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Abstract

We propose a specification test of a parametrically specified nonlinear
model against a weakly specified alternative. We generalize a similar test
procedure proposed by Delgado and Stengos (1990) to test the specification of
a linear model. We estimate the alternative model by using k nonparametric
nearest neighbors (k-NN) in the context of an artificial regression. We
derive the asymptotic distribution of the test statistic under the null
hypothesis and under a series of local alternatives. Monte Carlo simulations

suggest that the test has good power and size characteristics.



1. INTRODUCTION

In a recent paper, Delgado and Stengos (1990), henceforth DS, propose a
specification test of a linear model against a weakly specified alternative.

We generalize their procedure to allow for a nonlinear parametric formulation
of the null hypothesis. The proposed test as in the case of the DS test, is
based on an artificial nesting procedure for testing separate regressions, see
Davidson and Mackinnon (1981) and Fisher and MacAleer (1981). Recently,
Wooldridge (1989) proposes a test which also allows for nonparametric
alternatives using a different methodology and relying on "sieve" estimators
for the alternative model. In this paper as in DS we use k-nonparametric
nearest neighbors (k-NN) to estimate the alternative model.

In the next section we discuss the nature of the proposed test. We then
proceed to investigate the small sample properties of the test by means of a
small Monte Carlo. In the next section we apply the test to an empirical
example from labor economics and demonstrate its usefulness with real world

data. Finally we conclude.

2.THE SPECIFICATION TEST

Suppose we have independent observations {(Yl,Xi,Zl),lsisn) from the
RxR"xR? valued random variable {Y,X,Z}, having finite variance and conditional
distribution IFle,z that is nondegenerate for all X,Z at which it is defined.
Let E(.) denote the mathematical expectation. The researcher faces the

following competing hypotheses:

Ho: E(YIX,Z) = E(Y|X) = f(Bo,X) H HA:IE(YIX,Z) = E(Y|2Z) (2.1)

In other words Ho is completely parameterized and f: R°x R" —R is a known

function of a vector of parameters and a set of regressors. We focus our



attention on the composite hypothesis :

HC: E(Y|X,Z) = (1 - So)f(Bo,X) + GOIE(YIZ) (2.2)
It is always possible to reparameterize the composite hypothesis as follows:
H: E(Y|X,Z) = g(6 ,X) + 8 E(Y|Z) (2.3)

where eo is a p’x1 vector of unknown parameters and (1—60)f (BO,X) 4 g(eo,X).
Since E(Y|Z) is unspecified, we can estimate it by nonparametric

regression. In this paper, as in DS, we use (k-NN) nonparametric weights. The

use of these weights have been introduced in the semiparametric literature by

Robinson (1987). In particular, the estimator of E1 = IE(YIIZI), is given by :

E = ZJYij(k) ‘ (2.4)

where le(k) are the weights based on the r Z-regressors. For a positive

Kk
integer k let Cl(k) be constants satisfying Cl(k)ZO ; Cl(k)=0, i>k; Zl Cl(k)=l

+r_ -1
P g

PR |
wU(k) = 1(i#j) T, ) C. (k) (2.5)

T=
plj

where 1(.) is the indicator function and P, is 1 plus the number of Z’s
closer to Zl than Zj and r‘lj is 1 plus the number of Z’s equally near from Zi
as ZJ. To calculate distance we use the euclidean metric after we standardize
by the sample standard deviation.
. T,T T\ T .
If we define p=(8,06") and uo=(6°,90) , then we proceed to estimate p

by,

=
I
> O

n | = argmin Q (u,E)
M n

n

where p € M and Qn(u,A) = n-IZI{Yl- g((—),Xl)-SAl)z.

In order to derive the asymptotic distribution of nl/zun, we need the

following regularity conditions :



A1 E(YIX,Z) = g(6,X) + 8 E(Y|Z) a.s. where g: R’ x R" — R is uniformly
continuous on ® where Bo is an interior point of ©, a compact subset of RP .

Also 60 is an interior point of A which is a compact subset of R.

A.2 For all €>0, there exists a € > O such that

inf E(g(6,X) -g(8,X) + (3 - SO)IE(YIZ))Z > £
|- |= €

A3 For v > 2,

(i) sup If(B,X)] = mo(x) where Elmo(x)lv< ®,

B
(ii) IEIY-f(Bo,X)Iv < o,

(iii) E|Y-E(YI2)]Y < w.

A.4 Var(Y|X,2)= ¢ > 0 a.s.

Condition Al describes the model. Note that under Al M=(A,®) is also compact
and (60,92)'r is an interior point of M. Condition A2 is the typical
identifiability condition in nonlinear regression (see e.g. Jennrich 1969).

