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Abstract
We propose a specification test of a parametrically specified model against a
weakly specified alternative. The latter is estimated using k
nonparametric nearest neighbors (k-NN) in the context of an artificial
regression. We derive the asymptotic distribution under the null hypothesis
and under a series of local alternatives. Monte carlo simulations suggest
that the test is quite powerful although it has a tendency to over-reject

under the null hypothesis.
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1. Introduction

In this note we propose a specification test of a parametrically
specified model, as dictated by economic theory, against a weakly specified
alternative. Our test is based on an artificial nesting procedure for testing
separate regressions, see Davidson and Mackinnon (1981) and Fisher and
McAleer (1981). The performance of the alternative "under the truth" of the
null forms the basis for a test of the latter. However, our procedure
differs from theirs in that we are only interested in the performance of the
null. In other words we do not want to make a statement about the validity of
the alternative model, since the latter is not derived from some specific
economic model. We also avoid the effect that a possibly misspecified
parameterization of the alternative hypothesis would have on testing the
validity of the null hypothesis. We use k nonparametric nearest neighbors
(k-NN) to estimate the alternative model that enters the artificial
regression.

In the next section we discuss the nature of the proposed test and we
derive its distribution under the null hypothesis and under a series of local
alternativés. We then proceed to investigate its small sample properties by
means of a small monte carlo. Finally, we conclude.

2.The Specification Test

Suppose we observe a random sample {(Yl,Xl,Zi),lsisn} from the

RxR’xR" valued random variable {Y,X,Z}, having finite variance and

conditional distribution Fle that is nondegenerate for all X,Z at which

it is defined. Let E(.) denote the mathematical expectation. The researcher
faces the following competing hypotheses:

HO: E(Y|X,2) = XTBO H Hk:E(YIX,Z) = E(Y|2) (1.1)



In ofher words Ho is completely parameterized. The alternative hypothesis
HA is only weakly specified. Hence, the functional form of E(Y|Z) does not
take a specific parametric form. We can look at the composite hypothesis Hc
as the weighted average of H0 and HA:
| H: E(YIX,2) = X'B_(1-8) + 6E(Y|2) (1.2)

Since E(Y|Z) is unspecified, we can estimate it by using a
nonparametric estimator. In this paper we propose to use (k-NN)
nonparametric weights. The use of these weights have been introduced in the
semiparametric literature by Robinson (1987). In particular, the estimator

of El, where Ei = E(Yllzi), is given by :

E, = ; Yo () (1.3)
where wij(k) are the weights based on the r Z-regressors. For a positive
. Kk
integer k let Ci(k) be constants satisfying Cl(k)ZO : Ci(k)=0, i>k; Z Ci(k)=1
i=1
. pij”.lj-l
v, (k) = 1(12)) r{ Z:;, c, (k) (1.4)

1]
where 1(.) is the indicator function and pij is 1 plus the number of Z’s

closer to Zl than ZJ and rU is 1 plus the number of Z2’s equally near from Zi
as ZJ. To calculate distance we use the euclidean metric after we standardize
by the sample standard deviation. Then we estimate (e,bT)T, where b =

30(1—9), by:

-~

and E1 is given by (1.3).
We will derive the asymptotic distribution of n1/29n under Ho. Hence
we will be able to test the validity of Ho by simply testing the

significance of 6. Rejection of this simple hypothesis would imply that H0



is incorrectly specified. Note that in our context, we are not interested
in reversing the order of Hb and HA to test one against the other as it is
traditionally the case with nonnested tests. In our framework HA is not
parametrically specified and hence it is not of specific interest to the
researcher. In the event that one rejects the hypothesis that 6 is zero,
then the’researcher might want to parameterize Ho differently to account
for the possible effect of the Z-variables on Y.

1/

In order to derive the asymptotic distribution of n 2en under Ho’ we

need the following regularity conditions :

K.1 lim max C (k)< .
n—w i i

-v/2 -1
K.2 nk —> 0, kn —S 0 as n—> o for v > 2.
Al E(XX') is positive definite (p.d.).
A.2 var(Y[|X,Y) = e3> 0 a.s.
A.3 E{var[E(Y|Z)|X]} > O a.s.
A4 E[X]"< w, EIY - X'B |*/"™?< o, with v defined in K.2

Conditions K1 and K2 are sufficient for the consistency of k-NN
weights, see Stone (1977). Robinson (1987) found that it was technically
convenient to relate the rate of convergence of k to the moment conditions
imposed on the regressors and residuals. Conditions Al and A3 ensure that

l/z(én Bn)T under H0 is positive definite. Note

the asymptotic variance of n
that A3 rules out situations where E(Y|Z) only depends on X or Y is
independent of X. The moment conditions in A4 are needed for the asymptotic
analysis. It seems difficult to relax them without imposing a stronger rate
of convergence in K2. These type of moment conditions were also needed in

Newey (1989).

