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ABSTRACT

This chapter reviews calibration techniques in macroeconomics. The
discussion begins with an outline of the use of calibration in applied work.
Next, a simple asset-pricing model is the setting for a demonstration of
calibration and for comparison with conventional estimation and testing.
Experiments with calibrated models may be formalized as Monte Carlo testing.
With the asset-pricing model, we use simulation methods to calculate the
exact size of the variance-bounds-type test proposed by Hansen and
Jagannathan (1991). Finally, we suggest that calibration is best viewed as
an informal guide to model reformulation.



1. Introduction

Empirical questions in macroeconomics often are addressed with dynamic,
equilibrium models. Studying such questions involves formulating a model,
solving 1it, assigning parameter values (i.e. calibration), and then
conducting experiments with the model and evaluating the results. This
chapter reviews some methods for parameterization and evaluation.
Researchers typically study models by conducting simulations and studying
simulated data using statistics (such as moments) which also may be
calculated with historical data. The aim may be to deduce some of the
model’s properties or implications, to compare its properties to those of
data, or to test the model formally.1 In this chapter we take a formal
statistical approach to these calibration methods. We refer to illustrative

applied studies, but do not provide a comprehensive bibliography.

The remainder of this introductory section describes calibration methods
heuristically. Section 2 describes a simple asset-pricing model, which is
the setting for an outline of estimation and calibration in macroeconomics.
Section 3 discusses testing and evaluating calibrated models and demonstrates
several tests using the asset-pricing model. Section 4 surveys some recently

proposed tools for evaluation. A brief conclusion follows in section 5.

Calibration exercises begin with the assignment of parameter values.

Just as in the calibration of applied general equilibrium models in the study

1 v
For example, Lucas . (1987) and Imrohoroglu (1989) use calibrated models to

measure the costs of business .cycles.



of international trade or public finance (see for example Shoven and Whalley,
1984) parameter values are assigned on the basis of other studies or
evidence.2 For example, dynamic, representative-agent models might be
calibrated with reference to averages found in panel data. The rationale is
not that identification and estimation are impossible; indeed Singleton
(1988) and Smith (1990) note that often standard econometric methods may be
applied to estimate parameters. Rather the idea is to strengthen results and
discipline modelling by avoiding free parameters. Usually model properties
are studied with several different parameter vectors, as a check on
sensitivity. Information drawn from other studies usually is informal and
does not include standard errors. Canova (1991) and Hoover (1991) discuss
this issue. Moreover some method of aggregation is required in order to use
parameters estimated from microeconomic panels in representative-agent models
(i.e. to make sure one is measuring the same thing).3 If the relationships
estimated from microeconomic studies do aggregate, then estimation could also
be done in the aggregate data, at least as a check. If those relationships

do not aggregate, then using the micro-based estimates may be misleading.

In some cases parameters are set so as to match exactly a statistic
generated by the model with one in data. For example, Kydland and Prescott
(1982) calibrated the coefficient of relative risk aversion in their
business-cycle model by matching the variance of detrended output. This

matching constitutes estimation, and is often done by simulation. In section

2

Lau (1984), MacKinnon (1984), and Pagan and Shannon (1985) suggest the use
of formal estimation, testing, and sensitivity analysis in applied general
equilibrium models.

3 -
Heckman (1984) discusses this 1issue and Rogerson (1988) provides an example.



2 we outline this aspect of these empirical methods.

Once a macroeconomic model is parameterized it can be evaluated and then
used to answer quantitative questions. A second statistical method in
macroeconomics involves more general comparison of a model’s properties with
those of data. A typical business-cycle study reports measures of
variability and of covariance with output for actual data and for a
business-cycle model, for such variables as consumption, investment, and
hours; a good example is given in Tables 1.1 and 1.2 of McCallum (1989).
This comparison can be viewed as an informal test, which guides reformulation
or respecification of the model, particularly when the discrepancies appear
to be large. Obviously the inferences drawn from the comparison depend on
the variables and moments used. For example, Singleton (1988) and Cogley
(1990) show that the detrending method (or spectral bandwidth) considered in

calculating moments may itself have a large effect on conclusions.

Studies which use calibration methods in macroeconomics are now too
numerous to list, and it is safe to say that the approach is beginning to
predominate in the quantitative application of macroeconomic models. One
influential example of calibration is the study of business cycles by Kydland
and Prescott (1982), in which fluc:tuations are driven by an unobservable
productivity shock. They assigned most parameter values based on
microeconomic and trend evidence and studied the model’s business-cycle
properties by simulation. Further study of equilibrium business-cycle models
drivep by technology shocks has led to several reformulations. For example,
the variability of the labour input (hours worked) in the Kydland-Prescott
economy was less than that in detrended historical data for the U.S. This

discrepancy was largely resolved in the version of the business-cycle model



constructed by Hansen (1985) which includes labour supply variation caused by
variation in the number of persons working as well as in hours per worker.
Although reformulations like this are suggested partly by theory they also
are impelled by comparisons of the model’s predictions with data. Sections 3

and 4 discuss several ways to formalize such comparisons.
2. Estimation and Calibration

To keep notation as simple as possible, we shall survey estimation and
calibration methods entirely within a simple asset-pricing model, as outlined
by Lucas (1978). Singleton (1990) provides a comprehensive outline of
asset-pricing theory and evidence. In the example here a representative

consumer has preferences represented by the utility functional

El Z B% ulcees) |Inl, (1)
s=0

in which E is the expectations operator, I is the consumer’s information at
time t, B € (0,1) is a discount factor, ul(c) = cl_a/(l-a) (log(c) if a = 1),
and « is a positive, constant coefficient of relative risk aversion.

