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ABSTRACT

This paper develops a new method for constructing approximate solutions to
discrete time, infinite horizon, discounted stochastic dynamic programming
problems with convex choice sets. The key idea is to restrict the decision
rule to belong to a parametric class of functions. The agent then chooses
the best decision rule from within this class. Monte Carlo simulations are
used to calculate arbitrarily precise estimates of the optimal decision rule
parameters. The solution method is used to solve a version of the Brock-
Mirman (1972) stochastic optimal growth model. For this model, relatively
simple rules of thumb provide very good approximations to optimal behavior.
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1. INTRODUCTION'

This paper develops a new method for constructing approximate solutions
to discrete time, infinite horizon, discounted stochastic dynamic programming
problems with convex choice sets. This class of optimization problems
underlies a wide variety of modern work in dynamic, stochastic economic
modelling. The solution to this class of optimization problems consists of a
time-invariant function that relates the current state of the system to the
optimal choices for next period’s endogenous state variables. This function,
or decision rule, possesses a closed form expression only in the simplest
economic environments.1 This paper develops a new numerical method for
calculating a reasonable approximation to the unknown decision rule.

The key idea is to restrict the decision rule to belong to a class of
functions characterized by a set of decision rule parameters (e.g., the class
of polynomial functions of the state variables). The agent then chooses the
best decision rule from within this class; that is, the agent maximizes the
specified objective function subject to the functional form restriction on
the decision rule by choosing the best set of decision rule parameters (e.g.,
coefficients on the polynomials).2

This approach to constructing approximate solutions to recursive
stochastic dynamic programming problems can be given a behavioral
interpretation: agents are boundedly rational in choosing the functional form
of the decision rule, but are fully rational in selecting the optimal set of

decision rule parameters. This approach therefore places a tight structure

TThis paper is drawn from Chapter 1 of my Ph.D. dissertation at Duke
University. I would like to thank my thesis supervisor, John Geweke, for
invaluable guidance and support. I would also like to thank Dan Bernhardt
and Gregor Smith for helpful comments and discussions. All errors are mine.



on the way in which agents behave suboptimally: although the choice of
functional form is restricted, the choice of the optimal decision rule
parameters is not. Thus the "rules of thumb" employed by agents, though not
fully optimal, nonetheless solve a more limited optimization problem.

Monte Carlo methods can be used to calculate arbitrarily precise
estimates of the optimal settings for the decision rule parameters, given a
functional form for the decision rule. The central idea of the numerical
algorithm is to simulate the dynamic behavior of the state variables for
different values of the decision rule parameters. The agent then chooses the
set of decision rule parameters that, on average, produces the best results
from the viewpoint of the agent’s objective function.

More precisely, it is shown that as the number of independent
simulations increases to infinity, the numerical estimates of the optimal
decision rule parameters converge in probability to the (true) optimal
decision rule parameters. Asymptotically, the estimates are normally
distributed with a covariance matrix that can itself be estimated
consistently. This distributional result can be used to assess the numerical
error associated with a finite number of simulations. A specific numerical
application shows that very accurate estimates of the optimal decision rule
parameters (given a functional form for the decision rule) can be calculated
using a relatively small number of simulations.

By enlarging the class of functions from which the best decision rule is
chosen, one can in principle approximate arbitrarily well the fully optimal
but unknown decision rule. The practical usefulness of this approach,
however, hinges on the ability of relatively low order approximations to
provide good approximations to the unknown decision rule. This paper does

not address the difficult problem of characterizing in general the



relationship between the accuracy and the order (or "complexity") of
approximate decision rules. A numerical example with a known analytical
solution, however, suggests that relatively simple rules of thumb can provide
very good approximations to optimal behavior.

The paper is organized as follows. Section 2 formally defines the class
of optimization problems addressed by this paper and explains the numerical
algorithm for constructing approximate solutions to these problems. Section
3 develops the details of the asymptotic theory underlying the numerical
algdrithm and discusses some issues of implementation. Section 4 extends the
numerical algorithm to incorporate antithetic acceleration, a powerful
variance reduction technique that provides large increases in accuracy for a
given number of simulations.3 Section 5 implements the solution method for
the stochastic optimal growth problem studied by Brock and Mirman (1972).
Section 6 concludes and suggests some avenues for future research. Proofs of

the asymptotic results in Sections 3 and 4 are gathered in an Appendix.

2. THE SOLUTION METHOD

2.1 The Problem
The class of optimization problems addressed by this paper can be
defined formally as follows (the notation and assumptions are drawn largely

from Chapter 9 of Stokey, Lucas, and Prescott (19839)):

0
t .
max Ey § B rlx %, 1,2,) given x,, z, (1)
{x,}% t=0
t t=1
subject to: Xipq € F(xt,zt) for all t,

where {zt}:= is a Markov process with stationary transition density
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v( ). 1z, is the 4x1 period t exogenous state vector; z, € Z for all t,

Zy 4112 t

where Z is a compact, convex subset of Rz. Xy is the px1 endogenous state

vector; x, € X for all t, where X is a closed, convex subset of RP.

t
S = X x 2 is the state space; at any time t, st = (xt,zt) € S characterizes
the current state of the system. The agent observes S¢ prior to making
period t decisions (i.e. prior to choosing Xt+1)' The correspondence

': S 5> X determines the set of feasible choices for next period’s endogenous
The discount parameter

state vector, given the current state s

Xt+1° t

B € (0,1). EO is the mathematical expectation operator, conditional on
the period O information set (i.e. so).

The return function r: A > R, where A = {(xt,xt+1,zt): X4 € F(xt,zt)},
is assumed to be continuous in (Xt’xt+1’zt) and concave in (xt,xt+1) for all
zy € Z. The correspondence I' is assumed to be nonempty, compact- and
convex- valued, and continuous. The convexity of F(st) for all S € S rules
out problems with discrete choice sets. The assumption that Z is a compact,
convex set can be replaced with the assumption that Z is a countable set.

These assumptions, together with the boundedness of r(°,',°)4, imply the
existence of a unique, time-invariant decision rule w: S 5 X which expresses
the optimal choice for next period’s endogenous state vector (xt+1) as a

function of the current state (St). Moreover, w(xt,zt) is continuous in

xt for all zt € 2.

2.2 The Approach
The optimal decision rule w(+,¢) is, in general, unknown. The approach
pursued in this paper replaces w(+,*) with a "rule of thumb" characterized by

a kx1 vector of decision rule parameters ¥: x = h(xt,zt;W). The decision

t+1

rule h(xt,zt;-) closes the model. Fix an initial condition Sg = (xo,zo) and



choose a set of decision rule parameters ¥. Let z = {zt}I=1 be a sequence of
exogenous state vectors. Then, given Sy» 2 and ¥, recursive iterations on
the decision rule define a sequence of choices x = {xt}I:i for the endogenous

state vectors. These iterations proceed in the obvious way:

X = h(xo,zo;W)

X, = h(xl,zl;W)

Xp = hxp_y,2p 43 ¥)
Xryq = h(XT,zT;\I’).