Note that condition A2 rules out situations where the same set of regressors
is in X and Z. In this case E(Y|Z)= f (Bo, X) under the composite hypothesis
and condition A2 does not hold for any &# 60 as far as B= [30. That is 60 is
not identified under the composite hypothesis. Condition A3 establishes the
moment conditions on the conditional expectation of the dependent variable
under the null hypothesis and the moment conditions of the disturbances under
the null and under the alternative hypotheses respectively. The following two
conditions state the rate of convergence of the number of nearest neighbors,
which is related to the moment conditions in A3.

K.1 m max C (k)< o.

K2nk 2?50, kn'— 0 as n—> w for v > 2.

Theorem 1: If K.1-K.2, A.1-A.4 hold, then o - p = o ().
- n V] P

Proof.- See appendix.
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In order to derive the asymptotic distribution of n' ﬁn— uo) we need

to introduce the following notation :
f(B)=f®.X), f=f(B), f (B=af®,X )/, f =1(B) gl6)=g(6,X),
g=f(0,), g (6)=0g(6,X )/30, g =g (6 ), & (6)=d"g(6,X )/8036", g= g (8,),
£, (B)=0"r(B,X )/opog", f=f (B), V= EC D),
EIE(Y|2Z)%] EfT f]

0 []
IE[flfll Vo

We also need to introduce some additional assumptions on the distribution of

(Y, X, Z) under Ho’

A.S There exists a neighborhood of Bo, INO, such that,

sup||f°'l(B)|| = ml(Xl), where IEIml(Xl)IV< ®,
Ny
sup||f1(B)" = mZ(Xi), where IEImz(Xi)IV< .
N

0

A.6 BO is positive definite (p.d).

Condition AS states the moment conditions for the first and second
derivatives of f(.,.). This condition was also assumed by Newey (1989).
Condition A5 and A6 ensures that the asymptotic covariance matrix of
nl/z(ﬁn-uo) is positive definite. Note that when f 1(B)=X'f[3, a necessary and
sufficient condition for AS to hold is that E{var[E(Y|Z)|X]} > O under Ho’

which was assumed by DS. Let define,

£ Eg )t

A -1 i i~1 n

Bn = n Zi A O -~ o ~ o ~ T
Eigi(en) gl(en)gl(en)

¢ = (1/n-p) ):i( Yl— g(én,Xl) - Snﬁ‘i}z.

We are now in position to derive the asymptotic distribution of nl/z(ﬁn-uo)



under H .
0

Theorem 2 : If K1, K2, Al-A6 hold and HO: 6°= 0,

n"z[ | —5 N, o8,
e

Proof.- See appendix.

Note that the above result implies that under Ho’

vzg 4, N, 0‘2/[IE(var[IE(YIZ)IX]} + (Elf%) - e £71 v £ 1)].
n i ii V] il

The first diagonal component of &zﬁ;l is the estimate of the asymptotic
covariance matrix of nl/zgn under Ho' Note that once the conditional
expectation estimates fii have been computed, one may use standard software to
compute the t-ratio to test H0:6=0.

Under conditional heteroskedasticity of unknown form, the covariance
matrix is different, but valid t-ratios can be obtained by estimating the
asymptotic covariance matrix of nllz(ft— uo) under the null by the
Eicker-White (Eicker 1963 and White 1982) estimate. Let assume that

Var(Y|X,Z)= O‘Z(X,Z) is a function of unknown form. Let define,

c=B'p B!
0 0 0 0
c=8'p B
n n n n

where,
E[E(Y|2)%0%(X,2)] IE[f"fflO'Z(X,Z)]}

D =
0 E[f‘iflwz(X,Z)] E[?i%faz(x,zn
A2 2 A o A T 2
) o Eiei El gi(en) el
Dn =n Zl A~ o A 2 o A o A T 2
Elgi(en)ei gl(en)gl(en) el



Theorem 3: If K1, K2, A1-A3,A5,A6 hold, Do nonsingular and when HO: 60= o,

2| 8, — 94, N, %),
N 0
(]
C-c =o(.
n 0 P
Proof.- See appendix.
Given Theorem 1 and 2 it is straightforward to deduce the asymptotic
distribution of nl/zsn under a series of local alternatives.

/

Theorem 3: If K1, K2, Al-Aé holds, then when 60= n1 2 Vo where ',yo is a

constant,

n'/ an_i, N{ao,oz/[lE(var[lE(Y 1Z)IX1) + (El£7] - Elf £ v;‘m[fifl])].

Proof.- See appendix.

