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Abstract

Two most popular selling methods -- posted-price selling and auctions --
are compared in this paper. We confirm the common belief that auctions are
most often used when the distribution of the object’s value is widely
dispersed. The choice of selling methods usually depends on the costs of
displaying, storing and auctioning. In the absence of auctioning costs,
auctioning at every instant is optimal. The "dispersion" of a distribution is
then formally defined and developed. Using the definition of dispersion, we
prove that auctions becomes preferable when a potential buyer’s valuation
becomes more dispersed. Finally, the optimization of a social planner is
studied and we find that the monopoly seller’s price can be higher or lower

than that of the social optimum.



1. Introduction

It is commonly believed that auctions are often used when the seller has
difficulty in determining the value of the object to the bidders. One answer
to the question of why auctions are used in lieu of other selling methods such
as posting a fixed price, is, "perhaps, that some products have no standard
value. For example, the price of any catch of fish (at least of fish destined
for the fresh fish market) depends on the demand and supply conditions at a
specific moment of time, influenced possibly by prospective market
developments. For manuscripts and antiques, too, prices must be remade for
each transaction. For example, how can one discover the worth of an original
copy of Lincoln’s Gettysburg Address except by auction method?" (Cassady 1967,
also cited in McAfee and McMillan 1987, p.701). According to Milgrom (1989),
“When goods are not standardized or when the market clearing prices are highly
unstable, posted prices work poorly, and auctions are usually preferred."
Intuition tells us that perhaps the more dispersed the object value is, the
more preferred the auctions are. There is, however, no existing treatment
that offers rigorous explanation for this intuition, which is primarily
because the dispersion of a distribution is hard to define.

The literature on optimal auctions (see Riley and Samuelson 1981, Myerson
1981) does not help too much in this matter as it considers problems under
static settings and the set of bidders is unaffected by the selling policy.

It is easy to see that posted-price selling methods always generate less
revenue than auctions, since the seller can always set a reservation price
equal to the posted price and be better off. Some dynamic features have
recently been introduced into the game by McAfee and McMillan (1988). In

their paper, a monopsonist (the seller of a contract) wishing to buy an



indivisible object incurs some costs in seeking potential sellers (bidders).
The potential sellers vary in their production costs which are identically and
independently distributed (i.e. it is a private-value auction). When the
number of potential sellers becomes infinite, it is proven that the optimal
selling mechanism is posted price: the monopsony buyer offers a price to buy
and approaches the potential sellers sequentially. It suggests that
posted-price selling is the best selling method (at least under their
assumptions) no matter how dispersed the object value to a bidder is.

This counter-intuitive result suggests that there is much to be
investigated about this issue. While McAfee and McMillan (1988) are mainly
concerned with a monopsony buyer seeking a most favorable contract, in this
paper we are concerned with a more traditional situation: a monopoly seller
seeks the optimal way to sell an indivisible object. The object is
private-valued--each potential buyer’s valuation (or willingness to pay) is
independent of each other’s. Potential buyers arrive at a store randomly,
following some stochastic process. If the seller chooses to post a fixed
price to sell the object, she incurs a continuing cost of displaying the
object until the object is sold. If the seller chooses to auction the object,
she can store the object at a lower cost until the auctioning date. The
seller also incurs an auctioning cost whenever she holds an auction.

Under our setting, it is difficult to use the Revelation Principle to
calculate the optimal selling method as has been done in various previous
papers (see Myerson 1981, McAfee and McMillan 1988). This is because the cost
structure is different under different selling methods. For this reason, we
Just compare the two most popular selling methods: posted-price selling and
auctions. In posted-price selling, the seller posts a price in the store and

potential buyers arrive randomly and sequentially, and decide whether or not



to buy at the price. Similar to a search model, potential buyers that turn
down the offer are assumed never to come back. (As buyers searching for
commodities, they arrive at any one store randomly. The probability of
arriving at the same store twice is assumed to be zero.) The game ends the
moment that the object is sold. In contrast to posted-price selling, the
auctioning seller is assumed to invite buyers that arrive to attend an auction
at a future date. The seller can set a reservation price in the auction, and
if the object is not sold, another auction is then planned for potential
buyers arriving at the store after the auction date. The procedure continues
until the object is sold.

We find that if there is no auctioning cost, then the seller would choose
to auction the object (with a reservation price) at every instant. This is
equivalent to a posted-price selling with the posted price equal to the
reservation price and the seller incurring a continuous storage cost. This is
consistent with McAfee and McMillan’s result that posted-price is the best
selling method when the storage cost is equal to the display cost. If the
auctioning cost is positive, however, the choice will depend on the magnitude
of different costs. Apparently, auctions may be chosen if the cost of
auctioning and/or the cost of storage is low enough.

Our primary interest is to investigate how the dispersion of tﬁe
distribution of a bidder’s valuation affects the choice of selling mechanisms.
We first provide a precise definition for dispersion. It is related to the
J(x) function in various previous papers (McAfee and McMillan 1988, Maskin and
Riley 1984, and the c(t) function in Myerson 1981). Various properties of
dispersion are discussed and developed. The main result of this paper is that
auctions become more attractive as the dispersion of buyers’ valuations

increases.