Let x = q(z;W,so) represent the mapping from z to x determined by this set of

iterations.5

T
. _ t , .
Define b(x,z,so) = tzg B r(xt,xt+1,zt). b(x,z,so) is the return (or

utility) delivered by a sequence x of endogenous state vectors and a sequence
z of exogenous state vectors, given initial condition 50.6 Then, given z,
g(z,¥) = b( q(z;@,so),z ; Sg ) is the return realized by the agent when the
agent uses decision rule h(xt,zt;-) with decision rule parameters ¥ to choose
(recursively) the endogenous state variables. (The dependence of g on the
initial condition S hasbbeen suppressed to maintain notational simplicity.)
Given the functional form restriction on the decision rule, the agent chooses
the best set of decision rule parameters WO. Formally,

WO = argmax E g(z,¥), (2)

v

where, in this context, the operator E means to evaluate the expectation of

g(z,¥) with respect to the joint density of z, conditional on z, (i.e.



T
integrate with respect to 1 V(ztlzt-l) = f(zlzo), where z can be written as
t=1

a TAx1 vector).

Although Problem (2) is a simplification of Problem (1), Problem (2)
nonetheless cannot, in general, be solved analytically. Since g(z,¥) is
typically nonlinear in z, the chief difficulty lies in evaluating the
integral associated with the expectation operator in Problem (2). This paper
therefore uses Monte Carlo methods to calculate a consistent and
asymptotically normal estimate of WO. The key idea is to simulate the
behavior of the endogenous state variables for different values of the
decision rule parameters ¥. These simulations can be used to approximate the

value of the expectation in Problem (2).

2.3 The Algorithm

Proceed as follows. Using a (pseudo)random number generator, generate n

(i) (1) _ (,(1),T

i.i.d. sequences z , i=1,...n, where each z zt t=1 has Jjoint
density f(-lzo). For each of the sequences z(l), evaluate g(z(l),W). Define
- (1) (i)yn
Qn(®,T) = Y glz ,¥), where @ = {z }i_1 is the collection of the n
i=1 B

sequences z(i) of exogenous state vectors. n_1 QD(G,W) is an estimate of the
expected return E g(z,¥) associated with decision rule parameters ¥. More
precisely, by the strong law of large numbers, n'-1 Qn(®,W) converges almost
surely to E g(z,¥) as the number of independent simulations n increases to
infinity.

To compute a consistent estimate Wn of ¥., hold ® fixed and vary ¥ so as

to maximize the estimated expected return n_1 Qn(G,W). Formally,



&n = argmax n_1 Qn(G,W). (3)

Since ® is held fixed, Problem (3) is a well-defined deterministic
optimization problem. Standard hillclimbing methods can be employed to
compute in numerically. As shown in Section 3, the numerical error
associated with the estimate @n can be made as small as desired by choosing

n appropriately.

3. ASYMPTOTIC RESULTS

This section states a set of assumptions on the real-valued function
g(z,¥) (defined in Section 2) under which @n is consistent for WO as the
number of independent simulations n increases to infinity. This section also
develops the asymptotic distribution of n'/? (@n - WO). A related set of
asymptotic results permits the consistent estimation of E g(z,@o), the

optimal value of the problem given a functional form for the decision rule.

Let the kx1 vector of decision rule parameters ¥ belong to C, a compact

subset of Rk. As in Section 2, let © = {z(l)}?=1 be an i.i.d. sequence of
TEx1 random vectors z(l), each with joint density f(°|zo).

Definition 1 identifies a class of real-valued functions d(z(l),W) to

which uniform laws of large numbers can be applied (this is Definition 1 of

Tauchen (1985)).

Definition 1 d(z'l),¥) is said to be regular if:

(a) d(z(l),W) is measurable in z(l) for all ¥ € C.

(b) d is separable (see Huber (1967)).7



(i))

(c) d(z(l),W) is dominated (i.e. there exists a real-valued function b(z

such that I b(z(i)) f(z(i)lzo) dz(i) < o and |d(z(i),W)| < b(z(i)) for
all ¥ € C).
(d) d(z(i),W) is continuous in ¥ for all z(i).

(1) (1) exists

If d(e,+) is regular, then E d(z(i),w) = I d(z(i),w) f(z Izo) dz

n .
and is continuous in ¥. Moreover, n_1 Y d(z(l),W) converges (in n) almost

i=1
surely uniformly in ¥ € C to E d(z(l),W). (See Tauchen (1985) for proofs of

these results.) These results underly the proofs of the asymptotic results
presented below.
(i)

Assumptions 1-4 place the required structure on glz ,U):

Assumption 1 g(z(l),W) is twice continuously differentiable in ¥ for all

z(i).

Assumption 2
(a) 8(2(1),W) and its first and second partial derivatives (with respect to

¥) are regular functions.

ag(z(l),-) ag(z(l),°)
(b) The functions , J,£=1,...,k, are regular.
BWJ awe

(c) The function ( g(z(l),W) )2 is regular.

Assumption 3 E g(z(l),W) (whose existence is guaranteed by Assumption 2(a))

is uniquely maximized at WO’ an interior point of C.



azg(z(i),w

)
Assumption 4 E [ 0 ] (whose existence is guaranteed by

av av’

Assumption 2(a)) is invertible.

Assumption 1 requires that the return function P(xt,xt+1,zt) be twice
continuously differentiable in its first two arguments (this is a stronger
assumption than the one made in Section 2), and that the decision rule

¥) be twice continuoﬁsly differentiable in x, and ¥. Consider the

h(xt,z t

t;
first partial derivative of g(z,¥) with respect to ¥:

T

aglz, ) dx, or(-.,x yZ, ) ax or(x,,*,z,)
_ gt t t+1° %7 Tt 20 (1)
av t=0 av 6xt av 6xt+1
ox
where the pxk Jacobian matrices , t =0,...,T+1, can be defined
av’
recursively using the decision rule Xeq = h(xt,zt;w). For t =0,...,T,
ax 8h(x,,z,;°) dx, 8h(+,x,  .;¥)
t+1 - t’7t + t t+1 ’ (5)
ov’ av’ av’ axt
ax
where = 0.
av’

The recursive equation (5) captures two effects of varying the decision
rule parameters ¥. The first term on the right hand side of (5) states
that, given X, @ change in ¥ will lead to a direct change in Xi 41 The
second term states that a change in ¥ will also lead to a different choice

(since x, also depends on ¥), thereby

for today’s endogenous state x

t t

indirectly affecting tomorrow’s endogenous state vector Xi 41"

dg(z, )
Equations (9) and (10) show that the existence of ——— hinges on the
av



ar(-,xt+1,zt) ar(xt,-,zt) ah(xt,zt;°) 8h(-,zt;W)

existence of , , , and

6xt 8xt+1 ov axt

Expressions analogous to (4) and (5) can be derived for the second partial

derivatives of g(z,¥) with respect to V.