Hence, if the null hypothesis is false, the test statistic will have power to
reject it. A similar result was also obtained by DS. Note that, in the linear
case, ([E[ff] - [E[flf‘!f] V;IE[f‘lfl])= 0. Under conditional

heteroskedasticity of unknown form, the asymptotic variance of nllzsn is
different. In this case Theorem 3 follows but the asymptotic variance is the
first diagonal component of Co which can be consistently estimated by the
first diagonal component of Cn. Once the conditional expectation under

the alternative is estimated using k-nn, then one can use any package that

allows for nonlinear least squares estimation to carry out the test.
3. MONTE CARLO SIMULATIONS

In this section we will investigate the small sample performance of the
proposed test statistic by examining its size and power properties in the
context of some Monte Carlo experiments. The structure of the experiments is

similar to DS for comparison purposes. We take H0 to be linear as



HO:Y = Bo+X1Bl+x232+ U We consider two alternative hypotheses HlA and H2A
. 2
for two sets of experiments, where H1A'Y = 70+(7121+7222) + u1 and

HZA:Y = 6°+exp(6121+6222} +u. The parameters 30,81,32,70,71,7 8,8 ,62 are

22701
set to unity. The X’s are generated as NID(0,1) variates and the error terms
are generated independently of the regressors as N(O,O‘Z). By choosing
different values of o we control the fit of the data generating process. For
instance, under Ho which is linear a ¢ of 0.33 corresponds to a squared
correlation coefficient between y and the X’s of 0.9483, whereas a o of 7
corresponds to one of 0.0392. We generate the Z’s as Zi=7\Xl+vi, where \A is
distributed as NID(O,1), i=1,2. By varying A we control the correlation
coeff icieht between the Zl’s and the Xl’s. When A is 1, the correlation
coefficient between Zland X1 is 0.71, whereas when A is 0.1, the latter is
0.1. We have used two k-NN estimates of E(Y|Z), one with k=n'"? and the other
with k=n2/3. We have chosen sample sizes of n=25,100,500, which correspond to
very small and to moderate sizes for real world cross sections. All the
programs were written in FORTRAN double precision and they were run on the IBM
3081 of the University of Guelph. The normal variates were generated by the
GGNQF routine of IMSL. For n=25 we performed 10000 and for n=100 and 500 we
performed 1000 replications respectively. In both the size and the power
experiments we consider also as a benchmark the t-statistic on the
significance of 6 from the regression Y = X + O6E(Y|Z) + u, where E(Y|Z)
takes the exact value from HlA and H2A respectively. The above t-statistic
will outperform our statistic because it uses exact information that is
unavailable to the researcher.

Table 1 presents the results of the size experiments. There is a
tendency for our statistic to over-reject, as o increases. This is to be
expected, since large values of o represent a lot of noise and a poor fit for

the data generating process. As the sample size increases the actual size



tends to its asymptotic value, and the difference between the proposed test
and the benchmark unfeasible one becomes smaller. The k-NN estimator with
172 . 2/3
k=n performs better than the one with k=n""". Tables 2 and 3 present the
power results under H1A and HZA respectively. Except for the case of very
small samples with a large ¢ or a small A, the power results seem quite
encouraging. Also as the sample size increases the results improve noticeably.
In short the Monte Carlo results suggest that the proposed test performs

adequately with respect to its size and power characteristics.

3. EMPIRICAL EXAMPLE

In this empirical example we estimate a wage equation from a sample of
Canadian microdata from the 1981 Survey of Work History conducted by
Statistics Canada in January of 1982 in conjunction with the monthly Labor
Force Survey. The sample consists of 1541 unionized male workers in Ontario
from 20 to 54 years of age, employed in the non agricultural sectors
throughout the year 1981 with a single employer. The definitions and
descriptive statistics of all the variables that enter the analysis are given
in table 4.

To simplify the estimation in most wage studies one assumes a
semi-logarithmic specification for the wage equation in question. The implicit
assumption in this case is that the errors enter multiplicatively in the
original exponential formulation. In the present study we will estimate the
wage equation for the unionized workers in our sample in its original
exponential form, assuming implicitly the presence of an additive error
structure.

We will distinguish between a null hypothesis that takes the process of

unionization as exogenous an a model that assumes an endogenous selection



process that assigns workers to the union sector. The latter is parametrically
unspecified and it includes a certain distinguishing feature from the null
hypothesis model.

In the literature the effect of endogenous unionization on the wage rate
is typically modelled in the context of an endogenous switching model whereby
one postulates a sample selection criterion function that assigns workers into
the union and nonunion sectors. Furthermore, one assumes joint normality of
the errors of the wage equations in their semi-logarithmic form and the error
of the sample selection rule. That leads to the inclusion of the inverse Mills
ratio variables as additional variables in the original wage equations in
order to correct for selectivity bias. The selectivity correction variables
are themselves functions of the parameters that enter the sample selection
rule. The model is then estimated by Maximum Likelihood or by the simpler two
stage procedure suggested by Heckman (1976) and Lee (1978).