The dispersion of a distribution is different from its variance and
cannot generally be described by a single number. An increasé in dispersion
implies an increase in variance, however; and when a distribution is
characterized by mean and variance, an increase in variance is equivalent to
an increase in its dispersion.

Finally, the optimal reservation price and the time length between
auctions are compared with those of the social optimum. It is found that the
reservation prices in the optimal auctions can be either higher or lower than
the social optimum, and the time length between auctions can be either longer
or shorter.

The rest of the paper is organized as follows: Section 2 describes the
model; in Subsection 2.1 we discuss the optimal price in posted-price selling;
in Subsection 2.2 we investigate the optimal sequence of auctions. In Section
3 we compare these two selling methods and study the effect of the dispersion
of the distribution on the choice of selling methods. In Section 4 we discuss

social welfare. Section 5 contains some remarks.

2. The Model

Suppose that there is a unique indivisible object to be sold by its
owner. Potential buyers arrive randomly according to a Poisson process.1 The
probability of exactly k potential buyers arriving within any interval of

length t is given by

1This assumption makes the analysis much simpler. If the arrivals are
independent but do not follow a Poisson process, the qualitative results are
essentially the same. We shall discuss this further at the end of Subsection
2.1 and Section 4.
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The object is assumed to be private-valued by the potential buyers. The
value of the object to potential buyer i (Vi) is assumed to be a random and
independent draw from a distribution F(v) with support [v,v], where
F(v)=Pr{Visv} and v=0. Buyers are thus symmetric and the V.1 have i.i.d.
distributions. We assume for simplicity that F(v) is differentiable on [v,v].
The object is worth zero to the seller. To make the analysis as simple as
possible, we assume that there is no discounting and that a buyer’s valuation
does not depend on the date the object is obtained.2

The seller can choose either to sell the object at auction or by posting
a price. In the posted-price selling option, the owner incurs a cost of
displaying at rate 6d until an arriving buyer agrees to pay the posted price.
A buyer who refuses the posted price never returns. This assumption can be
Justified as consumers shopping randomly. If there are a lot of stores, a
consumer will have low probability of coming back to the same store. The
owner can change the price or change to the auctioning option at any time
before the next potential buyer arrives, but as buyers arrive according to a
Poisson process and the object is private-valued, we do not expect the seller
to do so. In the auctioning option, the owner incurs a cost of storage at
rate 8s until he sells the object. In addition to that, the seller incurs
also an auctioning cost ®a each time he auctions the object. In this option,

the owner chooses a specific future time at which the object is auctioned.

2These assumptions would bias the result in favor of auctions. The date for
an auction would be earlier than what is to be calculated. The qualitative
results are not expected to change.



Potential buyers who arrive at the store get a notice of such an event; and it
is assumed that they will all go to the auction house at that time.3 This
implies that the potential buyers are acting passively and the cost of going
to an auction is negligible. The owner can set a reservation price in the
auction; and if the object is not sold, the owner will keep the object in
storage and plan a future date for another auction. Potential buyers who came
to earlier auctions in which the object is unsold are assumed never to return
for later auctions for the same reasons as in the posted-price selling option.

The seller and all potential buyers are assumed to be risk neutral.

2.1 Posted-Price Selling

The seller does not know the valuation (V) of a potential buyer when he
arrives, but she sets the price to maximize her overall expected profit.
Suppose that the price is set at p. Since the buyer will not come back to
check if the price is lower in the future, the object is sold if Vzp. This
happens with probability 1-F(p). The probability that the object is sold by
the time k buyers have arrived is 1—Fk(p). Since buyers’ arrivals follow a

Poisson process, the probability that the object is sold by time t is

e—A(l-F(p))t.

0
Stt)=) [1 - F(p) J-P (1) = 1 - (2)

k=0
Note that 1-S(t) is the failure probability of a Poisson process with a
parameter of A(1-F(p)), which is the arrival rate of a potential buyer with

willingness to buy higher than p. Recall that 64 is the cost of display. The

3It may be more reasonable to assume that they come back with some positive
probability, probably increasing with their valuations. The analysis would
become too complicated.



total expected profit for the seller is then

S +00 6d
rr(p)=p-edj t S’ (t)dt = p - . (3)
0 A( 1-F(p) )
The price p that maximizes Hs(p) is given by:
d S 04f (p)
—]T(p)=1——-—2=0, (4)
dp Al1-F(p)]
o 0 d £ (p)
assuming that — T (p) = - T [ > ] =0, Vp. (5)
dp dp [ 1-F(p) ]
1 - F(v) S
Define J(v) =v - ————— . From (3) and (4), we have M (p) = J(p)
f(v)

for the optimal p.

