on importance of reasons
which results is improved

WINTER (1961) and DONOBIA (1661) (1661) for example, the case studied by DIXON and WINTERBROM.

(1661) found that the characteristic: income and hunting experience. This is a marginal value could be

WINTER (1961) and DONOBIA (1661) (1661) for example, the case studied by DIXON and WINTERBROM.

(1661) found that the characteristic: income and hunting experience. This is a marginal value could be
Table 7

The table shows the results of a survey regarding the perceived importance of various factors. The data is presented in a tabular format with columns and rows.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Traffic</td>
<td>6.9</td>
</tr>
<tr>
<td>2. Photographs</td>
<td>6.0</td>
</tr>
<tr>
<td>3. Video Evidence</td>
<td>5.9</td>
</tr>
<tr>
<td>4. Visit Forest Centre</td>
<td>5.7</td>
</tr>
<tr>
<td>5. Visitor Parking</td>
<td>5.0</td>
</tr>
<tr>
<td>6. Safety & Security</td>
<td>4.8</td>
</tr>
<tr>
<td>7. Seat Water Quality</td>
<td>4.5</td>
</tr>
<tr>
<td>8. Visit Area in General</td>
<td>4.3</td>
</tr>
<tr>
<td>9. Incentive Children</td>
<td>4.0</td>
</tr>
<tr>
<td>10. Other</td>
<td>3.8</td>
</tr>
<tr>
<td>11. Peace and Quiet/Fresh Air</td>
<td>3.6</td>
</tr>
<tr>
<td>12. Air Quality</td>
<td>3.2</td>
</tr>
<tr>
<td>13. Food</td>
<td>2.9</td>
</tr>
<tr>
<td>14. Social Areas</td>
<td>2.6</td>
</tr>
<tr>
<td>15. Wildlife Spotting</td>
<td>2.3</td>
</tr>
<tr>
<td>16. Photography</td>
<td>2.0</td>
</tr>
<tr>
<td>17. Other</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Despite recent criticisms of the HIC methodology (see, for instance, Boxstetter, Munich, and Strand, 1991; and Seltth and McLean, 1987), it offers the potential for a methodology across respondents, albeit certain assumptions about reporting errors. Sample sizes for open-ended C studies are in excess of 300. Hill (1985) and Carson (1989) have pointed out, desirable minimum sample sizes are clearly preferable to smaller sample sizes. As sample sizes are a matter of regard to criteria (1), larger representation of the total sample set is a matter of regard to criteria (1). The sampled received the same set of photo questions; and (1) the total sample size (all respondents at every forest site) of the photo questions, the two criteria of importance were (1) the photo questions and the HIC exercise. With regard to the three methods of analysis, namely the photo data analysis, the survey was intended to collect data suitable for all purposes of visit categories.
characteristics. Past events are reported in Huppe and Hurel.

curve was noted in time of increased斯顿水平. For
of users; however, no improvement over the whole-sample.
characteristics. Regressions were performed on separate groups
purpose of visits; or that purpose of visit should interact with
mean that either separate regressions should be done for each
of visits. In terms of the HCC and dictory deposits, this would
option price bids are distinguished by classification of purpose
some literature evidence is provided on this in Table 7, where mean
although it measured variables are correlated, a base of prediction
variables as above! and to (1) interpretation of each site on one
alternative was thought to be to (1) record weather, time
impossible due to resource constraints. A second-best
random intervals throughout the year. Unfortunately, this was
interpretations surveyed simultaneously at all chosen sites at
interviewer's surveying simultaneously at all chosen sites at
possibly, the best strategy would be to have many
possibilities. However, some important variables may go
unmeasured. However, some important variables may go

49

Rainforest survival

49

Rainforest survival
Correct model is:

For a correct model of the variable x, the variance of the estimate is

$$\text{Var}(\hat{x}) = (\frac{1}{n})\text{Var}(x)^2$$

where the error term is normally distributed with expected value 0 and variance 1.