In the present application we will not assume a specific distribution
for the errors. We will only assume that there is a selection process that
assigns workers into the union sector and consequently affects the wage rate.

The null hypothesis takes the form
T

Ho : E(Yilxi,Zi) = exp{XiBO) (3.1)
whereas the alternative is left in its conditional expectation form as

H1 : E(Yilxi,zl) = E(YIIZi) (3.2)
The composite model is constructed as

T
H : E(Y,|X,Z2) = (1-3 )exp(X B} + 8 E(Y |Z) (3.4)
The X’s and the Z’s overlap as they both include the typical demographic,

human capital and job specific variables that enter wage equations. The

variable that distinguishes the Z’s from the X’s is the degree of unionization



in the industry as measured by the percentage of unionized workers in the
industry that the worker in question is employed. The estimation results of
the composite model are presented in table 5. The estimated parameters all
have the expected signs and they are statistically significant. The standard
errors are computed using the Eicker/White heteroskedasticity robust
variance-covariance matrix. Skill as measured by a weighted average of the
occupational skill requirements of the industry and years of tenure with the
firm have a positive impact on the wage rate, although job tenure has a
declining marginal effect as seen by the negative sign of the squared tenure
variable. Also older workers earn more than younger ones and public sector
employees earn more than their private sector counterparts. The number of
other wage earners in the industry tends to increase the opportunities
available for alternative employment for an individual worker and consequently
has a positive effect on wages. The Z’s include all of the variables that
enter the null model except for the number of wage earners in the industry
variable. In addition they include the degree of unionization variable. All
the computations, except for E(Y|Z) using k-NN, were carried out in TSP.
The results suggest that the null model should be rejected. One course
of action is to augment the null hypothesis to include the degree of
unionization variable that suggests the presence of an endogenous sample
selection rule. Alternatively, one can simply postulate a particular
parametric form for the errors and proceed to estimate the wage equation by
including the corresponding sample selectivity correction variable. The latter
course will be computationally demanding given the nonlinear structure of the

model and the nonlinear nature of the selectivity correction variable itself.

4. CONCLUSIONS

10



In this paper we have proposed a test statistic that tests a nonlinear
parametric formulation of a null hypothesis against a weakly specified
alternative. It constitutes a generalization of the test proposed by DS. By
means of a Monte Carlo we investigated the small sample properties of this
test and we found them to be satisfactory with respect to power and size. We
also applied the test to an example from labor economics where we analyzed
the specification of a wage equation for unionized workers with Canadian data.
The test statistic is derived in the context of iid data and the extension to

dependent data is left for future research.

1



APPENDIX: PROOF OF THE THEOREMS

Henceforth, E.= ¥. E. w.. where w, .= w,.(k).We need the following lemmas.
1 =) J 1 1) 1]

Lemma 1 is Stone (1977) Proposition 1 and lemmas 1 and 2 are minor
modifications of Robinson (1987) lemmas, 7, 8 and 9.
Lemma 1. Let f(.) be a Borel function such that IE|f(Z)|p< o for some pz 1,
then,

{E{ZJ. |£(Z)- £(z)|? wlj}= o (1)
Lemma 2. For any p= v, [E|f31- f:l|p= ok *?).
VU 12y

Lemma 3.- max, Iﬁ - E |= 0 _(n
il™1 1 p

Proof of Theorem 1

Using A3 and standard consistency results,(see Amemiya 1985 Chapter 4) and the

machinery adopted in DS, the consistency of ﬁnf ollows from
sup,,1Q_(1E) - E(g(6,X) - g(6,X) + (8 - 8 )E(YIZ))* - 0| = 0 (1)
n 0 Y P
Let us define hl(A,;L)= [g(e,Xi) - g(eo,Xl) + (8 - 6°)Al:| and
u(A) = Y- g(@,X) - 8 A. Then we can write
i i 0’1 01
P | ~ 2 ~ 2 _ - -
Qn(u,E) =n Zi(ui(E) + hl(E.M) 2ui(El)hl(E,u)).

(a.1) follows from

-1 A2 2

n Eiui(E) - 0= op(l),

sup. In"'T h (E,w)? - Elh (E.w?] = o (1)
PM i M 1 M = P ’
-1 A N
supMIn zl[hi(E,u) ul(E)I = op(l).