Since the arrivals follow a Poisson process and buyers’ valuations are
independent, it is easy to see that the seller will not change the price even
if no one arrives for a period of time or if all buyers arrived have rejected
the offer. If the arrivals are not Poisson, the bptimal prices may change
over time, since the history before t can be informative about the future.
Even though this affects the calculation of the expected profit generated by
posted-price selling and auctions, as we shall see, it does not affect the

comparison between the two selling methods.

2.2 Auctions
Suppose instead that the owner hands out an invitation to each arriving
potential buyer to inform him that an auction will be held to sell the object

at time T. All buyers that arrive at, or before, T are assumed to participate



in the auction.4 Since the object is privately valued and bidders are risk
neutral, the Revenue Equivalence Theorem applies (cf. Riley and Samuelson
(1981), Milgrom and Weber (1982)), and each of the four types of auctions
yields the same expected revenue to the seller.

Consider then a second-price, sealed-bid auction. Each bidder bidding
his own valuation is a dominant strategy in the auction. Since the winner
(the highest bid) will pay the price of the second highest bid, the revenue
for the seller is the expected value of the second highest valuation of the
bidders.5 (For a reference on the aﬁction theory literature, see McAfee and
McMillan (1987) or Milgrom (1990).)

Suppose that by the specified auction time, there are k arrivals. The
prbbability density function for the second-highest valuation is
k(k—l)(1-F(v))F(v)k_2f(v). Let T be the reservation utility of the seller and
p be the reservation price in the auction. I is what the object is worth to
the seller if it is not sold and it can be obtained by maximizing the seller’s
profit from later selling of the object. Hypothesizing that auctioning is the
optimal way of selling, i represents the expected winning bid from later
auctions minus the expected storage and auctioning costs. Suppose that T is
given, the expected revenue for the seller calculated from the second-price

auction with reservation price p is

4We implicitly assume that the cost of participation for the buyers is zero.
If that cost is positive, the rate of participation becomes endogenous. (cf.
Harstad (1990) for an analysis when the object is commonly valued.) The
profit generated by auctions will then be lower than what is to be calculated.
We conjecture that none of the qualitative results changes, however.

5If the seller pre-announces the reservation price, bidders with lower

valuation will not come to the auction even if the cost is infinitesimal.
This does not affect the revenues generated by a second-price and the English
auction. But the revenue generated by a first-price and a Dutch auction may
be slightly different.
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M(k;p) = I vek(k-1) (1-F (v) ) FK 2 (v)£ (v)dv + p-k[1—F(p)]Fk'1(p) + F¥(p)if

p

\'4

= I vd[ka-l(v)—(k;l)Fk(v)] + p-k[1-F(p)]Fk"1(p) + F(p)if
p
K VI k-1 K K, .~
=V - pF(p) - I [kF (v)-(k-1)F (v)]dv + F(p)it .

p

In particular, T(0;p)=, H(l;p)=p(1—F(p))+F(p)ﬁ.

Recalling that J(v) = v - (1-F(v))/f(v) and that

\'%

J

p

v - pF(p) [Fk(v) + k-vf(v)Fk_l(v)]dv ,

we can rewrite (6) as

v k-1 k ~
M(k;p) = f KF L (v)E(v)I(v)av + FE(p)Tf .
p
First, we have the following lemma:

Lemma 1
The optimal reservation price p does not depend on k.

Proof

8Tl (k; p) K1 .
- _KF (p)f(p)[ J(p) — n]

ap

From this, we can see that the optimal price does not depend on k. m

(6)

(7)

(8)

From this lemma, we know that the seller sets a fixed reservation price

regardless of the number of participants in the auction, which simplifies the

analysis greatly. Notice that J(p) < p. Thus, in the optimal auctions,

the



seller sets a reservation price that is higher than ﬁ, the reservation value
of the seller. Such results are common in the optimal auction literature.

Interested readers can refer to, e.g., Riley and Samuelson (1981).

With probability Pk(T), there are k arrivals by time T. The owner incurs
a cost of storage 6sT, plus a cost of auctioning @a.6 The expected profit of

the owner is then given by:
00
m =¥ M(k; p)P, (T) - 6sT - @a . (9)
k=0

The following lemma describes the optimization behavior of a seller who

chooses to sell the object by auctions:

Lemma 2
The optimal auctioning scheme for the owner is given by a pair (T*, p*)

that maximize

v
AT I e AMTUFOD () 5(v)dv - 6T - ©a
P
™ (T;p) = , (10)
1 - e—AT(l-F(p))
where the owner auctions the object at T*, 2T*, .... until it is sold, and in

each auction, the reservation price is p*.

Proof

) k ) xk
R = k-1, _ Xy
ecall that Z — =¢", and Z —(ky ") = xee”7.

k! k!
k=0 k=0

6Assume for simplicity that the owner incurs the auctioning cost even if no
one show up in the auction.