In the context of Problem (1), the conditions under which the optimal
decision rule w(xt,zt) is twice continuously differentiable with respect to
x, are unknown. The asymptotic theory underlying the proposed solution
algorithm, however, requires only that the rule of thumb h(xt,zt;W) used to
approximate w be twice continuously differentiable with respect to Xy (as
well as ¥). Assumptions 1-4 place no restrictions on w itself.

(1),W) and define

| oo =)

gz

As in Section 2, let Qn(G,W) =
1

i

¥ = argmax n-1 Q (e,v).
n v n

Proposition 1 Under Assumptions 1-4, the following results hold:

plim ¥ =~ = ¥, (8)
n-n
172 2
n’t (¥ - ¥) > N (0, V() ), (7)
-1 -1 62g(z(i),wo)
where V(TO) = A(WO) B(Wo) A(WO) , A(Wo) = E , and
ov av’
og(z1), y) og(z'"), v )
B(WO) = E
av ov’

Proof: See the Appendix.

Proposition 1 states that Wn is a consistent estimate of the optimal

A

decision rule parameters TO. Proposition 1 also states that n'/? (Wn - WO)

10



is asymptotically normally distributed, with an asymptotic covariance matrix
that is defined in terms of the first and second partial derivatives of
z(l),T) evaluated at WO. The distributional result (7) can be used to

calculate standard errors for the elements of Wn since, for n large, Wn is

gl

approximately normally distributed with mean WO and covariance matrix

n_-1 V(WO). The estimate Wn can therefore be made arbitrarily precise by

a suitable increase in n.

Proposition 2 Under Assumptions 1-4, the following results hold:

(1)

plim n ! Qn(e,@n) = Eglz ),y (8)
n-0

1/2 -1 2 (i) (1)
n ( n Qn(G,Wn) - E gl(z ,WO) ) > N ( 0, var g(z ,WO) ) (9)

Proof: See the Appendix.

Proposition 2 states that n_1 Qn(G,Tn) is a consistent estimate of

(1) o

E g(z ,¥_.), the optimal value of the problem given a functional form for

0]

the decision rule.

Given the number n of independent simulations, the distributional result

(9) can be used to construct confidence intervals for E g(z(i),wo). These

confidence intervals provide a way to assess the accuracy of Wn as an

estimate of WO’ thereby providing some guidance in the choice of n. In

particular, for n large, the following statement holds:

(i)’w

-1 2 -1/2 ~
Pr ( E glz ) > n Q(ev) + s (n o) ) = v, (10)

0]

(1)

where &i is a consistent estimate of var g(z ,WO) and Pr (w > sv) = p for

w ~ N(0,1).

11



In words, (10) states that the agent is 100(1-v)% confident that the
(1)

welfare loss from estimating E g(z ,WO) using a finite number of

-1/2 *

simulations n is no greater than s, (n 0n). The upper bound

-1/2
s (n

v ;n) can be made arbitrarily small simply by increasing n. Given a

significance level v, the number of independent simulations n is therefore

-s2 &n) is sufficiently "small". The meaning

sufficiently "large" if s, (n
of "small" depends, of course, on the nature of the optimization problem.
Section 5 suggests an operational meaning of "small" for a numerical example
drawn from the stochastic optimal growth literature.

Proposition 3 shows how to construct consistent estimates of the

asymptotic covariance matrix in (7) and the asymptotic variance in (9).

n

. o2 -1 (1) 2, 2 -1 ~ 2
Proposition 3 Define o =n i§1 ( gz .Wn) ) - ( n Qn(G,Wn) ) ’
.. _, 8%, (8,%) .. R oee e ssz!t) )
A(¥)=n ———, and B (¥)=n ) Then,

av av’ av av’
i=1
. . ~ A _1 ~ Ea) ~ A 1 _
under Assumptions 1-4, plim An(Wn) B (Wn) An(W ) T = V(WO) and
n-0
. 2 (i)

plim o, = var glz ,WO).

n->o

Proof: See the Appendix.

Calculating Wn numerically (using gradient hillclimbing methods)

agl(z, )
requires at the very least the calculation of the gradient ———— for
av

different values of ¥. Equations (4) and (5) can be used recursively to

agl(z, )
compute this gradient exactly. Alternatively, ———— can be calculated
av

12



using a numerical approximation. Similarly, the second partial derivatives
necessary for the calculation of An(wn) can be computed either numerically or

analytically by developing the counterparts to equations (4) and (5).

4. ANTITHETIC ACCELERATION

This section modifies the solution algorithm described in Sections 2 and
3 to incorporate antithetic variates. This modification leads to significant
increases in accuracy for a given number of simulations n.

Rather than generate n i.i.d. sequences z(l) (each with joint density

f(°|20)), generate instead n/2 i.i.d. antithetic pairs (z(l),E(l)), where

21 - Fl(1- Fiz't) ) and F(+) is the cumulative distribution function of
(i) (i)

z (conditional on zo). It is easy to show that E G(z ") = E G(E(l)) for

any function G(+), provided the latter expectation exists. If f(°|zo) is

symmetric about the mean vector B, = I z f(zlzo) dz, then E(l) simply equals
_ (1)
2 K, z .

n/2 (1) - (1)
Redefine Qn(G,W) = [ gz "7, 0) + g(z Vv ], where
i=1
(i) =-(i),,n/2

@ ={(z""",z2 ")},

=1 in this case. As before, let Wn = argmax n_1 Qn(®,W).

v
Note that, although there are only n/2 antithetic pairs (z(l),E(l)), the
evaluation of Qn(Q,W) still requires n evaluations of the function g(-,¥).

By the strong law of large numbers, for any ¥ € C,

plinn™! q (0,¥) = = E [ gz'" (1) (1)

n->co

,¥) + gz 7', ] =Eglz "",¥). (11)

By virtue of (11), when Qn(G,W) is evaluated using antithetic variates, the
consistency results (6) and (8) continue to hold under Assumptions 1-4. The

distributional results (7) and (9), however, must be modified. Proposition 4

13



summarizes these results.

Proposition 4 Under Assumptions 1-4, when Qn(Q,W) is evaluated using

antithetic variates, plim Wn = ¥ _ and plim n_1 Qn(G,Wn) = E g(z(l),WO).