We conclude (a.2) from,

-1 2 2

n Eiul(E) - o= op(l),

-1 A
n ZI(YI- g(eo,Xl)(El- El) = op(l)

I 22 o2y
n Zi(Ei- El) = op(l)

12

(a.1)

(a.2)
(a.3)

(a.4)

(a.5)

(a.6)

(a.7)



Noting that,

v 1% v
Elul(E)I = K{ I‘EIYi - f(Bo’Xi)l + IEIYl— lE(YiIZl)I }<ow (a.8)

by A3, (where henceforth K is a generic constant), (a.5) follows by the Law
of Large Numbers (LLN). Now note that,

EIY - (-3 )f(B,X)1” = EIY - f(B8,X )I” + KElm (x)]” < @ (a.9)
EIYIY < ElY - £(B,X )I” + KEIm (x)|” < w. (a.10)
by A3. (a.6) follows, after applying Cauchy’s inequality and A3, from,
e a2l laa =02 -la 2_
n ZI(EI- Ei) =n ZI(EI- Ei) +n ZI(EI_ Ex) = op(l) (a.11)
by Lemma 1 and 2. (a.7) follows from,
e p2 2 clo s 2 0 -lg s _
n Ei(Ei— Ei)- n Ex (Ei El) 2n ):i(El ]:“.l)El op(l)
by (a.11) and Lemma 1. We obtain (a.3) from (a.11) and,
sup, In"T h (E,u)? - Elh (E,w)%]] = o (1) (a.12)
Pum M oM T )
-1 .
sup, In Zi[g(e,Xl) - g(eo,Xl)](S - 60)(E1_ Ei)l e op(l). (a.13)
(a.12) follows from the uniform LLN; (a.13) is bounded by
-1 2|12 -1w o 2z _
[n Zimo(Xi) ] [n ZI(EI- Ei) ] = op(l),

by A3 and (a.l1). Finally (a.4) follows from,

-1 ~ _
supMIn Zl[hi(E,ll) ui(E)I = op(l), (a.14)
supMIn—lzl[hi(ﬁ,u)(S - 8 )E-E)| = o (1). (a.15)

(a.14) follows from,
sup,, In-lzi[g(e,xi) - glo, X))l (E)| = o (1), (a.16)
|n'lzi(ﬁl- EJu(E)l = o (1), (a.17)
-1

In LEu(E)| = op(l). (a.18)

(a.16) follows from the LLN, (a.17) follows from (a.11). Also (a.18) follows

13



from the LLN. Finally (a.15) is bounded by
-1 2 . a2 |12] -1g a 2|z _
[n L(m (X)* + El)] [n T (E - Ei)] =0 W
by A.3, (a.7), (a.11) and Lemma 1.

Let introduce some additional notation:

u(p,A)= Y- g0X) - A and u= Y- f(8 ,X)- 8 E

Proof of theorem 2
In view of theorem 1 and using a standard mean value theorem (mvt) argument,

it suffices to prove that,

A2 A -
n 2y [ Eu ] {n—l): [ E E g®) ] }
£ 1 Eg8) (8 )g 8+ g (8 )u (i E)

4, (0,0°B]Y)

for any i = (3, 8)" such that ji - (0, 8)"= o (1). Then, it suffices to
n n n n 0 P

prove that
n'l/zzl[ I:':‘lul ] 4, N(O,O‘ZBO) (b.1)
fu
-1/ A
n 2;jl(Ei- E)u =o () (b.2)
n‘l):i(ﬁ:f- Ef) = o (1) (b.3)
-1 A O -— o
n Zl(Elgl(en) - Elgl) = op(l) (b.4)
-1 o - ° - T o oT _
n legi(en)gi(en) - glgi] = op(l) (b.5)
-1 - - - a . _
n Zi[gi(en)ul(un,E) - giui] = op(l) (b.6)
E? Eg'
n'lzi[ ' o ] -B, =o (1) (b.7)
18 gg* &y,

(b.1) follows from the Lindenber-Levy Central Limit Theorem. Noting that

-1/ 2 2
Eln’L(E- E) u|®* c+C+C,

14



where
} and
J

_ -1/2 o
C=E[n "L (E-E)U |

Then, (b.2) follows from Markov’s inequality since, by Holder’s inequality,
A v 2/v 20/(0-2) (v-2)/v 4

CS{IE|E-E|} {:z|u| } = o™

1 1 1 1
by Lemma 2; by Cauchy and Holder’s inequalities,
~ 2 2 I L4 2w (VY
E)U}S{nIE|E-E|} {IE|U| } .
1) 1 1 1

2/ ‘Uk-l)

C.= E{n"l T Y (E-
2 . e i
i#j

= O(n

by Lemma 2; by Cauchy’s inequality,

012’ S (v-2)/v
Cs{E|ﬁ-E|} {E|U|””‘} = o (1)
2 1 1 1 o)

by Lemma 1. (b.3) follows from (a.7), (b.4) from

_1 o - -] -
n 21 El(gl(en) - gl) = op(l) . (b.8)

1w ° ,= A _
n Yg(6)E -EI]= op(l) (b.9)

(b.8) and (b.9) follow from Serfling (1980), Lemma 7.2.1.A (henceforth S), A4

and (a.ll). Further, (b.5) follows from S and (b.6) follows from,

n"zl(éi(én) - glu= o (1) (b.10)
n'L, g6 )u@E) - ul= o (1 (b.11)
(b.10) follows from S and (b.11) follows from
1 e = - _
n Zigi(en)[gl(en) - gl] = op(l) (b.12)
(b.13)

N
n yeg(6)5E = op(l)

(b.12) and (b.13) follow from S and, the consistency of ﬁn, Lemma 1 and 2.