-10-



2V e Ly an* .
m - Z [I kF™ “(v)f(v)J(v)dv + TIF (p)] e - 0sT - @a
o) k!
k=0
-AT(1-F(p))

f(v)J(v)dv + Tle

v
= AT I e AT(1-F(v)) - 0sT - @a .
p

Since the arrival of potential buyers follows a Poisson process, and
buyers never come back if they fail to obtain the object in an auction, then
if the seller fails to sell the object in one auction, he faces the same
profit maximization problem as if he were at the beginning of the game. Thus,
T must be equal to HA. Defining that value as HA(T;p), we complete the proof

of this lemma. u

For reasons similar to those in McAfee and McMillan (1988) and others, we
need to assume that J(v) is a strictly increasing function of v to simplify
the analysis. Lemma 4 gives us some intuition about this assumption. To

prove Lemma 4, we need the following lemma:

Lemma 3
Let x(v), y(v), z(v) be differentiable functions, with x(v)>0, y(v)>0,

y’ (v)<0, z’(v)>0, Vve¥. Then

I x(v)y(v)z(v)dv J x(v)z(v)dv

vevy < vevy ) (11)
I x(v)y(v)dv I %(v)dv

vey vey

-11-



Proof

f x(v)y(v)z(v)dve I x(v)dv - I x(v)z(v)dve I x(v)y(v)dv

vey vev ve¥ ve¥

j f [x(v)y(v)z(v)x(;) - x(v)z(v)x(c)yts)]dvds

ve¥ veV¥

I Ix(v)x(;)z(v)[y(v) - y(G)]dvdG

ge@
vevy

| jx(v)x(G)[y(v) - y(G)][z(v) - z(G)] avdy < 0 .

V>V

This lemma is quite intuitive. As z(v) is increasing, putting a
decreasing weight on it decreases its weighted average. We shall make use of

this lemma in the proofs of Lemma 4 and others.

Lemma 4

Given p, J(v) increasing implies that the average selling price from
the auction increases with T.
Proof

The average price from the auction is given by

\'%

J e AT-F(V) e 0y 5 (vyav
p N

v
AT I e AT-F(V) e 0y 5 (vyav
p

R(T;p) = =

_ ~AT(1-F(p)) v CAT(1-
e I f(v)e AT(1 F(v))dv
P

-12-



3R(T;p) DT(T;p) NT(T;p) N(T;p)
aT D(T; p)

DT(T;p) D(T; p)

\"4 \"%4
I e MOFVD e () [aA(1-F(v) 1 (v)dv J f(v)e MAFO 504y
DT(T;p){ p P }
D(T; p) Voo mal v “AT(1-
I e ATF OV e () oA (1-F (v) 1dv f £(v)e AT(-Fv)) 4
p p
Cancel out (-A) in DT and NT' Because J(v) is increasing and 1-F(v) is

decreasing, from Lemma 3, the expression within the brackets is negative.
Since DT<0, OR/3T>0. g

As T increases, the number of bidders in an auction tends to be larger.
J(v) increasing insures that as more bidders attend the auction, the average
price is higher. This is considered as a regularity condition in
auctions, as is in Maskin and Riley (1984), Myerson (1981), McAfee and
McMillan (1988). As we shall demonstrate later in the examples, this
requirement is satisfied by most commonly-used continuous distributions.

The following lemma describes how T* and p* change when some of the

parameters change in the model.

Lemma 5

The optimal auction interval T* is increasing in @®a and decreasing in 6s;
the optimal reservation price p* is decreasing in both ®a and 6s; if the
distribution F(v) shifts to the right by 8, T* is unchanged and p* is
increased by §.
Proof

Suppose that T(@a,8s) and p(@a,Bs) maximize HA(T;p). We have

-13-



) D_(T;p)
op D(T;p)

8% (T; p) o (T;p)  _ 821 (T; p)
— > <0, ———=0, ——=<0,
ap T oT

where D(T;p) denotes the denominator of HA(T;p).
Taking the derivative of BHA/6T=0 with respect to ®a, we have

a°m* et , &t ep | ot
2

aT 00a 0Top 080a 8To0a

=0.

Simple calculations show that 62HA/6T6@a > 0. Making use of the first order
conditions, it is easy to see that BZHA/aTap = 0. Thus, we conclude that
8T/8@a > 0.

Similarly, because aznA/aTaes < 0, we conclude that 8T/86s < O.

Using the same method, and making use of the following inequality:
8°m"/apsea < 0, 8°M"/apaes < 0, we conclude that Op/86a<0, 8p/36s<O0.

Now we consider the case when the distribution for bidders’ private

valuation F(v) is shifted to the right by &8, i.e., F(v) = F(v-8).

AT I

<I?

e MIFVIZGF$)av - 08T - @a

R

L

(T;p) =

_ o AT(-F(p))

Let v=v-8 and p=§—6 in the above expression and recall that

@) =7 - LFEWV |5 h (5-sy - _LoF(v=8)

— ~ =38 + J(v-3).
f(v) f(v-8)

We have

-14-



e ATUFOD e () (J(v)+8)av - 05T - a

s
—
xS
o
Nt
]
o)

_ AT(1-F(p))

S + HA(T;p) .
If T*, p* maximize HA(T;p), then T=T*, 5=p*+6 must maximize HA(T;S). -

As Ba increases, it is more expensive to hold an auction. Thus, the
seller would rather wait longer to have more bidders. As 6s increases, the
cost of waiting is increased, and the seller would like to have an auction
more quickly. A shift in the distribution affects only the profit of the
seller. It has no effect on the timing of the auction. The reservation
price, of course, will shift up by the same amount in response. As we shall

see, this result will be needed in the next section.