Consumption c. evolves according to
Ct+1 = Xt41°Ct, - (2)

so that {x.} is the sequence of consumption growth rates.
\
Relative prices are calculated by equating them to intertemporal

marginal rates of substitution. The price of a one-period, risk-free,



discount bond which provides one unit of consumption at time t+1 is given by
f [ ' - -
Pt = B E[u (ct+1 )/u (Ct)!It] = B E[(Ctﬂ/ct) |It] = B E[Xt+1 IIt], (33.)
and the price of an equity claim to the consumption stream is given by

Pt = B EL(U' (Ces1)/U' (Ce))- (Coar + Pier)|Ie]

=B E[Xt+1—a'(0t+1 + P:+1)|It]- (3b)

The structural parameters of this model are 7 = (a,B). Denote the
realized history {y: = (py x¢); t = 1,...,T+1}, where p; is a vector of asset
prices. We next consider estimation under various assumptions about the
investigator’s knowledge and aims. Estimation and inference are based on the

sample moments of the observable variables:

Wr = T-l Z.W(yt), (4)

where T is a sample size, w is a g-dimensional vector of observable
continuous functions and Wy is a vector of sample moments of the observable
variables. For example, W; could include the sample means and variances of

bond and equity prices.

Next suppose that an economic theory predicts a vector tht,y) where
¥y €Tl c Rv is a v-vector of parameters, and the model determines the
endogenous variables from the forcing variable and the parameters. Tildes
label the predictions of theory. Denote the true parameter values y, so that

unconditionally E[w(y¢)] = E[W(y:,70)]. We assume that these conditions are
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satisfied only at 7,. The sample analogues to these population conditions
may be used for estimation. The researcher is interested in the parameters
of the economic model (such as « in the asset-pricing model above) which may
be consistently estimated if q =z v and some identification conditions are
satisfied. For the most part we shall assume identification and sufficient
regularity. We consider three different methods of obtaining parameter
values: first the generalized method of moments (GMM), second the method of

simulated moments (MSM), and third calibration.

First, if the econometrician can calculate the theoretical moments then
estimation can be based on the generalized method of moments (i.e.

generalized instrumental variables):

Yowv = argmin | Wr - Wr(2) |, ()
el

where the asymptotic distribution of the estimator will depend on the norm
|-l Hansen (1982) shows consistency and asymptotic normality (CAN) using
the L% norm under regularity and stationarity conditions. For example if the

minimization is

Fowu = argmin [ (W= ¥ () TSTH (Wr-R7 (7)1, (5')
el

where S; equals the sample variance-covariance matrix of the moment condition
o~ 14 a Te-1 -1 .

Wr = Wi(y), then T2(yeum = %0) ~ N(O, (Vwo So Vwo) '), where V,, is the

expected Jacobian of the same condition and S, 1is the population

variance-covariance matrix, both evaluated at y,. GMM describes the optimal

weighting of moment conditions. Efficiency may be increased if population

-~



moments E[G(yt,7)] can be calculated for the model and used in place of

ﬁT(ar).

An example of estimation is suggested by equation (3a). From the tower
property of conditional expectations, Ep€ = Ethn_a. Thus one could
estimate a« by GMM with q = v = 1 (presetting B, say) based on the moments:

T T
Wr = 71 pr and W(y) = 71 ZB-xtH *  In this simple example a constant
t=1 t=1

is the only instrument. Hansen and Singleton (1982) estimate a and B using
this method with some additional moment conditions that provide

overidentifying restrictions and hence a test of the model.

The advantage of this method is that one can estimate and test the model
in (3a) and (3b) without specifying the law of motion for the forcing
variable. Data on {x¢} are used, and some weak restrictions on its
properties are required for asymptotic distribution theory, but there is no
parameterization of the {x.} process. The disadvantage of this method is
that it cannot be used to predict asset prices since the expectations in (3a)
and (3b) are unknown. Solving for asset‘prices requires further, testable
assumptions on the data generation process (DGP). For example, one could
restrict prices to be positive or one could test whether the forecasts
embodied in asset prices coincide wi£h optimal conditional forecasts. Hansen
and Singleton (1983) specify a joiht, log-normal distribution for {y.} and
hence solve for asset prices and estimate by maximum likelihood; Hansen and
Sargent (1980) outline methods for testing cross-equation restrictions in the

multivariate {y.} process for linear models.