15



Proof of Theorem 3.

The consistency of ﬁn follows form,
A 2 2 -—
sup,(1Q_(1.E) - {E[g(e,X) - g(6,,X) + (8 - 3 JE(Y|Z)™- o (x,z)}l = o (1)

it follows form (a.3), (a.4) and
L (B~ o*(X,2))= o (1),
which follows using the same arguments as in the proof to (a.2). Then the

Theorem follows from,
n g | B | 25 Noop)
fu
it
and (b.2)-(b.7). In order to prove the consistency of Cn, it is not necessary

to assume that 6°= 0. In fact, we prove that Cn-— C0= op(l) for any 60. Let

define follows from (b.2)-(b.7) and, ﬁn— Do= op(l) which follows from,
-1 a2 2 2,
n Zi E'e - [E(Elcrl)— op(l),
-1 A O, = 2 -] 2 _
n Ei E.g(8 e, - [E(Elfltrl)- op(l),
-1m o= (0. = T 2 2 T 2,
n Zi g(en)g(en) e~ E(flflo'l)- op(l).
(d.1) follows from,
-1 2 2 2,
n Zi Eo,- IE(Eltrl)— op(l),
-1 2,2 2
n Y E (u- o))= op(l),
-1 2 .2 2
n Ei El (el- ui) = op(l),
-1 A2 2, 2
ny (E-E) e= op(l).
(d.4) and (a.5) follow form the LLN. In order to prove (d.6), note that,
A2 A A 2 A A A
ui(E) + hi(E,un) - 2ul(El)hl(E.un),
then, (d.6) follows form,

n'L E; (@ u?) = o (1,

16

(d.1)

(d.2)

(d.3)

(d.4)

(d.S)

(d.e)

(d.7)

(d.8)



-1 2 an 2
n Zi E hl(E,p.n) = op(l), (d.9)
-1 2 A A A _
n Zi Ei hx(E’”n) ul(E) = op(l). (d.10)
The left side of (d.8) is equal to,
-1 A 2 -1 A 2 ~
s, n L [E-EF -28 n'L [E-E]E u(f)
-1 A2 2,U/2 2/v -1 2V/(v-2)
s {o'n, 185517 fag

-1 A2 2|V 17v -1 Ay 1V /v -1 2v/(v-2) (v-2)/v
X {n L |EE] } {n L ()] {n LIE|

}(v-z)/ v

= op(l),

by Holder and Cauchy’s inequalities, Lemma 1 and 2; and (d.10) and (d.11)

follow by S and Lemma 1 and 2. The proof of (d.2) and (d.2) uses very similar
arguments to those employed in the proof of (d.1).
Proof of Theorem 4:

Using the same arguments as in Theorem 1 3n= op(l). Then using a mean
value theorem argument, the theorem follows by similar arguments as in Theorem

2.
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Size Results: Number of Rejections when Ho is true.

Table 1

*

n =25; Number of Replications = 10000;

A= A =0.43 0.1

5% 1% 5% 1% 5% 1%
o = 0.33| 0.0932 0.0314 0.1015 0.0350 0.1105 0.0410
0.1076 0.0246 0.1061 0.0344 0.2728 0.1534
0.0770 0.0240 0. 0802 0.0239 0. 0807 0.0235
0.0803 0.0246 0. 0802 0.0241 0.0794 0.0242
c =2 0.2361 0.1261 0. 2057 0.1039 0.1993 0.1003
0.3186 0.1932 0. 2807 0.1610 0.2728 0.1534
0.0771 0.0242 0.0797 0.0239 0. 0808 0.0235
0.0808 0.0247 0. 0800 0.0241 0.0797 0. 0242
c=17 0.3096 0.1861 0.2543 0.1380 0.2289 0.1248
0.4427 0.3018 0.3468 0.2185 0.3207 0.1950
0.0780 0.0244 0.0799 0.0240 0.0810 0.0236
0.0806 0.0247 0.0799 0.0241 0.0795 0. 0242

n =100; Number of Replications = 1000;