$$\hat{x}_i = \frac{1}{n} \sum_{j=1}^{n} x_j$$

This implies that the amount of data to a site x_i is $1/n$. The impact of a single characteristic of that site is x_i. The impact of summing errors over all visits to a site is ρx_i. The standard error of the estimate is affected by shrinking the standard deviation of a model's residuals. A correct choice of model, predictability of the estimate, and the selection of sample sites were

(2) All interviews were conducted over the period and the data are part. The visits were never more than two week-end and one week-end. These visits were never more than two.
In this case, we find that the correlation between the number of visits per tree and the number of visits per forest is significant, but not very strong. However, when we take into account the fact that the forests are not randomly selected, we find that the correlation between the number of visits per tree and the number of visits per forest is much stronger. This suggests that the number of visits per forest is an important factor in determining the number of visits per tree.

In Table 2, zero-order correlations are presented. The correlation coefficients for each pair of variables are shown. It is clear that some variables are strongly correlated, while others are not. For example, the correlation between the number of visits per tree and the number of visits per forest is very high, while the correlation between the number of visits per tree and the number of visits per survey is much lower.

The results of this study suggest that economic values, such as the value of a forest stand, can be estimated using zero-order correlations. However, it is important to note that these correlations do not take into account the effects of other variables, such as the type of forest or the location of the forest.

In conclusion, the results of this study provide new insights into the relationship between the number of visits per tree and the number of visits per forest. These findings can be used to inform future research and management decisions.
Table 2

<table>
<thead>
<tr>
<th>Year</th>
<th>Percent of Forest Area (%)</th>
<th>Shannon Index of Diversity</th>
<th>Total Forest Area</th>
<th>Shannon Index of Productive Trees (%)</th>
<th>Shannon Index of Tall Trees (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.02</td>
<td>0.23</td>
<td>0.70</td>
<td>0.12</td>
<td>0.09</td>
</tr>
<tr>
<td>0.2</td>
<td>0.04</td>
<td>0.46</td>
<td>0.90</td>
<td>0.24</td>
<td>0.18</td>
</tr>
<tr>
<td>0.3</td>
<td>0.06</td>
<td>0.69</td>
<td>1.10</td>
<td>0.36</td>
<td>0.27</td>
</tr>
<tr>
<td>0.4</td>
<td>0.08</td>
<td>0.92</td>
<td>1.30</td>
<td>0.48</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>Year</th>
<th>Growth Deficiency @ Age 20</th>
<th>Growth Deficiency @ Age 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.20</td>
<td>0.30</td>
</tr>
<tr>
<td>0.2</td>
<td>0.30</td>
<td>0.40</td>
</tr>
<tr>
<td>0.3</td>
<td>0.40</td>
<td>0.50</td>
</tr>
<tr>
<td>0.4</td>
<td>0.50</td>
<td>0.60</td>
</tr>
</tbody>
</table>

The capitalization scheme means showed that WIP increased relative to the parent card. Initially responses were obtained for each parent, but the reason for parent removal was retained to ensure the accuracy of the information set of responses. Finally, v. an and thus alters the information set of responses, the effect of this change was to remove the parent for removal of parent entrance fees. An other change in wording was made: the effect of the Foresty Commission decided it was appropriate to charge an entrance fee. The sentence was replaced by: "Suppose the entrance fee was replaced by..." Without effect, the Foresty Commission has to decide whether to present the entrance fee. Here, the sentence, "...Suppose that due to financial..." was changed to: "...Suppose that due to financial..."

Section 5.2 Results have been shown in several studies to be..."
A non-monotonic form was correct, the squared terms in the
the linear form would almost certainly pattern better, which is
monotonic form was appropriate between, for example, MTP and
with NP. The linear form was a poor choice, however. If a non-linear but
of course, be a poor choice. However, if a non-linear but
The linear function form for the equation in Table 5, mainly
(Mitchell and Carson, 1989).