0
n-o n-o
Moreover,
172 2
n (Wn - WO) -
N[O A(\Il)-l[B(\F)+—1—(C(W)+C(\Il)’)]A(\Il)-l] (12)
? 0 0 2 0 0 0
and
nt? ( n! Qn(®,@n) - E g(z(i),wo) ) >
N (0, var g(z(i),wo) + cov [ g(z(i),wo) , g(E(i),WO) 1), (13)

(1) (i)’w

o)

dgl(z ,WO) 6g(§

where C(TO) = E (A(WO) and B(WO) are defined in

av av’

Proposition 1.)

Proof: See the Appendix.

Comparing (13) to (9), antithetic acceleration reduces the asymptotic
standard error of n'/? ( n_1 Qn(Q,Wn) - E g(z(l),Wo) ) to the extent that

gl ,Wo) are negatively correlated. This correlation in

turn is negative to the extent that g(z(l) (1) and f(+|z.)

,WO) ijs linear in z 0

is symmetric about uz.g In many applications, both of these conditions are

met: the transition density V(ztlzt—l) specified by the economic model is

symmetric about E(ztlzt—l) and the return function g(z(l),°) is nearly linear

in z(i).

14



Similarly, comparing (12) to (7), antithetic acceleration leads to a

-~

smaller (in the matrix sense) asymptotic covariance matrix for n'/? (Wn - WO)

to the extent that ( C(WO) + C(WO)’ ) is negative definite.
Using antithetic variates, consistent estimates of the asymptotic

covariance matrix in (12) and the asymptotic variance in (13) can be

constructed as follows. Let gi(w) = g(z(l),W) and let éi(W) = g(E(l),W).

Then, letting 'B» denote convergence in probability:

n/2 “~ oA
r gi(\Iln) gi(\Iln)
i=1

n/2 - - A -
!y [ (g,¥) )2+ (&) )? ] + (n/2)7}
i=1

_1 ~ 2 -
-2 ( n Qn(®,wn) ) B var gi(wo) + cov|[ gi(WO),gi(Wo) ]

5
_, 8% (8,%)

B A(Y,)
av 8y’
n/2 ~ A - ~ - ~
) og, (v ) 8g, (¥ ) og (¥ ) dg, (¥ ) .
n Z + 3 B(Y,)
- av v’ av v’
i=1
o n/a og, (¥ ) g, (¥ )
(n/2) Z R C(¥,)

av av’

I
ey

i
The proof of Proposition 3 contains examples of the arguments required to

prove the above results.

5. A NUMERICAL EXAMPLE

This section implements the solution algorithm developed in Sections 2-4
for the classic stochastic dynamic optimal growth problem. In particular,
this section uses the proposed solution method to construct approximate

solutions to a variant of a problem studied by Brock and Mirman (1972).

15



A social planner maximizes a representative agent’s expected lifetime

utility of consumption subject to technology constraints:

max E

© 0
{Xt}t=1

8

t .
B~ log (yt - xt+1) given x,, Z (14)

t=0

subject to (for all t):

_ o
Yy = A Xy exp(zt)

Xi4q € (O,yt)

Zge1 TP 2 T Een

€ ~ IIDN(O wz)
t+1 >

Note that the transition density V(ztlzt-l) is normal with mean p Zi 1 and
variance ci. The parameters o, B, A, and p satisfy: A > 0, «,B € (0,1), and

lpl < 1. x, is the capital stock at the beginning of period t, exp(zt) is

t
the period t technology shock, and Yi is period t output. The capital stock
depreciates fully in every period, so period t consumption is given by
Yy T Xi 41 The state of the system in period t is characterized by the pair
st = (xt,zt). At every point in time, the social planner optimally chooses
next period’s capital stock, Xy, 25 2 function of the current state Sy -

The optimal decision rule for this problem possesses a known closed form
solution (see Sargent (1987)): X1 = AaB x? exp(zt). For this problem,
therefore, optimal behavior can be compared to rule-of-thumb behavior. Three

rules of thumb are considered:

Rule 1 is quadratic in the state vector:

_ 2 2 < s
xt+1 = b0 + b1 xt + b2 zt + b3 xt + b4 zt + b5 xt zt, where the decision rule
parameters bO""’bS are chosen optimally.

Rule 2 is linear in the state vector: xt+1 = ao + a1 xt + a2 zt, where

16



the decision rule parameters a_, a,s and a, are chosen optimally.

Rule 3 is a "partial adjustment of the capital stock" rule:

*

+ where the decision rule parameter A € (0,1) is

1

chosen optimally and x: = ( AaB exp(zt) )1_“; i.e. x: is the optimal

Xigq = (1-2) Xy + A X

steady state capital stock if the shock z, were to remain indefinitely at its
current level. Under Rule 3, next period’s capital stock Xt 41 is a weighted
average of today’s capital stock Xy and a (myopically calculated) "desired"

*

t

For the numerical results reported below, the model parameters are set

level of the captial stock x

at the following values:9

A B o p %

0.25 0.98 0.33 0.85 0.04

The infinite horizon is truncated at T = 800. The initial condition XO is
1

set at the deterministic steady state value of X, (i.e. (A« B)l_a); the

initial condition z0 is set at the unconditional mean of zt (i.e. 0).

For each of the rules of thumb, the objective function Qn(®,-) is
(i) =(i),,100

evaluated using the same set © = {(z , 2 )}i=1 of one hundred antithetic

. (1)_ ,_(i),T -(i)_ ,=(i),T _ :
pairs, where z ~'= {zt }t=1 and z = {zt }t=1 (hence n = 200 in

. (1) (i), T
this case). To generate z , generate a (pseudo)random sequence {et }t=1’
where eél) ~ IIDN(O,oi) for all i and t, and iterate on the recursive

. (i) _ (i) (i) s . _ =(1)

equation Zy, =P EN + €1’ beginning with t = 0. To generate z ,
simply reverse the signs on the eil)’s and iterate on the same equation:
-(1) _ _ =(1) _ (1)
Zge1 P % €te1

Consistent stimates of the optimal decision rule parameters for Rules

17



1-3 (with consistently estimated standard errors in parentheses) are

tabulated in Table 1.10

Rules 1-3 can be compared to the optimal rule along several dimensions.
Table 2 compares the various decision rules according to a welfare metric.
That is, Table 2 contains consistent estimates of the optimal value of the
problem (i.e. n_1 Qn(a,@n)) under Rules 1-3 and under the optimal r‘ule.11
Consistently estimated standard errors are in parentheses.

Table 2 shows that, from a welfare perspective, the three rules of thumb
are nearly indistinguishable from the optimal rule. For example, the welfare
loss from using the optimal linear rule rather than the truly optimal rule is
equivalent to losing only 0.0102% of per period consumption (uniformly across
all periods of the planning horizon).12 The corresponding losses for the
optimal quadratic rule and the "partial adjustment of the capital stock" rule
are, respectively, 8.3x10 °% and 2.0x10 °%.