A= A =0.43 0.1

5% 1% 5% 1% 5% 1%
o = 0.33| 0.0640 0.0140 0.0700 0.0180 0.0750 0.0140
0.0640 0.0120 0.0670 0.0210 0.0670 0.0180
0.0570 0.0100 0.0580 0.0160 0. 0650 0.0150
0.0570 0.0060 0. 0570 0.0150 0. 0580 0.0170
c =2 0.1370 0.0550 0.1410 0.0450 0.1540 0.0700
0.1600 0.0630 0.1720 0. 0850 0.1730 0.0760
0.0570 0.0100 0. 0580 0.0160 0. 0650 0.0150
0.0570 0.0060 0.0570 0.0150 0. 0580 0.0170
c=17 0.1820 0.0960 0. 1650 0.0870 0.1870 0.0860
0.3040 0.1610 0.2190 0.1180 0.2190 0.1150
0.0570 0.0120 0.0580 0.0160 0.0580 0.0150
0.0570 0.0600 0.0570 0.0150 0.0580 0.0170

*The first row corresponds to the number of rejections, under Ho’ when E(Y|Z)
is estimated by k-NN, where k = n The third row

corresponds to the benchmark t-statistic,

by 1+exp{21+22)

and the fourth when the added regressor is given by
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1+(Z1+22)2’ i.e when E(Y|Z) is perfectly known.

The second uses k = n

2/3

when the added regressor is given



Table 1 (continued)

n =500; Number of Replications = 1000;

A= A =0.43 A 0.1

5% 1% 5% 1% 5% 1%
= 0.33| 0.0580 0.0100 0.0610 0.0120 0.0620 0.0140
0.0570 0.0120 0.0620 0.0130 0.0670 0.0180
0.0510 0.0100 0.0520 0.0160 0. 0650 0.0120
0.0520 0.0100 0.0580 0.0150 0.0580 0.0170
=2 0.0710 0.0210 0.0710 0.0250 0.0720 0. 0230
0.0810 0.0310 0.0730 0.0210 0.0730 0.0210
0.0510 0.0100 0.0510 0.0100 0. 0600 0.0150
0.0510 0.0120 0.0520 0.0100 0.0580 0.0170
=7 0.0910 0.0300 0.0930 0.0450 0.0900 0.0390
0.9300 0.0310 0.0900 0.0450 0.0970 0.0420
0.0510 0.0100 0. 0580 0.0160 0. 0600 0.0150
0.0530 0.0120 0.0570 0.0150 0.0610 0.0170




*
Table 2
Power Results: Number of Rejections when HIAis true

n =25; Number of Replications = 10000;

A=1 A =0.43 A=0.1

5% 1% 5% 1% 5% 1%
o = 0.33]| 0.9495 0.8899 0.9447 0.8850 0.9394 0.8787
0.7824 0.6515 0.7975 0.6666 0.8028 0.6760
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
o =2 0.7908 0.6711 0.5936 0.4508 0.5252 0. 3800
0.5892 0.4333 0.4295 0.2792 0.3770 0.2361
0.9999 0.9997 0.9942 0.9850 0.9862 0.9694
o =17 0.2457 0.1288 0.2066 0.1036 0.2038 0.1056
0.2225 0.1119 0.2441 0.1349 0.2477 0.1356
0.8570 0.7428 0.5808 0.3963 0.4914 0.3130

n =100; Number of Replications = 1000;

A=1 A =0.43 A =0.1

5% 1% 5% 1% , 5% 1%
o = 0.33]| 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1. 0000 1. 0000
c =2 1.0000 1.0000 1.0000 1.0000 1.0000 0.9990
1.0000 1.0000 1.0000 1.0000 0.9980 0.9980
1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000
o =17 0.9160 0.8590 0.5150 0.3430 0. 4020 0. 2510
0.8950 0.8230 0.4710 0.3430 0.3480 0. 2060
1.0000 1.0000 0.9790 0.9370 0.9490 0.8640

*The first row corresponds to the number of rejections, under HIA, when E(Y|2Z)

172 The second uses k = n2/3. The third row

is estimated by k-NN, where k = n
corresponds to the benchmark t-statistic, when the added regressor is given

by 1+(21+22)2, i.e when E(Y|Z) is perfectly known.