Carron's work, a recommended value of 1.5 times for CTS

A result for the DJ's equation is in excess of the
water is an average with MP less than water's. The adjusted
water itself is a significant in two ways. In the first place, for example, dop
contextual on this in section 5, perhaps for which the gain
increasing contextual diversity has a negative effect on MTP; we
percentage of slope/area, and presence of a water's relation,
their variables are in accord with a priori a priori (so
these variables are in accord with a priori a priori (so
option of this is in this final data point. However, the stock on all
presence/absence of wetland features (W), significantly effect.
diversity (co, dp), percentage of forest as open space (fo),
that ranking of wetland features (W), relation, and with
+0.69) with respondents rating of views (V), and with
taken up due to the interaction term and the regression
+0.69) with respondents rating of views (V), and with
the increase being dependent on the value
appearance, it is to forest characteristics, MTP rises with mean
as W. Rising to forest characteristics, MTP rises with mean
insect and significantly body weight) referred to respondents.
then decreasing. MP is strong and positively related to
higher than weekday visitors, motion holding makes this model
Taking the M results as illustrative, weekend visitors did

Given that the x terms are correlated, simply choosing

The obvious exception being the dummy variable, p.
Table 6 - Cont'd

Data Mining, Data Analysis, and Data Science

<table>
<thead>
<tr>
<th>Forest Type</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>68.1</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>61.8</td>
<td></td>
</tr>
</tbody>
</table>

Note: All data are expressed in %.

Table 7 - Results for Pretreatment

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Pretreatment</th>
<th>Posttreatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.45</td>
<td>0.52</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.23</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Table 8 - Results for Posttreatment

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Pretreatment</th>
<th>Posttreatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.50</td>
<td>0.55</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.25</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Note: All data are expressed in %.

Figure 1 - Scatter plot of Pretreatment vs. Posttreatment.
The assessment was plotted over 2 days at Queen’s View.

The possible definition of the characteristics set.

Followed was similar to that for respondents. The gave a third
proportion of their day out (and for those answering no, a variety
expected stay time on site; whether their visit was the main
length and duration of trip; highlighter/descriptive symbols;
to the purpose of their visit; the point of origin that Day;
with regard to the MTP matrices, visitors were asked as
parts of the survey described in section 3.1 and 4.2.1.

The forest in central Scotland. This added the desgin of the C
forest is built. (The 2 at Queen’s View.

Table

<table>
<thead>
<tr>
<th>Region</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of Other Facilties Provided (? Information)</td>
<td>Yes</td>
</tr>
<tr>
<td>Quality of Walking Facilities (Great Warren Tram)</td>
<td>Yes</td>
</tr>
<tr>
<td>Quality of Views</td>
<td>Yes</td>
</tr>
</tbody>
</table>

was available from the database: visitors were also asked to rank the following, on which no data

Propportion of Forest as Open Space
Propportion of Preserved Trees

Propportion of Forest as Open Space
Propportion of Preserved Trees
For a full description of the survey and results, see Hankley and Huxley.

Regression analysis rejected the hypothesis that this was
and open space were virtually uncorrelated with the P.C. data.
Surveys and the public on higher diversity, counter diversity
Impressions of the same characteristics. The responses from
answers on this theme were closely correlated with the
forests, the forest characteristics. Questions, which respondents
visited at any site. Very few respondents were unable to answer
site (see above), but to move on once the responses had been
Surveyors were instructed to spend at least two half days at any
a pre-determined maximum of 30 at each site, to a site for
with a total of 101 responses being obtained; this varied from
of the 60 sites selected for survey, 67 yielded responses.
General Results.

A copy of the questionnaire is available from the authors.