Macroeconomic models frequently include unobservable or latent variables



such as productivity shocks in growth models or, in the case of the
asset-pricing example, measurement error in aggregate consumption.4 Computing
the likelihood or even moments can be difficult with a latent variable. In
these circumstances a heuristic device is to set the parameters and simulate
the model. Then comparing statistics ffom the simulations to those in data,
while varying the parameter settings ta seek a good match, amounts to
estimation. Formal simulation estimators in economics originated with
McFadden (1989), and Pakes and Pollard (1989) (see Hajivassiliou’s (1991)
review of estimation by simulation in models with limited dependent variables
elsewhere in this volume). Simulation estimators sometimes can be
constructed without the complete DGP (see McFadden and Ruud, 1990). In
macroeconomics Kydland and Prescott (1982) estimated some of their parameters
by grid search and simulation, while others were set on the basis of other
evidence. Thus their method of parameterization was a hybrid of estimation
by simulation and calibration. Several subsequent studies have simply

calibrated related models with the Kydland-Prescott parameter settings.

Natural examples of moments which are difficult to calculate
analytically in macroeconomics arise from measurement schemes. Typically
data are collected by time-averaging, skip sampling, or other schemes the
effects of which on moments may be difficult to work out analytically.
Simulating the measurement or sampling model along with the underlying
economic model provides a very simple estimation method. Other settings fbr

estimation by simulation arise in financial modelling in continuous time.

4
See for example Kydland and Prescott (1982) and Gregory and Wirjanto (1990).



There the conditional likelihood (transition probability density function)
often is the solution to a partial differential equation which is very

difficult to solve for interesting processes.

To illustrate a formal version of this second approach to estimation,
suppose that the econometrician measures {x{} with error. In some cases «
and B may still be estimatable by GMM but generally estimation (and certainly
prediction) requires one to parameterize and simulate the unobserved process.
Then the unknown expression for the theoretical moment can be replaced by a
simulated moment ﬁ(yn,w), where n indexes simulated observations. For
example, suppose that the researcher parameterizes the process for the
consumption growth rate as Mehra and Prescott (1985) did. Let the true
growth rate, x,, (observable only by agents) follow a Markov process on a
finite, discrete state space A = {A;,A2, ...,A,}. This process is stationary

and ergodic, with transition matrix ¢,

1,2, ...,J. (6)

¢ij = Prob [Xn+1 = Aj I Xn = A,] i,j
The equilibrium or unconditional probabilities are given by
¢; = Prob [x, = A;] V n. (7)

If the current state is (c,, A;), then from equations (3a) and (3b) the
prices (relative to one unit of the commodity at time t) of the two assets
are

1

p (A1, cn) = B EL(xne %) |1n] = B Y #is A" ~ (8a)

J
Jj=1



pe(Ahcn) = B E[(xn+1—a)' (Cn+1 + pe(lj,cn.ﬂ))lln]

J
=B ) i A5 “(yen + PT(A5,2500)). (8b)
Jj=1

fhe finite-state Markov process allows analytical expressions for the asset
prices. In many cases realistic models will not have this feature and a
recent and important development in macroeconomics is the use of numerical
methods for solving models (see Taylor and Uhlig, 1990, and references
therein). Burnside (1990) discusses estimation when moments are approximated
analytically, rather than by Monte Carlo methods. In this chapter we focus
on estimation and testing and hence use an example in which deducing the

predictions of the theory is straightforward, once {x,} is simulated.

Next simulations {x,:n =1,2,3,...,N+1} are drawn from this probability
law and functions {w(yn,7)} are calculated using specific values of y. Then

estimation can be based on the method of simulated moments (MSM):

yusu = argmin || Wr - Wy(a) || (9)
vel

N
where Wy(y) = Nt Z W(yn,7) are the simulated moments. The vector 7 now may
' n=1

include parameters of the forcing process. If the rationale for estimation
by simulation is that {x¢} is measured with error then W; will include
moments of asset prices only. Under ergodicity the two sample moments which
are mgtched in (9) converge, as T and N approach infinity, to two population

moments which are equal at 7o; this eqﬁality forms the basis of estimation.

The argument in equation (9) can be rewritten as:

10



Wr = Un(y) = Wy - Wr(9)] + [Wr(7) - EW] + [Ew - Wy(3)]

= [WT - ﬁr('[)] + st + uy (10)

In equation (10) the first term is the argument of the GMM estimator in (5).
The second term, sy, is a sampling error which arises if GMM or MSM is based
on sample moments rather than population moments Ew. The third term, uy, is
a simulation error. Thus the difference between GMM and MSM estimators
depends on the properties of wuy. In many macroeconomic applications no
simulation bias arises, but consistency and asymptotic normality results in

MSM require some restrictions on the error uy.

One possibility suggested by (10) is to prove a central limit theorem by
applying empirical process methods (see Pollard 1984, 1985) to the simulation
residual. Let vy be the empirical process operator defined as
VN = N%(P - Py), where P is the population probability measure and Py is the
empirical measure, with mass N-1 at each observation G(yN,y). The
standardized residual is N%uN = vNﬁ(yn,w). An important necessary condition
for CAN 1is that the empirical process wvyw(y,,¥) 1is stochastically
equicontinuous in 7. This smoothness condition requires that Monte Carlo
random numberé not be redrawn as %y 1is varied. It does allow some
discontinuities. For example, in finance many applications (e.g. with kinked
payoffs) involve functions w which are not pointwise differentiable with
respect to 7. In these circumstances Taylor’s Theorem applied to w(yn,?7)
cannot be used to establish asymptotic normality. Pakes and Pollard (1989)
describe central 1limit theorems for such environments; as in (10) these
theorems take limiting operatipns first, then rely on the differentiability

;
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of the expectation.