The figures in Table 2 can be used to assess the amount of approximation
error associated with the use of 100 antithetic pairs of sequences to
evaluate Qn(-,-). For example, using (10), the agent (social planner) is 95%
confident that the welfare loss (in expected utility terms) from using a
finite number of simulations to estimate the optimal set of linear decision

8 _ 9.546x107%. This

rule parameters is no greater than 1.645 x 5.803x10
welfare loss is equivalent to losing only 0.0029% of per period consumption.
From an economic point of view, approximation error is therefore very small.
Indeed, according to the metric underlying (10), a value of n smaller than
200 (say n = 50, or 25 antithetic pairs) would suffice to obtain very
accurate estimates of the optimal decision rule parameters.

The usefulness of antithetic acceleration in reducing standard errors

for a given number of simulations n can be evaluated by calculating the
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sample correlation between g(z(l),Wn) and g(E(l),Wn). For all four decision

rules, this correlation is very close to -1, suggesting that, despite the

(1) 3

apparent nonlinearity in Problem (14), g(z ,Wn) is very nearly linear in

z(i), regardless of the choice of decision rule. It is precisely in this

case that antithetic acceleration proves most valuable.13

Table 3 compares the four decision rules from the perspective of the
time series behavior of output, consumption, and the capital stock. Using
each of the decision rules, simulated time series with 25,000 observations
were generated for each of output, consumption, and the capital stock. For
all four decision rules, these time series were computed using the same set
of shocks {et}iigoo

simulated time series. The figures in Table 3 show that, with the exception

Table 3 contains a set of summary statistics for the

of the capital stock series under the linear rule, the four decision rules
yield time series with very similar unconditional first and second moments.
A final way to compare the four decision rules is to compare their
choices for Xt 41 given different states of the system s, = (xt,zt). Given
optimal behavior, some states are more likely to occur than others. The set
of states at which to compare the different decision rules is therefore
determined by simulating a time series {St}f=1 using the optimal decision

rule, where S = 100,000. Let xg+1(st) be the capital stock chosen by Rule j

given s, and let X 1(st) be the optimal choice for the capital stock given

t t+
x),,(s,) - %,,(s,)
Sy - Then d.(st) = 100 — is the percentage deviation
J xt+1(st)

between the optimal decision and the decision made by Rule j, given Sg- For
each of the rules of thumb (j = 1,2,3), Table 4 computes the sample mean of

the series {dj(st)}f=1 and the percentage of states in the sequence {St}f=1
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for which dj(st) is less than, respectively, 10, 5, 1, 0.5, 0.1 and 0.01.

The ranking of the three rules of thumb using the behavioral metric
underlying the figures in Table 4 accords with the welfare ranking in Table
2: the "partial capital stock adjustment" rule tracks optimal behavior most
closely, followed by, in order, the optimél quadratic rule and the optimal
linear rule. The "partial capital stock adjustment" rule and the optimal
quadratic rule yield capital stock decisions that deviate only rarely by more
than 0.5% from optimal behavior.

The results of this section show that, in the context of Problem (14),
parsimoniously parameterized rules of thumb can mimic optimal behavior very
closely, according to a variety of metr'ics.14 Indeed, a surprising finding
is that a one-parameter family of decision rules (the "partial capital stock
adjustment"” rule) outperforms a six-parameter family (the optimal quadratic
rule) along all dimensions considered. The success of the "partial capital
stock adjustment" rule shows that rules of thumb which incorporate some of
the economic structure underlying the optimizafion problem can perform better

than "brute force" polynomial expansions.

6. CONCLUSION

This paper develops a new method for solving discrete time, discounted
stochastic dynamic programming problems with infinite horizons and convex
choice sets. The key idea of the solution method is to restrict the decision
rule to belong to a parametric class of functions. The agent then chooses
from within this class the best decision rule; that is, the agent maximizes
the objective function subject to the functional form restriction on the
decision rule by choosing the optimal set of decision rule parameters.

This paper shows how Monte Carlo methods can be used to calculate
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arbitrarily precise estimates of the optimal decision rule parameters, given
a functional form for the decision rule. The central idea of the Monte Carlo
methods is to simulate the dynamic behavior of the state variables for
different values of the decision rule parameters. These simulations can be
used to approximate the value of the expectation that appears in the agent’s
objective function. The incorporation of a simulation technique known as
antithetic acceleration increases greatly the practical usefulness of the
solution method by providing large increases in accuracy for a given number
of simulations.

Section 5 of this paper uses the solution method to solve a stochastic
dynamic programming problem with a known analytical solution: the stochatic
optimal growth model with logarithmic preferences and full depreciation of
the capital stock. This paper finds that relatively simple rules of thumb
can provide very good approximations to optimal behavior, according to both
behavioral and welfare metrics. Indeed, a carefully chosen one-parameter
family of decision rules outperforms a six-parameter family of second-order
polynomial expansions. The rules of thumb considered in Section 5 perform
well despite the fact that the standard deviation of the shock is four times
the value usually specified in business cycle models.

Future research will explore the performance of rules of thumb in a
variety of more complicated environments. This line of research seeks to
identify economic environments in which relatively simple rules of thumb
do or do not provide good approximations to optimal behavior. A related
goal of this line of research is to isolate features of the economic
environment that have a significant influence on the ability of rules of
thumb to track optimal behavior.

For example, Smith (1990) uses the solution method to solve a version of
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Problem (14) with more general preferences and with a depreciation rate less
than 1. Although the optimal decision rule for this problem does not possess
a closed form expression, it appears that in this environment rules of thumb
based on second-order polynomial expansions perform quite well. However,

the performance of simple rules of thumb deteriorates as the shock becomes
more volatile and as the coefficient of relative risk aversion increases.

Future research will apply the solution method to more complicated
versions of the stochastic growth model, including models with both exogenous
and endogenous growth. Since the solution method relies on independent
simulations of the model’s behavior, nonstationarities in any individual
simulation do not pose a problem.

The solution method as developed here focuses on infinite horizon
problems. Another item for future research is to extend the method to handle
problems with finite horizons, perhaps by explicitly incorporating time as an
additional exogenous state variable. This extension appears to be
straightforward.