Section 4) and the characteristics of questions listed above. A
day. All respondents were asked the CQ question (see
or not; and the composition of the party they came with that
of education: whether they were a member of a conservation group
substitute trip? their gross household income, age, and level
the site that day (and what it would have cost them to make this
where they would have gone if they had not been able to visit
had visited the site in the past 12 month and part 2 months.

of how important it was on a 1-5 scale? the number of times they

truncation at zero, with the error lower truncated normal.
Results are given for comparison; the ML results reflect
were obtained. The results shown in Table 6, again, both ML and ML
effect other correction values. As a result of this procedure.
was less than one and (11) the squared correlation between (12) the variables was zero. We performed a test of significance for the regression model and found that none of the variables contributed significantly to the model. The adjusted R-squared statistic was zero, indicating that the model did not explain any variation in the data. The regression coefficients were also not statistically significant, suggesting that the variables did not have a meaningful relationship with the dependent variable. Consequently, we concluded that the model was not appropriate for predicting the dependent variable.

The variables were selected based on theoretical considerations and prior research. The model included variables such as age, income, education, and travel behavior. The model was estimated using ordinary least squares regression and the coefficients were interpreted using standardized regression coefficients. The results showed that age, income, and education had a significant impact on the dependent variable, while travel behavior did not.

The model was validated using a cross-validation procedure. The results showed that the model was not overfitting the data and was able to generalize to new data. The model was also compared to other models that included different combinations of variables. The results showed that our model had superior predictive performance compared to the other models.

The model was interpreted in terms of its practical implications. The results suggested that policies aimed at increasing travel behavior and educational attainment could be effective in improving the dependent variable. The model was also used to predict the impact of future changes in the independent variables on the dependent variable. The results showed that changes in age, income, and education would have a significant impact on the dependent variable.

In conclusion, the model was a useful tool for understanding the relationship between the dependent variable and the independent variables. The model was validated and interpreted in a rigorous manner, and the results were informative and actionable. The model could be used to inform policy decisions and inform future research.
The question was perhaps irrelevant. Given the very wide range of substitute cost was 1:76 ($27,695). The poor response to this
bood, while a further 25% gave the cost as zero. Mean
was a whole. Half of the sample was unable to cost the substitute
the substitute activity by 34% of respondents across the sample
continued their journey. Visiting another forest was given as
questions, while 16% of holiday makers would merely have
substitutions. However, 15% of the sample could not answer this
question. While considerable difficulty existed where they would
respondents and considerable difficulty existed where they would
categories of reason for visits were distinguished. Finally,
reason for visits were distinguished. Finally, such as walking, looking at nature and playing, were
visiting the forest. These varied widely, and included motives
respondents were also questioned as to their reasons for
Trip

100
50
0
0
250
500
750
1,000
1,250
1,500
1,750
2,000
2,250
2,500
2,750
3,000
3,250
3,500
3,750
4,000

WTP BIDS

All Geographical Graphs

There was a very close correlation (r=0.91) between highest and
the mean distance traveled to visit the forest was 24 miles.
3% of genuine zeros is all that is present in the data. This is a small number of zeros, and a large number of sites with zero counts, which is typical for zero-inflated data. The independent variables are the local and national economic characteristics for each zone. These data are used to estimate the dependent variable, which is the number of visits to a forest or recreational site in each zone. The method is first estimated for each zone, and then the average for all zones is calculated.

<table>
<thead>
<tr>
<th>Number of Genuine Zeros as % of All Sites</th>
<th>8.7%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>70.75</td>
</tr>
<tr>
<td>Range</td>
<td>70.00</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>7.99</td>
</tr>
<tr>
<td>95% Confidence interval</td>
<td>70.87-70.98</td>
</tr>
<tr>
<td>Mean</td>
<td>70.93</td>
</tr>
</tbody>
</table>
Further vector of interaction terms. Our basic model was:

\[Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon \]

where \(Y \) is the dependent variable, \(X_1 \) and \(X_2 \) are the independent variables, and \(\varepsilon \) is the error term. The interaction term \(X_1 X_2 \) captures the joint effect of \(X_1 \) and \(X_2 \) on \(Y \).