Table 2 (continued)
n =1000; Number of Replications

A= A =0.43 0.1
S% 1% S% 1% S% 1%
1.0000 1.0000 . 0000 . 0000 . 0000 . 0000
1.0000 1.0000 . 0000 1.0000 . 0000 . 0000
1.0000 1.0000 . 0000 . 0000 . 0000 . 0000
1.0000 1.0000 . 0000 . 0000 . 0000 . 0000
1.0000 1.0000 . 0000 . 0000 . 0000 . 0000
1.0000 1.0000 . 0000 . 0000 . 0000 . 0000
1.0000 1.0000 . 0000 . 0000 . 0000 . 0000
1.0000 1.0000 . 0000 . 0000 . 0000 . 0000
1.0000 1.0000 . 0000 . 0000 . 0000 . 0000




*

Table 3

Power Results: Number of Rejections when HZAiS true

n =25; Number of Replications = 10000;

A=1 A =0.43 A =0.1

5% 1% 5% 1% 5% 1%
o = 0.33] 0.7365 0.6233 0.9493 0.8957 0.9850 0.9553
0.5769 0.4340 0.9027 0.8158 0.9637 0.9055
1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000
c =2 0.6381 0.5036 0.7583 0.6297 0.7724 0.6470
0.4715 0.3293 0.6925 0.5372 0.7258 0.5814
0.9986 0.9956 0.9930 0.9828 0.9887 0.9755
o =17 0.3332 0.2082 0.2831 0.1645 0. 2720 0.1539
0.2524 0.1340 0.2759 0.1556 0.2796 0. 1607
0.9127 0.8635 0.7398 0.6283 0.6748 0.5484

n =100; Number of Replications = 1000;

A=1 A =0.43 A=0.1

5% 1% 5% 1% 5% 1%
o = 0.33]| 0.9890 0.9750 0.9990 0.9990 1. 0000 1. 0000
0.9890 0.9550 1.0000 0.9980 1. 0000 1. 0000
1.0000 1.0000 1.0000 1. 0000 1. 0000 1.0000
c =2 0.9840 0.9760 0.9990 0.9990 ‘ 1. 0000 0.9990
0.9690 0.9520 0.9990 0.9980 1. 0000 1. 0000
1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000
c=17 0.9710 0.9480 0.8710 0.7840 0.7910 0.6910
0.9510 0.9140 0.8640 0.7810 0.7950 0.6840
1.0000 1.0000 0.9990 0.9950 0.9910 0.9820

*The first row corresponds to the number of rejections, under HZA, when E(Y|Z)
is estimated by k-NN, where k = n'’2. The second uses k = n2/3. The third row
corresponds to the benchmark t-statistic, when the added regressor is given

by 1+exp{21+22}, i.e E(Y|Z) is perfectly known.



Table 3 (continued)
n =500; Number of Replications

A= A =0.43 .1
5% 1% 5% 1% S% 1%
1.0000 1.0000 . 0000 . 0000 . 0000 . 0000
1.0000 1.0000 . 0000 1. 0000 . 0000 . 0000
1.0000 1.0000 . 0000 . 0000 . 0000 . 0000
1.0000 1.0000 . 0000 . 0000 . 0000 . 0000
1.0000 1.0000 . 0000 . 0000 . 0000 . 0000
1.0000 1.0000 . 0000 . 0000 . 0000 . 0000
1.0000 1.0000 . 0000 . 0000 . 0000 . 0000
1.0000 1.0000 . 0000 . 0000 . 0000 . 0000
1.0000 1.0000 . 0000 . 0000 . 0000 . 0000




Table 4

Variables: Names, Definitions and Descriptive Summary Statistics.

Variable Name Variable Definition Sample Mean St. Dev.

WAGE Hourly wage in Canadian $. 9.8449 4.3868

HEAD Family status dummy variable; 0.8922 0.3101
=1 if person is head of family,
=0 otherwise.

AGE2 Age dummy variable, =1 if person 0.29851 0.4577
is 35-44 years old, =0 otherwise.

AGE3 Age dummy variable, =1 if person 0.2329 0.4228
is 45-54 years old, =0 otherwise

OCCsK The skill mix is the employment 8.4719 2.6416
weighted average of the GED and
SVP scores of all the occupations
employed in the respondent’s industry

PES1 Percentage of wage earners in 0.6569 0.2618
the industry

PRIV Private sector dummy variable, =1 if 0.7904 0.4072
employed in private sector, =0 otherwise

FTEN Number of years with the same 11.2336 9.2837
employer.

SQFTEN Square of FTEN 212.3264 325.2961

INDPU Percentage of unionized worker 0.5706 0.2844
in the industry

FTIME Employment status dummy variable, 0.9675 0.1772

=1, if in full time employment,



Table 5

Estimates of the wage equation Hc model.

Dependent Variable : Hourly Wage

Independent Variables Estimates Standard Errors
PRIV -0.0433 0.0817
AGE2 0.1217 0.0423
AGE3 0.1346 0.0430
PES1 0.2627 0.0757
OCCsSK 0.0614 0.0080
FTIME 0.2717 0.1504
FTEN 0.0174 0.0055
SQFTEN -0.0002 0.0001
HEAD 0.2151 0.0594

THETA 0.3015 0.1152