3. Comparison between Auctions and Post-Price Selling

We are now ready to compare the revenues generated by the two selling
methods. It is generally true that the cost of storage is lower than that of
displaying (since the latter is a special case of the former). If they are

the same, the following lemma implies that auctions will never be used.

Lemma 6
If ®=0, then T* = 0 in the optimal sequence of auctions.

Proof

v
Since 1 - ¢ AT(IF(P)) _ 5o I e-hT(l-F(V))f(v)dv , we have
p

-15-
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I e_AT(l_F(V))f(v)J(v)dv - Bs/A

N(T;p)

HA(T;p) =

(12)

\'

J

p

_ _ D(T; p) .
e AT(1 F(V))f(v)dv

Taking the derivative with respect to p, we have

8 (T; p) D_(T;p) N(T; p)
P Jpp) - —— | = 0.

ap D(T; p) D(T; p)

So M (T;p) = J(p).”

Take the derivative with respect to T, we have

3HA(T;p) D..(T; p) [ N..(T;p) N(T;p) ]

8T D(T; p) DT(T;p) D(T; p)

Since J(v) is an increasing function of v, making use of the condition

above, we have

IV e-AT(l—F(v))

Np(T;p)  N(T;p) P | (p) (13)

_ _ _ - J(p) 20, 13

D (T;p) D(T; p) JV -AT(1-F(v))
e

p

f(v)J(v)(1-F(v))dv

f(v)(1-F(v))dv

which together with DT(T;p) < 0 imply that T = 0 is optimal.g

In the absence of an auctioning cost, the owner will choose to auction

the object at every instant, which is essentially the same as posted-price

It is easy to see that p < v in the optimal auction. If p=v is optimal,

6HA(T;p) <

7 0. This implies that HA(T;p) z J(p). Inequality (13)

however,

still holds.

-16-



selling. More significantly, it means that the optimal posted-price selling
is equivalent to the optimal sequence of auctions with storage cost 6d and no
auctioning cost. If the displaying costs and the storage costs are the same
and there is some auctioning cost, then posting a fixed price would be the
optimal way to sell the object. This result is consistent with McAfee and
McMillan’s (1988) finding that if there are infinitely many potential sellers
(buyers in our case), then offering a fixed price and approaching the sellers
sequentially (in our case, offering each arriving buyer the fixed price) is
optimal.

From this lemma, we see that the advantage of using auctions periodically
derives from the hypothesis that storing is cheaper than displaying. Certain
objects that are usually auctioned like agricultural produce, fresh fish, cut
flowers, are expensive to display, relative to keeping them in fields or in
water. Other frequently auctioned objects, like antiques and art works that
have high values have high relative display costs due to security
considerations.

Since posted-price selling is equivalent to the optimal auction with
storage costs equal to 64 and no auctioning cost, we can compare it with the

optimal auctions in an easy way. We have the following theoren:

Theorem 1

There exists a function H(@s,Ba), such that the optimal sequence of
auctions described in Lemma 2 is preferred to the optimal posted-price
selling if and only if H(@s,®a)<6d, where H(Os,®a) is increasing in its
arguments, with H(@s,0)=0s, and H(Bs,®a)>0s, VBa>0.
Proof

Denote the profit from the optimal posted-price selling as S(6d), which

-17-



depends on the cost of display 6d; the profit from selling by the optimal
auctions is denoted A(Os,®a).

It is easy to see that A(0s,8a) must be decreasing in 6s and ®a, and
S(6d) must be decreasing in @d. If ®a=0, from Lemma 2, A(Os,0)=S(08s). If @a
> 0, however, A(6s,Ba) < S(6s). Let H(Os,B0a) = S—l(A(es,Ea)). It is easy to
see that H is increasing in both 6s and ®a with the following properties:
H(6s,0)=6s, H(6s,0a) > Os, VBa>0; the optimal sequence of auctions yields a
higher profit if and only if H(6s,8a) = 6d. g

The profit generated by the optimal sequence of auctions with storage
cost 6s and auctioning cost ®a is the same as the profit generated by the
posted-price selling with display cost H(@s,8a). From (10), it is easy to see
that

% s -1 (14)

H=constant T(0s,®a)

Given any 64, a representative curve can be drawn that divides the (®a,6s)
space into an auction-favorable region and a posted-price-favorable region.
(See Figure 1 on the next page).

Since H(6d,0)=6d, given 6d, H(6d,0a)=6d is indirectly but completely
determined by T(0s,0a). This is because the curve always intercepts the
6s-axis at 6d and its slope is determined by (14). If there is a uniform
shift in F(v), from Lemma 5 T(®s,8a) is unchanged, and thus the comparison
between auctions and posted-price selling is unchanged.