Table 5, which shows the results of the regression analysis, includes the following variables:

- Total
- Other
- Social Security
- Military
- Other
- Foreign
- Foreign
- Other

The table indicates the number of cases and the percentage of cases from which each response was obtained. The percentages are rounded to the nearest whole number. The table also shows the percentage of cases that were excluded, and the reasons for exclusion are listed in the notes section. The model was significant at the 0.01 level, indicating that the model as a whole is statistically significant.
This question, which was designed to give a reason for visits, was asked the following question:

"What is the reason for visit?"

This is the answer from the respondent on the perceived visit's characteristics. The respondents' insights on perceived visit characteristics ranged from 70-100, respectively, the quality of views, the quality of walking, respondents of the characteristics listed on pages 9-10, each of the characteristics on which we also collected data.

In the travel cost analysis, we include the six main forest characteristics listed in Table 1. The travel cost analysis includes the six main forest characteristics.

These are the initial features selected for visit and are discussed.

Why are the reason-for-visit differences in the regression runs?

In the area where they are located:

The number of days a year when the respondent was resident:

Income has been adjusted for disposable income

VISA is the number of trips per time period to the site:

where:

\[VISA = \frac{1}{f} \left(f + \text{characteristics} \right) \]

\[+ \frac{1}{g} \left(g + \text{characteristics} \right) \]

\[+ \frac{1}{h} \left(h + \text{characteristics} \right) \]

\[+ \frac{1}{i} \left(i + \text{characteristics} \right) \]

\[+ \frac{1}{j} \left(j + \text{characteristics} \right) \]
It was not possible to find pairs of photos which held constant.

It follows from the weaknesses: first, that as mentioned above, what is clear from the data from the photo experiment is interesting.

Interpretation is 0.9 to 0.4.

which is statistically different from zero. The 95% confidence

forest 6, mean incremental WTP to access forest 6 was 0.33.

heath' on average in terms of the association between Forests and

expressed a preference for woodland patches and 64% for

diversity.

Here 99 usable responses were available, of these, 22%

part of woodland heathland (photo 5 versus diverse heathlands (photo)

are least important.

Background: Species diversity is the characteristic to which people

higher across all three sets implying that a political vote

preferred for the preferred characteristic in this set was the

allotted to vary: interestingly, the percentage of the

accepted? For forests, it has to be the only characteristic that is

significantly higher since respondents prefer visits than

characteristic. The 95% of forests was 0.46 to 0.56 so mixed forests result in

traditional interpretation was 0.46 to 0.56. So mixed forests result in

with this result above.

Respondents were obtained, 50% respondents

Part of man-made heathland (photo 1 versus diverst heathlands (photo 2)
Results obtained were as follows:

Was sought, Project bids were thus identified.

Respondents with zero incremental WTP was requested to reason-card, with lower bound zero and an upper bound determined by means of a nonparametric test of additormal WTP were collected by means of a nonparametric test of additomal WTP. Some other like, or showing more of less effort. By putting the target of darker, or showing more or less effort, the optimal solution is found. To maximize the characteristic of interest. At or near zero. This is consistent to match all s treatment, but we would want to catch up.

The forest (culture) says, or a forestman, who may want to catch up.

This may have the effect of decreasing consumer surplus. Figures show the sum of distance and time costs; due to the very good for wage rates. For a household with mean income, the figure is 2.696 (1993). The total costs (the income above) are for wage relief.

average, and gave hourly rates varying from 2.69 to 6.7.

The first was to count holiday makers from the analyses; this value they place on a site. We considered another alternative: the value their travel costs that day underestimates the maximum,

98 usable (ie. completed, non-project) responses were collected. 31 respondents preferred photo 2 (water feature), 87 preferred photo 1. Those expressing a preference for photo 1 were treated as indicating a negative bid for photo 2. This gave a mean incremental WTP to access the water feature of 0.69.

Which is significantly different from zero. The 95% confidence interval was 0.60-0.78. So the evidence, water features

significantly increase the average consumer surplus 15% of a forest.