The following theorem is proved in the appendix:



Theorem 1: If K.1-K.2, A.1-A.4 hold then if under HO: E(Y|X,2Z2) = XTBO a.s. we

have that
(1) nl/zan——geN[O, ¢?/E{var[E(v|2)|x]}].
~2f —1p[2 -1 7!
(i1) o {n Z[El— xfB] } 25 6®/E{var[E(Y|2) |X]}.

-~ -1 -~ A 2
_ T 2_ -~ _ T
where B= [Z: xlxl] Z: XIYi and ¢ = n 21: I:Yl XIB ] .

The implication of the theorem is that the t-statistic on the
significance of 6 under H0 in (1.2) has asymptotically a standard normal
distribution. The above statistic is similar in spirit to the Davidson and
MacKinnon (1981) J-test, where b and 6 are estimated Jjointly.

Below we will derive the asymptotic distribution of n'/?

6 under a

n

series of local alternatives. Hence, if the null hypothesis is false, the
test statistic will have power to reject it. The proof is given in the
appendix.

Theorem 2 If K1,K2, Al-A4 hold and E(YlIXl,Zi)=XfBo(1—n_1/29)+n_1/29E(Y1IZi)
a.s. then

n'/% 4, N[e,oz/lE{var[lE(YlZ) IX] }]

We can easily accommodate the case where Ho: E(Y|X,2Z) = f(Bo,X),
where f(.) is assumed to be a known parametric function and the case that Y
is assumed to be multivariate. Conditional heteroskedasticity under Hb does
not affect the normality result, but the asymptotic variance of the
estimator of 6 and b will be different. In this case, one can obtain a
consistent estimator of the asymptotic variance, see Eicker (1963) and
White (1980).

Under heteroskedasticity of unknown form, an asymptotically efficient



estimator of @ under Ho may be obtained by a semiparametric weighted least
squares procedure. One can estimate var{Y|X,Z} from the squared
residuals computed under the null hypothesis, see Carroll (1982), Robinson
(1987) or Newey (1987). A pure nonparametric estimator of var{Y|X,Z} may
alternatively be obtained from nonparametric estimators of E{YZIX,Z} and
E{Y|X,Z}, see Delgado (1989). The method we propose is adaptive in the
sense that the asymptotic variance of nl/zan is the same as the one that
could have been obtained had the alternative hypothesis HA been known or
fully parameterized.
3. Monte Carlo Simulations

In this section we will investigate the small sample
performance of the proposed test statistic by examining its size and power
properties in the context of some monte carlo experiments. We take H0 to be
linear as HB:Y = BO+X131+X232+ uo. We consider two alternative hypotheses
.HlA and H2A for two sets of experiments, where HlA:Y = 70+(7121+7222)2+ u1
and HZA:Y = 6o+exp{6121+6222} + ul. The parameters 30,31,32,70,71,72,60,61,62
are set to unity. The X’s are generated as NID(0,1) variates and the error
terms are generated independently of the regressors as N(O,oz). By choosing
different values of ¢ we control the fit of the data generating process. For
instance, wunder Ho which 1is 1linear a ¢ of 0.33 corresponds to a
squared correlation coefficient between y and the X’s of 0.9483, whereas a ¢
of 7 corresponds to one of 0.0392. We generate the Z’s as 21=Axi+vl, where
v, is distributed as NID(0,1), i=1,2. By varying A we control the correlation
coefficient between the Zl’s and the Xl’s. When A is 1, the correlation
coefficient between Ziand Xi is 0.71, whereas when A is 0.1, the latter is

0.1. We have used two k-NN estimates of E(Y|Z), one with k=n'"? and the



other with k=n®">.

We have chosen sample sizes of n=25, 100, 1000, which
correspond to very small and to moderate sizes for real world cross sections.
All the programs were written in FORTRAN double precision and they were run
on the VAX of Indiana University. The normal variates were generated by the
GOSDDF routine of NAG-13. The analysis of sample size n=1000 proved to be
quite expensive computationally. We only performed 250 replications in that
case, whereas for n=25 and n=100 we performed 10000 and 2500 replications
respectively. In both the size and the power experiments we consider also as
a benchmark the t-statistic on the significance of @ from the regression

Y = X'b + 6E(Y|Z) + u, where E(Y|Z) takes the exact value from H1A and
}gArespectively. The above t-statistic will outperform our statistic because
it uses exact information that is unavailable to the researcher.

Table 1 presents the results of the size experiments. There is a
tendency for our statistic to over-re ject, although»the proportion decreases
as the sample size increases for A=1, for the different choices of o. The
test performs quite poorly in the case of A=0.1, but this is to be expected
since the X’s and the Z’s are nearly orthogonal. In that case the
denominator of the t-statistic approaches zero. The same problem exists in
the case, when E(Y|Z) is completely parameterized as with the
J-test of Davidson and MacKinnon (1981). The k-NN estimator with k=nl”2

performs better than the one with k=n2/3.