Duffie and Singleton (1990) note two reasons why standard proofs of CAN
for MSM in i.i.d. environments may not apply to dynamic models. First,
simulations begin from some initial values, yet the unconditional
distribution of the forcing variables typically is not known as a function of
the parameters. For example, one would simulate the asset-pricing model here
by choosing an initial state (co A;) then calculating prices as in (8a) and
(8b) by drawing consumption growth rates from the conditional probability
density function. Geometric ergodicity in {xn} is sufficient for the effects
of using arbitrary initial conditions in simulation to die out. Second, in a
non-i.i.d. environment the simulated moment depends on the parameters
directly through the moment condition (as in GMM) but also indirectly because
values of parameters such as ¢ are used in generating the past history of the
simulated variables. For example, the simulated mean price of the risk-free
asset is

~ -1 & -o
fn(z) = N ) B-Xaur (11)
n=1

which is a function of B and « (just as in GMM) but also depends on the
parameters through their use in simulating {xn}. Duffie and Singleton

provide CAN results for MSM under these conditions.

In fact, in this example one can calculate the unconditional mean of the

risk-free price as:

J J
Elii(ye, )] = E(®) = ) ) ¢i6i5 25 (12)
. 1=1j=1

12



This population moment would provide more efficient estimates than would the
simulated moment — both sty and uy can be avoided. In general, though, the
simulation error uy will make the MSM estimator less efficient than a
comparable GMM estimator. For Pw° < w, v is asymptotically distributed as
N(O, P’ - (PW)?) i.e. N(0, var[wl). This result is a heuristic version of
Lee and Ingram’s (1991) finding that if N = T then the asymptotic (as T and
N »> w) variance is twice that of the GMM estimator. The idea is that
simulations are independent of the observed data and hence their contribution

to the variance is orthogonal to that of the usual GMM component.

Other simulation methods and variance-reduction techniques can reduce
sampling variability. Duffie and Singleton (1990) note that averaging over R
independent simulations with N = T yields an asymptotic variance (1 + R_l)
times the GMM one. By ergodicity the same result holds if there is one long
simulation with N = RT. Melino (1991) suggests other improvements:' for
example, if one is simulating an Ité process, then one need only simulate the
predictable component, since the expectation (used in estimation) is
unaffected by the martingale- component. In many cases one can simply set N
very large, calculate population moments, and then apply GMM; in such cases
there is little efficiency loss from simulation, which is simply used as a

calculation device.

Gregory and Smith (1990) present some Monte Carlo results for GMM and
MSM ?stimators -in small samples in this asset-pricing model. They also
present nonparametrically estimated densities for examples of these
estimators. One drawback in informal MSM is that parameters may be selected

even if they are not identifiable. A second general point is that matching

13



properties other than moments may lead to inconsistent estimators.

Nevertheless, estimation and testing sometimes may be based on matching
properties other than moments. For example, macroeconomic evidence might be
summarized in the coefficients of a vector autoregression or of a linear
regression. Given identifiability, one could calculate the population
coefficients in the same regressions in a theoretical model and match the two
sets in order to estimate parameters. Smith (1989) shows that such matching
yields consistent, asymptotically normal estimators provided it is based on

regular functions of asymptotically normal variables.

In practice the choice among estimators often hinges on computation.
Much remains to be learned about practical estimation in specific
applications, particularly with non-differentiabilities. Bossaerts and
Hillion (1991) outline applications of MSM in financial models. They
describe methods for estimating option-pricing models in which priceé are
found by simulation (see also Boyle (1977)). CAN results are available,
despite non-differentiabilities and dependent errors, provided simulation

estimates enter moment conditions linearly.

In some economic models a further approximation arises because moments
of a continuous-time process are approximated by moments from a simulated
discrete-time process. Bossaerts and Hillion (1991) 1let the order of
discretization grow with the sample size, and interpolate to reduce bias in
finige samples. . Duffie and Singleton (1990) discuss discretization schemes
and asymptotic results. Smith and Spencer (1991) use a simple discretization
for MSM estimation in a target-zone model of exchange-rate intervention, in

which again theoretical moments cannot be calculated analytically.
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So far we have noted that simulation methods may be wuseful in
parameterizing macroeconomic models in which there are unobservable variables
or simply analytical intractabilities. But there is a further use for
simulation methods even if GMM is feasible: repeated simulation can allow
exact (small-sample) estimation. For example, Tauchen (1986) and Gregory and
Smith (1990) find numerically that for this asset-pricing DGP and for
realistic persistence in consumption growth rates &GMM is biased down if o =
2.0 or 4.0 (for N = 100 or 500). Setting N = T and making R large traces out
the finite-sample density of &GMM and hence can be used to make bias
corrections. This is a traditional use of the Monte Carlo method in

econometrics.