This was done by taking the ratio of household income to the marginal...
inter-pretations, it seems plausible to suggest that
interactions were introduced, these
encompass the variables (VGA) that are included in the
test for the prevalence of forest characteristics in

were asked to state

For each part of photosynthesis, respondents were asked to state

of characteristics than the HIC of forest sections.

For each part of the photosynthesis, respondents were asked to state

the other. They were then asked:

that this preferred forest was more expansive to visit than

find more attractive. Respondents were then asked to indicate

their performance in terms of the question, "Which forest do you

5

"How much extra would you be willing to pay to visit the

In Hawaii and the United States, you are more likely to be able to make a visit (by

A. Of what parts of photosynthesis.

We now detail each of these in turn.

2. Using a bid curve approach.

I. Using parts of photosynthesis to compare values and

(C) Approaches were used in this study.

A. Confoundmental Valuation

were not included in the dependent variable, and a value determined

take the value 55% for all decay type, and a value determined

acceptable by specifying the variable that is used in evaluation. It

holiday in the area around the site. This latter treatment is

year that they were able to make a visit (by residency). On

In Hawaii and the United States, you are more likely to be able to make a visit (by

A. Confoundmental Valuation

were not included in the dependent variable, and a value determined

take the value 55% for all decay type, and a value determined

acceptable by specifying the variable that is used in evaluation. It

holiday in the area around the site. This latter treatment is

year that they were able to make a visit (by residency). On

In Hawaii and the United States, you are more likely to be able to make a visit (by

A. Confoundmental Valuation

were not included in the dependent variable, and a value determined

take the value 55% for all decay type, and a value determined

acceptable by specifying the variable that is used in evaluation. It

holiday in the area around the site. This latter treatment is

year that they were able to make a visit (by residency). On
| 4.99 | 4.69 | 6.8 | 4.72 | 5.8 | 6.88 | 2.12 | 22.03 | 4.39 |
| 1.24 | 3.74 | 6.18 | 3.25 | 1.68 | 1.28 | 3.91 | 5.94 | 1.39 |

(2) We suppose that our treatment of medians, leads to no differences.

The table shows the values of the sample for different values of the characteristic. Where there is no mean, the median is shown.

| 4.99 | 4.69 | 6.8 | 4.72 | 5.8 | 6.88 | 2.12 | 22.03 | 4.39 |
| 1.24 | 3.74 | 6.18 | 3.25 | 1.68 | 1.28 | 3.91 | 5.94 | 1.39 |

The effect of varying characteristic levels.

Table 4
<table>
<thead>
<tr>
<th>Characteristic Factors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Cost Results</td>
<td>Description</td>
</tr>
</tbody>
</table>

Table 3.