In what follows, we shall explore the effect of dispersion on the H
function in Theorem 1. First of all, we need to define the dispersion of a
distribution. As different distributions may have different supports, a
definition that depends on the support of a distribution is difficult. It

becomes easier, however, if we consider the cumulated distribution function of

-18-
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Posted-Price Favorable
H(0s,®a)=06d
Auction Favorable
> Ba
Figure 1 Comparison between Posted-Price and Auctions
a random variable. Since a c.d.f. is always between O and 1, a definition

based on it offers a common domain for comparing different distributions.
Assume that f(v)>0, Vvelv,v], and thus F(+) is strictly increasing on its
support. Define g = F-l. The domain of g is [0,1], while the range is the

support of the distribution [v,v]. Since g’=1/f, we have

Jog = g - %‘g’ - g - (1-F(g))g’ . (15)

Let 9€[0,1]. The optimal auction problem we have studied can also be
translated in to the & language. By change of variable v=g(®) and letting

F=F(p), HA(T;p) can be expressed as
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1
AT J e AT(1-8) ;0 (8))dd - 6sT - €a
T F) = F . (16)
-AT(1-F)
1 -e

Denote Jog=j. The dispersion of a distribution is measured by 3:
Definition: F1 is more dispersed than F2 if and only if

31(2) > 3,(8), veelo,1].

This definition is consistent with our intuition about the dispersion of

commonly used distributions. Here are some examples:

-kv

1) Exponential Distribution: F(v) =1 -e 7", vel0, +n).
In this case, J(v) =v - —%— , which is increasing,

=1, 1 / =
g(@)— klnﬁ , and 5 (@) =

_1
k(1-9) °
And as is generally agreed, the smaller the k, the more dispersed the

distribution, which can be confirmed by 3’ ().

vV-v _
2) Uniform Distribution: F(v) = —, vely,vl.
V-yv

In this case, J(v) = 2v - v, which is increasing. And
g(®) = (v-v)® + v, and 3P’ (&) =2(v-v).

The larger the (v-v), the more dispersed the distribution is.

\'

2
3) Normal Distribution: F(v) = [ 1 exp{- (x-p) } dx , ve(-o, +»).
© 2t o

2¢2
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It is easy to prove that J(v) is increasing.8 Define G(v) as the c.d.f.
for the standard Normal distribution (i.e. p=0, o¢=1). We have F(v)=G(!§E).

Thus, g(®)=p+oG (8). And 3’ (8) = c+dJ(G 1(8))/de > 0, since G ! is an
increasing function. As ¢ increases, the distribution becomes more

dispersed.9

Let Vl’ V2 denote the random variables with differentiable c.d.f. The
following lemma helps us establish some intuitions about the definition of

dispersion.

Lemma 7
(i) 51(@) > aé(@) 3 gi(@) > gé(@);
(ii) gi(@) > gé(@) > Var(Vl) > Var(Vz).
Proof
(i) Bi(é) = Zgi(é) - (1—@)g;(®), i=1, 2.
51(@) > 5&(@) implies that 2(gi—gé) - (1—@)(gi-gé)’ > 0.

Multiplying the above inequality by -(1-%), we have
d 20 4 s
as[“ )% (g gz)] <o.

Since the expression within the square brackets is equal to zero when

i) =v-EEW g ) =2+ LEM fr0) £ (v) = —(vem)E(v) /62,
f(v) fz(v)
+00 +00 2
and (v-p)(1-F(v)) = I (v-p)f(x)dx < J (x-p)f(x)dx = ¢“f(v). Thus, J’(v)>1.
v v

In fact, from the above calculation we can conclude that for any
distribution that is characterized by mean and variance only, with J’ (v)>0,
the higher the variance, the more dispersed the distribution is.
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®=1, we have, for &<1, (I—Q)Z(gi—gé) >0, i.e. gi(@) > gé(@). It is easy to

see that Bi(l) > Bé(l) implies gi(l) > gé(l).

\' 1
(ii) Let B = I 1 vdFi(v) = I gi(¢)d¢ denote the mean of Vi and define
vs Y
gi(é) = gi(é) -y
;i 2 1 ~2
Thus, Var(Vi) = f (v—pi) dFi(v) = I gi(@)dé. Therefore,
v 0

=i

1
Var(Vl) - Var(Vz) = IO [gl(é) + 82(0)][g1(®) - gz(é)]dé .

The expressions in the square brackets are both strictly increasing,
since gi(@)=gi(¢)>0, i=1,2, and by assumption, gi(@)>gé(@). Since
1 ~ ~
g,(®) - g, (®)|d® =0 , (17)
0 1 2

there exists #*e[0,1], such that

§1(<1>) - §2(<1>) >0, if ® > &*, and §1(<1>) - §2(¢) <0, if & < &* .