A third method of parameterization, and an alternative to formal
estimation methods such as GMM and MSM, is to assign parameter values with
reference to other studies i.e. to calibrate. One idea behind this method is
simply to reduce wuncertainty about a model’s predictions, and hence
strengthen tests, by assigning parameter values using point estimates from
related studies. Gregory and Smith (1990) study mixed estimators in which
some parameters are pre-set (calibrated) and others are estimated, as in
Kydland and Prescott (1982) or Bufnside, Eichenbaum, and Rebelo (1990).
Obviously there is a trade-off betyeen efficiency and robustness — generally
estimators will be inconsistent if the pre-setting is incorrect but may lead
to estimates with lower mean square error if the pre-setting error is not
largg. The importance of pre-setting a parameter, as opposed to estimating
it consistently, can be gauged in sample size: How much larger an historical
sample would be required with estimation, as opposed to calibration, to

achieve as much precision in sSome measure? Moreover, in some cases moment
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conditions can be found which can consistently estimate some parameters even

if others are set incorrectly. Gregory and Smith (1990) give an example.

3. Model Evaluation and Testing

Once a model has been formulated, solved, and parameterized its
properties can be studied and compared to those in data. Relatively informal
comparisons of moments have become very widespread in macroeconomics. These
comparisons may illuminate respects in which the model seems inadequate. Of
course, an exact match is unduly restrictive since historical moments have
sampling variability and so can differ from a model’s population moments even
if the model is true. Therefore some method for gauging the discrepancy
between actual and predicted moments is necessary. Three sources of
uncertainty may affect the comparison. First, uncertainty may arise from
simulation or from approximation. We shall assume R, the number of
replications, is large, so that simulation error can be safely ignored (and
we need not distinguish between GMM and MSM, for example). Second,
uncertainty arises if parameters are estimated. Third, there is sampling

variability in the historical moments themselves.

This section illustrates several techniques of model evaluation using a
common data set. The data are annual returns used by Grossman and Shiller
(1981) and Mehra and Prescott (1985) for 1889-1979. Consumption is measured
as annual per capita real consumption on non-durables and services. The real
retu{p on equity is constructed from the corresponding consumption dgflator,
the annual average of the Standard and Poor Composite Stock Price Index, and
annual dividends. The risk-free real return is based on prices of short-term

securities (such as Treasury Bills), as in Mehra and Prescott . (1985, section
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2).

Economic models typically restrict a wide range of properties, and hence
one approach to formal testing is based on overidentification. Suppose that
v parameters have been estimated using q moment conditions. Hansen (1982)
shows that under Ho T times the minimized value of the criterion in (5') is

asymptotically xz(q-v):

J = T[(WT‘ w('}cmm))TS;I(WT‘VJ(&GMM))] 2 XZ(C{"'V), (13)

where Sy is defined in section 2. This test of overidentifying restrictions
allows for sampling variability in moments and for parameter uncertainty. A
similar test can be applied if only v moments are first chosen for
estimation, and then the remaiﬁing q-v are used for testing. An example is

given by Burnside, Eichenbaum, and Rebelo (1990).
Example 3.1: Testing Overidentifying Restrictions.
To illustrate the test in equation (13) we first calculate GMM estimates

of @ and B by transforming equations (3a) and (3b) to give the following

moment conditions:

EL(BXear “oriy - 1).2,] = 0, : (14a)
! E[(thn—a'rsn - 1).z¢] =0, (14b)
f f e e e
where riy; = 1/p: and r¢s+1 = (pt+1 + Cis1)/Pt are the real, annual, gross

17



returns on bonds and equity and z; ¢ I; is a vector of instruments in agents’

information set. In this example 2zy = (1 X¢ Xt-1 r{ r£_1 rf rf-1). With
seven instruments and two equations q =14 and Vv = 2. The parameter

estimates are Bows = 1.030 (0.0681) and agws = 9.747 (3.383), with standard
errors given in parentheses. Note that the estimate of B is outside the
range to which it would usually be restricted in calibration. The value of
the J-statistic is 29.689 and comparison to its asymptotic distribution
x2(12) gives a prob-value of 0.0031 so that the model is rejected at the

usual significance levels.

Many tests of calibrated models can be viewed as more detailed studies
of the dimensions in which a model might fail empirically, because complete
calibration of a model is not required to test it (as example 3.1
illustrates). The aim of calibrating a model economy is to conduct
experiments in which its properties are derived and compared to those of an
actual economy. One way to describe this comparison is to use the language
of classical statistical inference: if the actual properties could not have
been generated by the economic model except with very low probability then
the model is rejected and otherwise it is not. But nothing hinges on viewing
the comparison as a classical test. For example, one could treat the
comparison simply as a measurement exercise in which one gauges the
proportion of some observed variance, say, which the theoretical model can

reproduce.

In contrast to the test in example 3.1, most tests of calibrated models
evaluate models while ignoring parameter uncertainty. For example,
Cecchetti, Lam, and Mark (1990) test a fully-parameterized version of the

consumption-based asset-pricing model by comparing the unconditional moments

18



of 1its predicted asset prices with those in historical data. Their
asymptotic test allows for sampling variability in moments and in parameters
of the {x.} process, and shows the effect of fixing « and B as is done in

calibration.