Without Function (OFT)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable Coefficient</td>
<td>Variable Coefficient</td>
<td>Variable Coefficient</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6198</td>
<td>1013</td>
<td>1227</td>
</tr>
<tr>
<td>1227</td>
<td>1013</td>
<td>6198</td>
</tr>
<tr>
<td>226</td>
<td>226</td>
<td>226</td>
</tr>
<tr>
<td>67</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>0.710</td>
<td>0.710</td>
<td>0.710</td>
</tr>
<tr>
<td>1299</td>
<td>1299</td>
<td>1299</td>
</tr>
<tr>
<td>296</td>
<td>296</td>
<td>296</td>
</tr>
<tr>
<td>296</td>
<td>296</td>
<td>296</td>
</tr>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.0140</td>
<td>0.0140</td>
<td>0.0140</td>
</tr>
<tr>
<td>0.2012</td>
<td>0.2012</td>
<td>0.2012</td>
</tr>
<tr>
<td>0.8347</td>
<td>0.8347</td>
<td>0.8347</td>
</tr>
<tr>
<td>606</td>
<td>606</td>
<td>606</td>
</tr>
<tr>
<td>0.0173</td>
<td>0.0173</td>
<td>0.0173</td>
</tr>
<tr>
<td>0.0297</td>
<td>0.0297</td>
<td>0.0297</td>
</tr>
<tr>
<td>0.0795</td>
<td>0.0795</td>
<td>0.0795</td>
</tr>
<tr>
<td>0.002233</td>
<td>0.002233</td>
<td>0.002233</td>
</tr>
<tr>
<td>0.951</td>
<td>0.951</td>
<td>0.951</td>
</tr>
<tr>
<td>0.0117</td>
<td>0.0117</td>
<td>0.0117</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.0117</td>
<td>0.0117</td>
<td>0.0117</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.0117</td>
<td>0.0117</td>
<td>0.0117</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.0117</td>
<td>0.0117</td>
<td>0.0117</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.0117</td>
<td>0.0117</td>
<td>0.0117</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.0117</td>
<td>0.0117</td>
<td>0.0117</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.0117</td>
<td>0.0117</td>
<td>0.0117</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.0117</td>
<td>0.0117</td>
<td>0.0117</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.0117</td>
<td>0.0117</td>
<td>0.0117</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.0117</td>
<td>0.0117</td>
<td>0.0117</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.0117</td>
<td>0.0117</td>
<td>0.0117</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.003199</td>
<td>0.003199</td>
<td>0.003199</td>
</tr>
<tr>
<td>0.0117</td>
<td>0.0117</td>
<td>0.0117</td>
</tr>
</tbody>
</table>
Interaction with, for, as is why, the original forest
are both significant, why is also significant in this
situation in the table, why, making the dot and why (other). Purpose of visit, although are affected into 5 categories: caffeine,
which are 4, according to the ML estimates. The
several transactions fees (Oomen, 1998). Our comments below, and
in terms of standard deviations, the ML estimates suffer from
the mean of the dependent variable (annual visits) is close to the lower bound point
where the results are presented for comparison with
the ear/waist publish work and to expose the extent of the
model, which is true. The results are presented for comparison with
the mean of the dependent variable (annual visits) is close to the lower bound point
where the results are presented for comparison with
the ear/waist publish work and to expose the extent of the
model, which is true. The results are presented for comparison with
the mean of the dependent variable (annual visits) is close to the lower bound point
where the results are presented for comparison with
the ear/waist publish work and to expose the extent of the
model, which is true. The results are presented for comparison with
the mean of the dependent variable (annual visits) is close to the lower bound point
where the results are presented for comparison with
the ear/waist publish work and to expose the extent of the
model, which is true. The results are presented for comparison with

<table>
<thead>
<tr>
<th></th>
<th>47'1</th>
<th>47'2</th>
<th>47'3</th>
<th>47'4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.452</td>
<td>0.452</td>
<td>0.452</td>
<td>0.452</td>
<td>0.452</td>
</tr>
<tr>
<td>0.500</td>
<td>0.500</td>
<td>0.500</td>
<td>0.500</td>
<td>0.500</td>
</tr>
<tr>
<td>0.550</td>
<td>0.550</td>
<td>0.550</td>
<td>0.550</td>
<td>0.550</td>
</tr>
<tr>
<td>0.600</td>
<td>0.600</td>
<td>0.600</td>
<td>0.600</td>
<td>0.600</td>
</tr>
<tr>
<td>0.650</td>
<td>0.650</td>
<td>0.650</td>
<td>0.650</td>
<td>0.650</td>
</tr>
<tr>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
</tr>
<tr>
<td>0.750</td>
<td>0.750</td>
<td>0.750</td>
<td>0.750</td>
<td>0.750</td>
</tr>
<tr>
<td>0.800</td>
<td>0.800</td>
<td>0.800</td>
<td>0.800</td>
<td>0.800</td>
</tr>
<tr>
<td>0.850</td>
<td>0.850</td>
<td>0.850</td>
<td>0.850</td>
<td>0.850</td>
</tr>
<tr>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
</tr>
<tr>
<td>0.950</td>
<td>0.950</td>
<td>0.950</td>
<td>0.950</td>
<td>0.950</td>
</tr>
</tbody>
</table>

Table