Thus,
i e @]z @93 @l > [ [z @iz on]lz (8)-g. (2)|ds (18)
,[Q* (817777821078 1%)78, ()] J- ox L1 8217|8118
@*r _r - o* - F -
jo £, (948, ||&, (918, (0) |as > IO £, (0148, (0% |8, (918, (0) |as (19)

Adding (18) and (19), and making use of (17), we complete the proof of (ii). g
It it easy to see that the converse to (i) and (ii) is not true. Making

use of this lemma, the dispersion of a distribution becomes more

understandable with the help of a graph. As gl(Q) is steeper than gz(é) in
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(®,g) space, Fl(V) is flatter than Fz(v) in (v,F) space, which means that vy

is not distributed as concentrated as VZ' If we integrate gi(@) > gé(@) both

1—g1> vz-gz, i.e., the support of V1 must be wider

than V2' These properties are shown in Figure 2.

The definition of dispersion here imposes stronger restrictions on the

sides from O to 1, we have v

distribution than many other definitions, like those in Rothschild and

Stiglitz (1970). Assume that V1 is more dispersed than V It is easy to see

2
that it implies V1 has more weight in the tails than V2, which is one of the
definitions in Rothschild and Stiglitz. The definition is also more

restricted than those depending mainly on the cumulated distribution function,

like risk dominance of higher orders.

~ F(V), ]

<l
<l

Fz(v) FI(V)

0 — v, g(9)

Figure 2 The Dispersion of Distributions
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The following theorem outlines the effect on the choice of selling

methods when the distribution of a buyer’s valuation becomes more dispersed.

Theorem 2
Suppose 51(@) > Bé(@), véel[0,1].

®a>0; auctions are more attractive for Fl(V) than Fz(v).

Proof
Let Sg(é) = E°81(@)) + (1—g)52(¢), €e[0,1]. Thus,
1
AT I e ATU=2)y (5)dd - 6sT - @a
F 3
H’E‘(T;F) -
| - oAT(1-F)
1 eAT(L=8)y 0y _ 6s _ ©a
IF £ By AT

Then Tl(es,@a) > Tz(es,®a), VOs>0,

N(T;F)

1
I e—AT(l—Q)dQ
F

Maximizing Hg(T;F) with respect to T and F, we have

1

D(T;F)

“AT(1-3) Oa
e D.(®)(1-%)dd - =
ang o [ Ny N ] o [ IF £ a2 N ] .
3T D D D D 1 D
I e_hT(l_Q)(l-Q)dQ
F
ang azng azng
aF -9 aror - 0 and aTaT < O
2
8 ng 5 ( Dg N, N P M N
3TaE 3 | D D, ) D 3¢ Dy )
L aT(1-9) L aT(1-9)
5 I e A3 (8) (1-0)dd I e A3 (2)dd
_ T [ F - _F ] >0 (20)
D T 1 ,

I e AT(1-2) (1 4140
F

I e—)\T(1—<I>)d(I>
F
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where AJ(®) = BI(Q) - BZ(Q). By assumption, A)’(®)>0. From Lemma 3 and
noticing that DT<0, equality (20) is positive.
Since

2 2 2
_d(a"g]= o°Tg .£+ﬁ.£+_“£
dg oT oTaoT dg 0TéeF dg dToE

=0’

we conclude that dT/d€ > 0. That is, Tl(es,ea) > Tz(es,Ba), Vs, Ba=0.

Consider the iso-profit lines (H1 and H, for distributions FI(V) and

2

FZ(V)) that pass (0,0d) in Figure 1. The slope for H1 is flatter than that of
H2 at that point, since T1>T2. It is easy to see that H1 does not cross H2
from above, since otherwise H1 is steeper than H2 at the crossing point and
thus T1>T2 is violated. Thus, H1 must lie above H2 entirely (see Figure 3).
That is, auctions are attractive in more occasions for F1 (a more dispersed
distribution) than Foo m

es T

0d

H, (6s,8a)
v

Posted-Price Favorable

/
Hz(es,aa)

Auctions Favorable

Figure 3 Auctions Favorable Regions and the Dispersion of Distributions
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Theorem 2 says that objects with larger values are more likely to
be auctioned, given that they have more dispersed distributions. A more
dispersed distribution provides more incentive for the seller to wait longer,
since the distribution has a steeper profile of J(®) than a less dispersed
distribution. As T increases, the distribution of winning bid shifts up, and
the higher portions of J(®) receive more weight. Thus, the seller would
rather set a longer T in order to have more bidders in the auction and the
profits from such auctions are increased. Therefore, the position for the
optimal sequence of auctions is improved, and the posted-price selling becomes

less attractive.

3. The Welfare Effect of Searching

Assume that a social plan has exactly the same information‘as the seller.
Since a social planner evaluates the sale by the willingness to pay of the
successful buyer instead of the price, we may expect that he should set a
lower price and wait less and thus the cost of waiting is reduced. The
following ‘theorem shows that this is not always the case. The intuition is
that as one waits longer, a buyer with higher valuation may come. Therefore,
the total effect of cutting price or waiting less between auctions is
ambiguous.