A final item for future research is to adapt the solution method to
handle problems with nonconvex choice sets, in particular, discrete choice
problems. For these problems, the smoothness conditions specified by
Assumptions 1 and 2 in Section 3 wiil not be satisfied. Moreover,
calculating an estimate of the optimal decision rule parameters will require
the numerical optimization of a nonsmooth function, so that conventional
gradient methods cannot be applied. Tackling discrete choice problems will
therefore entail the development of a more general asymptotic theory than
that contained in Section 3, as well as the use of more sophisticated
numerical hillclimbing methods. The problems posed by these extensions,

though not insurmountable, are nonetheless nontrivial.
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FOOTNOTES

1. For problems with quadratic objective functions and linear constraints,
exact linear decision rules can be computed using the principle of certainty
equivalence. Some non-linear-quadratic problems can be solved analytically,
for instance, a simple version of the stochastic growth model with
logarithmic utility and full depreciation of the capital stock in every
period. See Chapter 1 of Sargent (1987) and Section 5 of this paper.

2. After completing this work, I discovered that Peris (1982) uses a similar
approach to solve a dynamic model of the cyclical behavior of employment with
unemployment insurance. Peris’ dissertation, however, does not develop the
asymptotic theory that underlies and justifies the approach (while at the
same time providing a way to assess simulation error). Also, Peris’
implementation of the approach does not incorporate antithetic acceleration,
a variance reduction technique that greatly increases the usefulness of the
approach by providing significant increases in accuracy.

3. This section is motivated by Geweke (1988), in which Geweke coins the
phrase "antithetic acceleration”. '

4. The boundedness assumption can be relaxed by making an appropriate set of
alternative assumptions. The proof of the existence and uniqueness of a
stationary decision rule also requires a technical condition on the
transition density v(zt+1|zt). See Chapter 9 of Stokey, Lucas, and Prescott

(1989) for further details.

¥) does not

5. Care must be taken that the decision rule x = h(xt,z

t;
= (xt,zt) € S. For some

t+1
t+1 € F(xt,zt) for any Si

problems (such as the one studied in Section 5), this requirement is of
little practical import since the probability of attaining a state S¢ € A,

violate the constraint x

z

where A = {st € S : h(x ¥) ¢ F(xt,zt)}, is negligible when ¥ is near the

t* %’
optimal decision rule parameters WO (as defined by Problem (2)). For other
problems (such as those with occasionally binding inequality constraints),
the decision rule must embed the constraint Xi 4 € F(xt,zt).

6. Note that the infinite horizon in Problem (1) has been truncated at some
large T. The solution to the infinite horizon problem can be approximated
arbitrarily closely by increasing T suitably.

7. As discussed in Tauchen (1985), conditions (a) and (b) are "weak and
essentially non-restrictive side conditions" (p. 422).

8. As an extreme example, let w ~ N(u,@z) and suppose we want to estimate
E G(w) using Monte Carlo methods, where G(w) = a + b w. Let (w(l),ﬁ(l)),

where Q(l)= 21 - w(l)
Then % [G(w(l)) + ) ] =a+bp=EG(w, i.e. antithetic

, be an antithetic pair drawn from the density of w.
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acceleration eliminates all error in the estimate of E G(w) with only one
draw of an antithetic pair.

9. In the real business cycle literature, a more conventional setting for
Ce is 0.01. The larger value of O used here is intended to draw out the

nonlinearities in Problem (14), thereby providing a more stringent test of
the ability of rules of thumb to track optimal behavior.

10. The optimal decision rule parameters for the quadratic rule are not well
identified. In particular, several other sets of parameter choices for the
quadratic rule were found, all of which yielded the same value of the
objective function to 8 decimal places. The time series implied by these
alternative sets of parameter choices are essentially indistinguishable.

The failure of identification is therefore not a weakness of the solution
method, but reflects instead the (very) small amount of nonlinearity in the
problem being studied. Because of the lack of identification, the estimated
standard errors for the quadratic rule parameters should be treated with
caution.

11. As for Rules 1-3, the optimal value of the problem under the optimal rule
is estimated using Monte Carlo methods. 1In this case, the optimal decision

c c
. . _ 1 2 .

rule parameters WO are known with certainty: Xep1 = S0 ¥t (exp(zt)) , With
= AaB, c, =, and c, = 1. The optimal value of the problem under the

o0 1 2
optimal rule could also be computed analytically. Given initial conditions
Xy and Zy this value equals a + b log(xo) tcz, where a =

1 log(A)
1-B [ 1-o8
Using the initial conditions specified in the text, the optimal value of the
problem under the optimal rule is therefore -1.00525979339. (As noted in
Table 2, expected utility estimates are scaled by a factor of 150.) The
discrepancy between this number and the number in Table 2 for the optimal
rule is due to the use of a finite horizon of length T = 800. If T is
increased to 1600, then the "true" optimal value of the problem under the
optimal rule and its estimate in Table 2 will agree to (at least) 10 decimal
places.

_ a8 _ S
+ log(1-aB) + -5z loglaB) ]’ = 1ap 2™ T eI (TRe)"

12. Differences in expected utility can be expressed in terms of consumption
by answering the following question: How much more consumption, in terms of
a uniform percentage increase across all periods of the planning horizon,
would an agent using Rule i need in order to achieve the level of expected
utility associated with Rule j? Let Uk (k = i, j) be expected utility under

Rule k. Suppose A = Uj - Ui > 0. Solve for A in the following equation (the

scaling factor q is set at 150):
1

A»* 0 .
. is

*
ln[ (142) Cit ], where {clt =0

o .t -1 *
EO Y B ¢q ln(cit o
t=0 t
the optimal consumption sequence under Rule i. The solution is

A=exp[q (1-8) A ] - 1.

) +a=E I B'q
=0
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13. Comparing (13) to (9), it can be seen that antithetic acceleration
reduces the asymptotic standard error of the estimate of the optimal value of
the problem (given a decision rule) by a factor of

(1+cor[ g(z(i),wo),g(ﬁ(l),wo) ] )_1/2. For the linear rule, this factor
equals approximately 377. For the other rules, the correlation of g(z(l),wo)

and g(i(i),wo) is so close to -1 that this factor cannot be computed

accurately on a digital computer.

14. These results echo those of Christiano (1990), in the context of a more
general version of Problem (14), who finds that linear and log-linear
decision rules provide very accurate approximations to optimal behavior, both

from a behavioral and a welfare perspective.
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APPENDIX

Proof of Proposition 1:

First to show consistency of @n. I will verify that Assumptions (A)-(C)
of Theorem 4.1.1 in Amemiya (1985) hold. The parameter space C is compact by
assumption. Qn(G,W) is continuous in ¥ for all ® and is a measurable

function of © for all ¥ by Assumption 2. Using the result stated in the text

1

after Definition 1, Assumption 2 implies that n Qn(G,W) converges almost

surely uniformly in ¥ (and hence in probability uniformly in ¥) to

E g(z(l),W). Moreover, the nonstochastic function E g(z(l)

(1)

,¥) is continuous
in ¥. Finally, by Assumption 3, E g(z ,¥) is uniquely maximized at WO.