However, an advantage in testing calibrated models is that exact
procedures are available because the complete DGP is specified. Thus an
alternative to asymptotic tests in a fully calibrated model is to use the
sampling variability of the simulated moment to gauge the closeness of the
historical moment to the model’s population moment. To conduct this test,
one simulates repeatedly with same sample size as is available in historical
data and then forms the empirical density of the simulated moments
{0n(¥)r: r =1,...,R}. With this density one can calculate critical values,
or treat the historical moment as a critical value. For example, the
proportion of the sequence {Wy.} that exceeds Wr gives the size of the
one-sided test implicit in the comparison of the historical and population
moments. Since N = T the inference is exact as R becomes large. The same
principle can underlie joint tests, which are valid provided the matrix of

moments is of full rank.

Monte Carlo testing can be traced back to Barnard (1963) and an economic
application is given by Theil and Shonkwiler (1986). Gregory and Smith
(1991) use this method to calculate the sizes of tests - of various
parameterizations of the simple asset-pricing model used in this chapter. Wé

next provide two examples.
1
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Example 3.2: The Size of the Mehra-Prescott Tesf.

This example calculates the size (probability of falsely rejecting a
true model) of the test Mehra and Prescott (1985) conducted with a calibrated
version of the asset-pricing model outlined above. They parameterized the

model as follows: o = 1.5, B = 0.99, A, = 0.982, A, = 1.054, and

¢ = 0.43 0.57
0.57 0.43

The rationale for this calibration is that the population moments of this
consumption growth-rate process match those of the U.S. annual sample for
1889-1979. Based on various applied studies which estimate o Mehra and
Prescott concluded that « is probably between 1 and 2. They examined the
sensitivity of findings to values of « between O and 10 as well as valueé for
B between 0 and 1. As a particﬁlar example, consider « = 1.5 and B = 0.99.
This choice of a 1lies outside the 95% confidence interval around &GMM

estimated from the annual returns data in example 3.1.

Table 1 lists moments implied>by the model and found in data, as is
typically done in calibration studies. The firstAcolumn presents the first
two population moments of consumption growth, the risk-free return, and the
equity premium for the model. The second column of the table gives the same
moments for U.S. historical data. The population equity premium rate

t

(Er® - Erl) is 0.20%.
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Table 1: Population and Sample Moments
(Mehra-Prescott Model)

Moment Model 1889-1979 95% Confidence Interval
[11639)] 1.8 1.83 (1.2, 2.4)
std(x¢) 3.60 3.57 (3.6, 3.6)
y(r{-l) 3.51 0.80 (3.4, 3.6)
std(r{—l) 0.8 5.67 (0.8, 0.8)
e f
plre-ri) 0.20 6.18 (-0.6, 1.0)
std(re-ri) 3.9 16.67 (3.7, 4.0)

Note: Values are giveg in percent terms. p denotes a mean, std denotes a
standard deviation, ry is the gross, real return on the risk-free asset
(T-bill), rf is the gross, real return on equity. Returns are measured as
percentages. Confidence intervals are based on R = 1000 replications.

Mehra and Prescott tested the model by examining whether it could (with
« and B in the restricted range) generate both a population value for the
risk-free rate of return less than 4% and an equity premium of at least 6.2%,
which is the value for the historical sample for the U.S. from 1889-1979.
Formalizing this test wusing Monte Carlo methods requires no auxiliary
assumptions, since the model is completely parameterized. The proportion of
simulations (wi@h N = T) which satisfy the criterion given above is the size
of tﬁe test. Gregory and Smith (1991) find this proportion to be zero, so
that the model is very unlikely to have generated the data. Some other

parameterizations lead to positive prob-values. The same method can be used
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to test the model or formalize comparisons using other moments shown in Table
1 and to construct confidence intervals. For example, the third column in
Table 1 shows the interquantile ranges from the empirical density function of

the simulated moments.

Example 3.3: The Size of the Hansen-Jagannathan Bounds Test.

Models also may be evaluated using more general diagnostic procedures.
Examples are variance bounds tests (see Shiller (1987)). The idea behind
such tests stems from writing asset prices as products of expected payoffs

and an intertemporal marginal rate of substitution. For example, in equation

(3a)

p: = EIB Xt+1—a|1t]: (15)

where p{ is the price of an asset which pays 1 in all states and B xtH-a is
the intertemporal marginal rate of substitution (IMRS) between time t and
time t+1. Denote this IMRS as m, a scalar and let std denote a standard
deviation. Then pi = Elm¢sq|Ie], and std(pi) = std(Elmesq | Te]) < std(mesq);
because the price in the economic model is the conditional expected value of
a random variable it should be less variable than the actual random variable.
Thus the variance of observed, risk-free asset prices can provide a lower
bound on the variance of the IMRS. In this sense the variability of the
risk-free price can allow a test of a specific economic model of m.

In discussing calibration we have described attempts‘to match moments

from theory with those in data. Bounds tests use much less information in
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evaluating the model but can still serve as useful diagnostics and show why
certain models might be rejected in statistical tests. They are weak tests
because they do not require a complete parametric model of m, as Hansen and
Jagannathan (1991) show. We next describe their general diagnostic, for the

special case in which there is a unit payoff (a risk-free asset).