1-F(v)

Let y(v) = —Tv) denote the reciprocal of the hazard rate of the

distribution. Thus, J(v) = v - y(v). We have the following theorem:

Theorem 3
If y(v) is monotone increasing (decreasing), then the price is lower

(higher) than the socially desirable level, and T is shorter (longer) than the
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socially desirable level.
Proof

The expected social welfare is defined as the expected willingness to pay
of a successful buyer minus the expected cost of selling or auctioning the

object. For a given price p and time interval T, the expected social welfare

\"4
AT f e MITFOD e 0yvdv - 6aT - Ba
P
W(T;p) = (21)
| - o-AT(1-F(p))
V. AT(-F(v))
I e Ve wwviav
P
= HA(T;p) +
v
J e—AT(l—F(v))f(v)dv
P
At the T and p that maximize T (T;p), 95;%3121 =0, Qﬂfé%;gl = 0. Let

e—AT(l—F(v))f

h(v) = (v), and denote the numerator and denominator in (21) as

N(T;p) and D(T;p). We have

W Dp(T;p) Np(T;P) N(T;p)
ap D(T; p) Dp(T;P) D(T;p)

h(p) [ -1(p) glp) I;h(v)w(v)dv J

D(T;p) ~h(p) I h(v)dv

P
h(p) I h(v)y(v)dv
- P - g(p) (22)
D(T; p) I h(v)dv
p
If y(v) is increasing, then gg > 0. Thus, a marginal increase at
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the optimal price increases social welfare. This implies that the price set

by the owner is too low compared to the socially desirable level. If y(v) is

oW
op

increase social welfare. This implies that the price is too high.

decreasing, then < 0. Thus, a marginal decrease at the optimal price

aw “ D..(T; p) [ N.(T;P) N(T; p) ]

aT D(T; p) D (T; P) D(T; p)

—AIh(v)(l—F(v))dv Jh(v)¢(v)(1—F(v))dv Jh(v)w(v)dv

D(T; p) Iﬁ(v)dv

Ih(v)(l—F(v))dv

Since F(v) is increasing, if y(v) is increasing, from Lemma 3, the above
is negative and thus g¥ > 0. This implies that a marginal increase at the
optimal T will increase the social welfare. Thus, the optimal T chosen by the
owner is smaller than the socially desirable level. If Y(v) is decreasing,
then -y(v) is increasing. Similarly, from Lemma 3, g¥ < 0. A decrease in T
improves social welfare. Thus, the optimal T chosen by the owner exceeds the
socially desirable level. -

A social planner cares about the winning buyer’s valuation (v) instead of
his expected actual payment (J(v)). The difference between those two values
is y(v). If y(v) is increasing, the social planner tends to have a higher
reservation price than the seller’s. Since the social planner has a steeper
profile for the valuation in this case, he would rather wait longer for more
high valuation bidders to come. Thus, the social planner would choose a
larger T. When y(v) is decreasing, it is easy to see that the effects work in
the opposite direction. As posted-price selling is a special case of a

sequence of auctions, the prices chosen by the social planner have the same

tendency as above.

-28-



4. Concluding Remarks

In this paper, a stochastic dynamic model is presented to address the
problem of optimal selling mechanisms. Given a proper definition of
dispersion, we prove that auctions are more often used when the distribution
of the object’s value is more dispersed. This measure of dispersion is found
to be closely related to the J(x) function in various previous papers. A few
examples are provided to illustrate the fact that the definition coincides
with our intuition. We also prove that dispersion and variance are closely
related--a more dispersed distribution also has a higher variance. It is
found that the optimal reservation price (the fixed price in posted-price
selling) and the optimal time between auctions may be different from those of
a social planner who maximizes the social welfare.

We have made a few assumptions in the paper. Those assumptions are meant
to simplify the analysis. The assumption that potential buyers arrive
following a Poisson process is not important to the qualitative results in the
paper. If arrivals follow other processes, the optimal reservation price and
the optimal time length may vary over time. The comparison between auctions
and posted-price selling, however, is expected to have the same result. We
also assume that buyers’ valuations are distributed independently. If their
valuations are correlated, the revenue equivalence among different forms of
auctions will not hold. In this case, if buyers in a posted-price selling
method do not know their positions in the arriving order, then the comparison
will favor a sequence of auctions (assuming, for example, that English
auctions are used), since more information is revealed in an auction,
and thus the revenue of the seller is improved (cf. Milgrom and Weber 1982).
The assumption on the risk-neutrality of buyers is not important. As buyers

become more risk averse, their valuation (or willingness to pay) is higher,
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since the uncertain outcome of searching further has less utility. This,
however, should not affect the comparison between auctions and posted-price
selling, since a uniform shift in a buyer’s valuation does not affegt the
comparison.

The results obtained in the paper are supported by the observation that
auctions are often used to gather potential buyers (or sellers). Buyers
getting a good bargain in the auction is certainly not the objective of the
auctioneer. As it is usually true that displaying an object is more expensive
than storing it, cost saving considerations are probably the main reason for

holding an auction.
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