Thus, by Theorem 4.1.1 in Amemiya (1985), plim Tn = WO'

n-w
Now to show the asymptotic normality of n'/2 (Wn - WO). By definition,
- aQ (@,Wn)
Wn satisfies ————— = 0. Expanding the left hand side of this equation
av

in a first-order Taylor series about WO yields:

5Q,(8,%) &% (8,47)
+ (Wn - WO) = 0, (A1)
av av avy’
where W: lies on the line joining WO and Tn. (To be precise, W; should vary
aQ (e, -)
from row to row of ——————, but this subtlety makes no difference
av av’

asymptotically.) Rewriting (A1) gives:

n .2 (1) _ *», 1-1 n
- _ ag(z ~",¥) )

n'’2 (¢ -9) =- [ n 1 z n 172 z
i=1 =

(A2)
n 0 av av’

By Assumption 2 (using the result stated in the text after Definition
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n

(1) )

ag(z ,
1), n_1 ——— converges in probability uniformly in ¥ to
. av av’
i=1
azg(z(l),W) 82g(z(1),W)
E ——— |, and, moreover E is continuous in ¥ (and,
avy av’ av av’

in particular, at WO). Since plim Wn = WO and W; lies on the line joining WO

-~

and Wn’ plim W; = WO. Thus, by Theorem 4.1.5 in Amemiya (1985),

3 g(z(i), n) - 8 g(z(i) WO)
av av’

n
plim n_1 Z =

= A(WO), which is invertible
1 av av’

i

by Assumption 4. (This result implies that for n sufficiently large,

» n azg(z(l),WZ)
n z is invertible almost surely.)
av av’
i=1
1/2 n 6g(z(1),wo)
Now to work out the asymptotic distribution of n z _—
av
i=1
) n ag(z(i),wo) ag(2(1),\1,0)
By the strong law of large numbers, plim n z = —WM—
av av

i=1

(the existence of this expectation is guaranteed by Assumption 2). By
Corollary 5.9 of Bartle (1966), Assumption 2 implies that the integration and

differentiation operators in the forgoing expression can be interchanged, so

ag(z(l),wo) 3 (1)
that E —— = — E g(z , U
av av

(1)

0) = 0 since, by Assumption 3, WO

maximizes E g(z " ’,¥) and is an interior point of C. By Assumption 2(b),

(1) (1)

dg(z W ) dg(z W )
E = B(WO) exists and is finite. Then, by the
av av’
12 n ag(z(l).wo)
Lindbery-Lévy central limit theorem, n z —_ =
= vy

i
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(1) (1)

n

- dglz" " ",¥.) dg(z""",¥.)
n?2 | a1 z — 0 g2 "0 4N (o, B(¥,) ). Applying
av av
i=1
Slutsky’s theorem to (A2) yields the desired result:
-1

172 3 -1
n (¥ - ¥) > N (0, A(¥) " B(¥) A(Y) " ).

Proof of Proposition 2:

We want to show the consistency and asymptotic normality of the estimate
1 (1)

n"" Q (8,¥ ) of the optimized value of E g(z (1) ¢ ).

,¥) (i.e. E glz ¥

Again using the result stated in the text after Definition 1,
(1) (1),W) is

plim n_1 Qn(G,W) = E g(z ~7,¥) uniformly in ¥ and, moreover, E g(z

continuous at Wo. Since plim Wn = WO’ we have by Theorem 4.1.5 in Amemiya

(i),w )

-1 A
(1985) that plim n Qn(G,Wn) = E g(z 0)-

Expand n--1 Qn(G,Wn) in a first-order Taylor series about WO:

. 8Q_(8,¥") .
1 _ -1 -1 "n n _
Qn(@,\lln) =n Qn(®, ‘I’O) + n T (‘I’n ‘I’O), (AS)

where W: lies on the line joining WO and Wn. Rewrite (A3) as:

(1)

n'2 [nlq(e,9) - Egz',9) ] =n"? [n qo,9) - Egz' )9 ]+

(i) _»
dg(z ,U) ~
n 1/2
n (Wn - WO). (A4)

=}
—-
nr~-1 s

. av
i

n 8g(z( ) v
Assumption 2 implies that n Z ————— converges in probability

ag(z(i),W) gz 1), v

uniformly in ¥ to E —— , and, moreover, E ————— is continuous at
av av
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(i) ;
dg(z ,Wn) )

¥ . Since plim Wn =¥ , plim W; =V Thus plim n

0 o’ o’

nr~ -

av

i=1

ag(z(l)’\l’o) 172 3 ‘
E— — =0. n (Wn - WO) converges in distribution, so by Slutsky’s

av

theorem the second term on the right hand side of (A4) converges in

probability to 0. The asymptotic distribution of

172 (i)

n [ 1'1_1 Qn(G,Wn) - E g(z ,WO) ] is therefore identical to that of

(

n'’? [ nl Q (8,%) - E glz 1),W0) ]. Assumption 2(d) guarantees that

E [ g(z(l),wo) ]2 exists and is finite, implying in turn that var g(z(l),wo)
exists and is finite. By the Lindberg-Lévy central 1limit theorem,

1/2 -1 (i) (i)
n [n Qn(®,W0) - Eglz 7,¥) ] » N(0, var g(z ¥g) ).
Proof of Proposition 3:

By Assumption 2(c), ( g(z(l),w) )2 is a regular function.

n .

n ! r ( g(z(l),W) )2 therefore converges in probability uniformly in ¥ to
i=1

E ( g(z(l),W) )2, a continuous function of ¥. Since plim Wn = WO’

(1),W0) )2. Using arguments given

-1 G (1) 3412
plim n 15 (alz ! ) )* =E (s&lz

1
-1 ~ 2 _ (i) 2 L2
above, plim ( n Q (8,¥) )* = (E gl(z ' ¥g) )©. Hence plim o=

E(ez,9) )% - (Eez'P,u) )2 = var g'V) v,

0 0

Using arguments given above, it is straightforward to show that
plim An(Wn) = A(WO). Finally, by Assumption 2(b),

6g(z(i),w) ag(z(i),W)

converges in probability uniformly in ¥ to

=]
|
-
e~ B

. av ay’
i
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(1) (i),W)

glz " ",¥) aglz -
E , a continuous function of ¥. Since plim Wn = WO’
av av’
A -1 n ag(z(l),wn) 8g(z(1),wn)
B(Z)=n Z therefore converges in probability
n n ’
1m1 av¥ Y

to B(Wo) (by Theorem 4.1.5 in Amemiya (1985)). Hence

12 .3 NP | 1 1

plim A (¥ ) B (¥ ) A (Y ) "= A(Y,) B(¥,) ALYy = v(¥,).