Let r be a vector of returns on assets with payoffs one period hence and

p be the corresponding price vector. Standard asset pricing models give rise

to the following unconditional pricing relation:

Elmr] = ¢; (16)

where ¢ is a vector of ones of the same dimension as r. Examples include

-

equations (3a) and (3b), where Meyy = BXesq and
Fe4q = (l/pi (Cesq + pf+1)/p:)T.5 Following Hansen and Jagannathan assume

that E|m|? < w, E|r|? < o, E|rrT| is nonsingular, and E|p| < @. Although m
cannot be calculated directly from observations of returns, imagine
constructing its population least-squares projection onto r, denoted
m* = r's. Suppose in constructing mi"E we require that it satisfy the
restriction from theory given in (16). Then Elrr's] = ¢ and & = Elrr'1 .
Notice that we can construct m* using the unconditional second moment of r.

Importantly since the portfolio contains a unit payoff then Em* = Em = Epi

While the bounds may be developed using a conditioning set (say information
1

available to the agents at time t, as in Gallant, Hansen and Tauchen, 1990)

we choose the simpler unconditional relation.
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the expected price of a unit payoff.6 Moreover, std(m) = std(m*), because m*

is based on a projection.

In applications the population moments are estimated by the sample
moments; denote the estimator ﬁT. One can find the standard deviation bound
of a candidate IMRS, std(m*), and compare it to std(my). The idea is similar
to that in example 3.2 in that it evaluates the credibility of a candidate
model. We next use simulation methods to determine the sampling variability

involved in this bounds test.

We first determine the population standard deviation of the
intertemporal marginal rate of substitution from the same, fully
parameterized economy used in example 3.1. We denote this std[m]; this is
the object which will be bounded from below by std[{m*]. We also calculate
the population bound std[m*]. These values are given in the first two
columns of Table 2. The first row uses only the risk-free asset while the
second row uses the risk-free asset and the equity. The latter case gives a

much tighter bound, since it uses more payoffs.

Next we simulate the model R = 1000 times and calculate an estimated
std[my]l. r = 1,...R based on simulated samples of N = 90 observations.The
third column in Table 2 gives the (.05,.95) interquantile range for these
bounds. There is considerably more sampling variability in the bound when

simulated equity payoffs are included, in part due to near singularities in

Hansen and Jagannathan also consider more realistic cases in which there is
no risk-free payoff. They also. discuss how to exploit the restriction that m
is positive.
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the sample mean of rrT.

The interquantile range can be thought of as the non-rejection region
for the test with size 10%. Testing may be done using actual data by
determining whether the observed sample estimate std[m;] lies in this region.
This estimate is shown in the fourth column of the Table.' The Table uses

data for 1889-1979 so that T = N.

Table 2: Size of the Bounds Test
(Standard Deviation of the Intertemporal Marginal Rate of Substitution)

Prices std[m] std[m*] (.05,.95) stdlmy],. stdlms] p-value

pi 0.051 0.00717 (.00709, .00721) 0.059 . 000
(0.009)

p{, p: 0.051 0.049 (.00739, .229) 0.372 . 000

First consider the properties of the bound which uses only the risk-free
returns. From the first row of the table, stdlm;] is slightly larger than
std[m]. The asymptotic standard deviation of std[m;] is given beneath it in
parentheses and showsk that the sampling variability in std[ﬁT] could
rationalize stdlmy] < std[m]. In this sense the asset-pricing model is able
to generate realistic volatility in the IMRS to be consistent with that

implied by risk-free returns alone.

However, the exact 95% interquantile range for std[my] for the one-asset
case does not contain std[my] and the.probability of observing std[m;] in a

sample of 90 observations under this asset-pricing model is zero. Thus the

25



exact test finds that the model cannot generate sufficient volatility in

small samples to account for the volatility in the data.

The same two tests can be conducted with two asset return sequences, as
in the second row of Table 2. In this case we were not able to calculate the
asymptotic standard error of std[m;] because of a numerical singularity.
With two assets std[ﬁT] rises to 0.372 and this lower bound seems be much
larger than the standard deviation of the model’s IMRS, 0.051. Under the
null hypothesis that the model is true we find that it does not generate a
bound of 0.372 in 1000 replications so that the one-sided prob-value is O.
Even though the sampling variability of the estimated lower bound is much
larger with two assets it is not large enough to account for the large lower

bound in the data.

We have examined whether there is enough sampling variability so that
the model could generate the observed, historical bound std[ﬁT] i.e. it
compares std[m*] to std[ﬁT]. A separate though related question is: what is
the probability of finding std[my] > stdlm] when the model is true? Recall
that std[m*] < std[m]. For this test one again uses the variability of the
std[my]. and compares std[m*] to stdim]. The one-sided prob-value for this
test with one asset is 0.00 and with two assets it is 0.68. Thus in the
artificia} economy with bounds based on two returns 68% of the lower bounds

exceed the actual standard deviation of the IMRS.

These prob-values and confidence regions are themselves estimates, but
increasing the number of replications or local smoothing of the empirical
density of the std[my]l. had no effect to several decimal places. When

calculating E[m] and std[m] for a candidate model of the IMRS it seems simple
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to wuse simulation to gauge the exact sampling variability of the

Hansen-Jagannathan bound under the null.