Proof of Proposition 4:
n/2

Y h(z
i=1
(i),W) ] and (z(i),E(i)) is an
(i)

Under antithetic acceleration, n-1 Qn(Q,W) = (n/2)-1 (1),W),

where h(z(i),W) = —%— [ g(z(i),T) + gz

antithetic pair of sequences. I will show that if g(z ,¥) satisfies

(1),W) does too. Hence, the asymptotic results

(1)

Assumptions 1-4, then h(z

(6)-(9) continue to hold, with h(z ~°,¥) playing the role of g(z(l),W), and

n/2 playing the role of n. (Under antithetic acceleration, convergence is

therefore in the number of antithetic pairs n/2.)

(i) (i)

Clearly, h(z ,¥) satisfies Assumption 1 so long as g(z ,¥) does.
(i) . (i) s sas -(1i)
Suppose b(z ) dominates g(z "~ *,¥). Then, by definition, |g(z , V)| =
b(E(l)). Since E b(z(l)) = E b(E(l)), the existence of E b(z(l),W) implies

the existence of E b(E(i) (i)) + b(E(i)) dominates h(z(i),W).

). Hence b(z

Similar arguments apply to the remaining functions specified by Assumption 2.
(1) (1)

Thus h(z ,¥) satisfies Assumption 2 if g(z ,¥) does. Next, note that
E h(z(i),W) = E g(z(l),w) for all ¥ € C, which implies that Wo =
(1) (1) o®nz'M), 5)
argmax E g(z ,¥) = argmax E h(z ,¥). Finally, since E
v v av av’
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2 (i) 2 ,=(i)
d gz ,U.) 3 gz ,U)
1 E 0 + 1 E 0 _
av av’

azg(z(l),w )
0
= = = E '
av av’ av av’

h(z(l),W) satisfies Assumption 4 if g(z(l),W) does.

Let K(WO) and §(w0) be the counterparts to A(Wo) and B(WO) under
(1)

antithetic acceleration. To simplify notation, let gi(W) = g(z "~ ",¥) and

- (1) N o%n(z1, v )

g.(¥) = g(z ,¥). As shown above, A(¥V.) = E = A(¥.). On
1 0 8Y 8Y’ 0

(1)

(1)
,WO) dh(z ,Wo)
av av’

N 8h(z
the other hand, B(Wo) = E

> + 5 + = B(WO) +

- 1 [ agi(wo) 6gi(W0) ] 1 [ agi(wo) agi(wo) ] 1
ov av av’ av’ 2

—%— [ C(¥,) + C(y,)’ ], where C(¥,) is defined in the text. The asymptotic

172

covariance matrix of (n/2) (Tn - WO) under antithetic acceleration is

~

1 1/2

1 §(W0) K(WO)- . The asymptotic covariance matrix of n (Wn - WO) is

A(TO)

1

therefore 2 X(WO)- ﬁ(WO) K(WO)—I, which yields the expression in equation

(12) of the text.

Finally, to work out the asymptotic variance of

(n/2)'2 [ n! Qn(G,Wn) - E g(z(l),wo) ] under antithetic acceleration. To

wit, var h(z(i),w ) = —%— ( var gi(wo) + var éi(Wo)

0
+ 2 cov[ gi(Wo),gi(Wo) ] ) = —— var gi(WO) + = cov|[ gi(WO),gi(Wo) ]

Doubling this expression yields the expression in equation (13) of the text.
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TABLE 1

Estimated Optimal Decision Rule Parameters
(Estimated standard errors in parentheses)
b0 bl b2 b3 b4 b5

Rule 1* 0.01566 0.3325 0.02056 -0.03874 0.01266 0.1315
(0.00001) (0.0003) (0.00032) (0.00084) (0.00050) (0.0132)

20 2 25
Rule 2 0.01607 0.3237  0.02227
(0.00007) (0.0026) (0.00010)
A
Rule 3 0.67070
(0.00002)

fSee footnote 10 concerning identification of the optimal parameters for the
quadratic rule.

TABLE 2

Welfare Under Different Decision Rules

(Estimated standard errors in parentheses)

Estimated Expected Welfare Loss* Relative
Lifetime Utility to Optimal Rule
Optimal Rule -1.005259698* 0.0%
(%)
Rule 3 -1.005259766 2.0x10-5%
(Partial capital stock (0.000000005)
ad justment)
Rule 1 -1. 005259976 8.3x10_5%
(Optimal quadratic) (0.000000055)
Rule 2 -1. 005293800 0.0102%
(Optimal linear) (0.000005803)

*Expected utility estimates are scaled by a factor of 150.
*Measured as a percentage of per period consumption (see footnote 12).

*The estimated standard error of this estimate is less than O.5x10_10.
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TABLE 3

Time Series Statistics Using Different Decision Rules

(based on simulated time series with 25,000 observations)

Optimal Rule
Rule 1
Rule 2
Rule 3

Optimal Rule
Rule 1
Rule 2
Rule 3

Optimal Rule
Rule 1
Rule 2
Rule 3

Sample Mean
of Output
0.073229
0.073230
0.073172
0.073245

Sample
Mean of
Consumption
0.048547
0.049546
0.0439542
0.049547

Sample Mean

Sample Standard
Deviation of
Output

Coefficient
of Variation
(Mean/Std. Dev.)

0.013484
0.013478
0.013140
0.013488

Sample Standard
Deviation of
Consumption

0.18414
0. 18405
0.17958
0.18414

Coefficient
of Variation
(Mean/Std. Dev.)

0.0091233
0.0091227
0.0091286
0.0091236

Sample Standard

0.18414
0.18412
0.18426
0.18414

Coefficient
of Variation
(Mean/Std. Dev.)

of Capital Deviation of
Stock Capital Stock
0.023682 0.0043607
0.023683 0.0043555
0.023630 0.0040363
0.023698 0.0043640
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0.18414
0.18391
0.17081
0.18415



TABLE 4

Deviations Between Optimal Behavior and Rule-of-Thumb Behavior

(based on simulated time series with 100,000 observations)

Partial Capital

Optimal Optimal Stock Adjust-
Quadratic Rule Linear Rule ment Rule
(Rule 1) (Rule 2) (Rule 3)
Mean deviation (in
percent) between 0. 1006% 1.1767% 0.04437%
Rule j and the
optimal rule
Percentage of
deviations
smaller than:
10. 00% 100. 0% 99. 8% 100. 0%
5.00% 100.0%* 97.8% 100. 0%
1.00% 99. 7% 51.9% 100. 0%
0.50% 98. 6% 21.8% 93. 9%
0.10% 64.8% 4.1% 86.7%
0.01% 7.1% 0.4% 36.8%

*All but two (2) of the deviations were smaller than 5%.
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