The three tests outlined in the examples — based on orthogonality
restrictions, on matching the mean equity premium, and on a bound on the
variance of the IMRS — all reject the model. In this case they yield
similar results, although they use different information. For example, the
rejection in example 3.1 does not require a parametric model of the
consumption growth rate x;. It thus suggests that reformulating the
asset-pricing functional in (3a) and (3b) (as opposed to the forcing process
in (6) and (7) only) is necessary. Numerous reformulations of this and other
asset-pricing models have sought to generate features such as a larger mean

equity premium and a more variable IMRS than those generated by the DGP here.

4. Further Topics in Model Evaluation

Models also may be evaluated according to their ability to reproduce
features of standard '‘windows' applied to historical data. For example, one
could study a linear regression or vector autoregression which has been
fitted to data, and calculate the population regression coefficients in the
same statistical window implied by a fully calibrated model. Again sampling
variability can be taken into account to gauge the distance between the two.
Such comparisons can highlight particular directions towards which
reformulated models might aim. Backus, Gregory, and Zin (1989) study the
term structure of interest rates along these lines. Kwan (1990) matches

\

impulse response functions in a business-cycle model.

So far we have discussed evaluating calibrated models by comparing
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moments in data with those predicted by the theoretical model. A stronger
test is to seek to match entire densities, even if moments do exist.’ In the
asset-pricing example one could seek to match the density of the real
interest rate. Such methods are used informally in international finance,
where target-zone models of exchange rates generate exchange-rate densities
which are compared to those in data. A difficulty with this approach is that
standard Kolmogorov-Smirnov tests cannot be used because neither density is

known analytically.

Several proposals for model evaluation have been made which return to
the issue of parameter uncertainty. One possibility is simply to examine the
sensitivity of findings to parameter settings by reporting results for
various sets of parameters. An alternative suggested by Kwan (1990) is to
formulate a prior density and use formal Bayesian methods. Denote this prior
by m(y), which is coﬁditional on information in other studies, for example.
In most calibration studies m is sharp and has point mass at specific values.

The joint, predictive density of simulated, endogenous variables is
£({Pn:n=1,...,N}) = If({ﬁn:n=1,...,N}|7)-1t(7)d7.

Model evaluation is based on moments or other statistics calculated in the

simulated data. Kwan proposes a formal measure of distance between simulated

The same matching could be applied to densities of sample moments. For
examplé, one could compare the distribution of means (calculated for each
decade) of the risk-free interest rate with the simulated density of means
each based on ten observations. Or one could compare the distribution of
mean returns for different countries with the same simulated density. We

thank Doug Willson for this suggestion.
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and actual moments, given by the probability that Wy 1lies in some
neighbourhood around the historical sample moment Wy. This is the same idea
as above — the randomness in the simulated (rather than actual) moment is

used to measure distance.

As in the classical case inference is essentially exact (given a large
number of simulations), as it would be in a standard Bayesian analysis based
on the likelihood function of the data f({p.}|y). While f({ﬁn}lv) is not
needed explicitly, since one can simply draw from the model (resampling from
n(y) with replacement) the density of the sample moment or the moments of the
sample moment’s density also are unavailable analytically. These can be
calculated by Monte Carlo integration, perhaps with importance sampling.
Canova (1991) formalizes mixed calibration/estimation exercises as Bayesian,

along these lines.

In some cases calibrated models are not complete probability models and
hence are not intended to mimic the complete random properties of the series
under study. These models cannot be evaluated statistically, or fairly
treated as null hypotheses, unless they are augmented by some random
variables, perhaps interpreted as measurement error. For example, Hansen and
Sargent (1980) observe that stochastic singularities often arise in dynamic
economic models. An example can be given in the asset-pricing model. Recall
that p{ = E[thn-allt], and suppose that to test the model an investigator
(having studied statistical properties of the IMRS) proposes that the
expectation be modelled as E[thn_a|xt] = g(x¢). In that case the predicted

| .
asset price is a deterministic function of x.. Since such deterministic

relationships are rarely detected in data, this model would be rejected. It

can be made testable if there ‘is some component of the information set used
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in forecasts which 1is not observed by the investigator so that
p€ = g(x¢) + €, where g = E[thn-allt] - E[Bxbn-alxt]. A further example
is given by Altué (1989) who begins with a one-shock business cycle model and
then augments variables with idiosyncratic error. Watson (1990) proposes
identifying the error process by the requirement that its variance be as
small as possible. He also proposes goodness-of-fit measures which evaluate
the contribution of the original model to accounting for movements in the
endogenous variables, by measuring the variance of error necessary to match

theoretical and data properties.

5. Conclusion

Although we have attempted to give a formal statistical interpretation
to some aspects of calibration in macroeconomics, it perhaps is best viewed
as an informal guide to reformulating a theoretical model. Setting parameter
values (i.e. calibrating), simulating a model, and comparing properties of
simulations to those of data often suggests fruitful modifications of the
model. Precisely this method has led to numerous modifications of the simple
asset-pricing model used an as expository device in this chapter. Further
statistical formalization and refinement of the methods used to evaluate

calibrated models will help improve economic models.
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