Tables 2 and 3 present the power
results under IEA and IEA respectively. Except for the case of very small
samples with a large ¢ or a small A, the power results seem quite
encouraging. Also as the sample size increases the results improve

noticeably. In short the monte carlo results are mixed. The test displays a

tendency to over-reject under the null, but it also seems to have



considerable power.
4. Conclusions

In this note we have proposed a test statistic that tests a parametric
formulation of a null hypothesis against a weakly specified alternative. The
procedure we follow resembles in spirit the artificial nesting technique of
Davidson and MacKinnon (1981). By means of a monte carlo we
investigated the small sample properties of this test and we found them to be
satisfactory with respect to power, but less so with respect to size.
The test statistic is derived in the context of iid data and the extension to

dependent data is left for future research.



Appendix: Proof of the Theorems

Proof of Theorem 1

Below we will present the lemmas that are used in the proof of the
theorem. We define throughout as E = Z E(Y |Z )w , where w =w (k). We need
i 4 SRS S & 1y 1j
the following preliminary lemmas. Since the proofs to these lemmas
constitute only minor modifications to the proofs of lemmas 1,7,8 and 9 in
Robinson (1987), they are omitted.
Lemma 1:Let f(.) be a Borel function such that E|f(Z)|P <w,

for some pzl. Then

- P _
E {; 1f(z)-£(2)] o, }- o(1).

Lemma 2 : For any p=v, E|E1— E1Ip = 0(kP?).

Lemma 3 : max |E - Ei| = Op(nl/v K172

We have that

where €¢ =Y - E(Y IX ,Z ). Under H :0=0,
i i 11" ()



Let

0 T

XE(Y|Z) XX

We need to prove that
(a.1) n?[ &, 4.\ { 0, o*v! }
b-b
n
which implies that

ni/"‘én —d> N [0 , cz/lE{var[lE(YIZ)IX] }]

Note that under H  E{var[E(Y|Z)IX]} = E[E(Y|2)?] - B;E(XXT)BO.

We prove (a.1) from

-1/ E d 2
(a.2) n "'Z [ i ]el — N( 0, oV )
i X
i
(a.3) ntA -V =0 (1)
n 0 P
-1/ 2
(a.4) n Zz (E,- E)e, = o (1)

i

By Al-A4, [)Eéi]el are iid with zero mean and finite variance
i

and (a.2) follows from the Lindenberg-Levy Central Limit Theorem.

We conclude (a.3) from,

=1

(a.5) n rE2

2 -
2 IE(EI)] =0 (1)

EX - E(EX, )] = o (1)

(a.6) n-iz
1

[ T T _
Xixi— E(Xixi) ] = op(l)

(a.7) n_iz
1

[[E(YIZ)]Z IE(YIZ)XT] I:IE[E(YIZ)Z]
V = E =

T
E(XX")B

T T
BOIE(XX )

E(XX")



(a.8) n‘lg i:f - E’f] = o (1)
(a.9) n_lz :ﬁf - Ef ]= op(l)
(a.10) n_IZ :(i:i - E)x, j= o (1)
(a.11) n'iz :(Ei - E)X, := o (1)

(a.5) to (a.7) follow from the law of large numbers (LLN). In order to prove

(a.8) note that its left side is bounded by
~ ~ _1 ~ ~ _
max |E- E | n Z IE- E | =0 (1),

using lemmas 2 and 3 above. Also (a.9) follows from lemma 1. The left side

of (a.10) is bounded by

-1 - ~ N2 172 -1 2 172 -1/2

[n G- Ei)] [n T Ix ] = 0t
1

using Markov’s inequality and lemma 2. The left side of (a.11) is

bounded by
1/2

-1 ~ 2 /2 -1 2
[n ) (Ei—Ei)] [n T 1%, ] =0 (1)
i

i

using lemma 1. Finally we conclude (a.4) from

(a.12) n -(E - E)e = o0 (1)

(a.13) VA [E - E e

o (1)
p

(a.12) follows from Chebyschev’s inequality, noting that

10



_ T 2
where C = IE{IE1 E N7 le | }
~ = Y v/ w-2) | V2P -1
= {EIEI— Ell } {E|e1| } = 0(k ")

by Holder’s inequality and lemma 2, and

_ ™ _1 PN _ ~ PN -~
C = [E-n Zij: (E, E)(E Ej)elej]

[ - _12 Z (A . )2 5 1/2 - Z (A . )2 s 1/2
=|E|n E -E )¢ ]] DE[n E-E )¢ ]]
- 1#] b i# i

B]

Each of these two expectations is by Holder’s inequality bounded by
2v/ (v-2)] (v-2)/v N ¥ 2/v 2/v, -1
DEISll ] [n EIE1_E1| ] = 0(n™ "k )

using lemma 2. Also (a.13) follows from Chebyschev’s inequality,

since by lemma 1,

-1/ ~ 2] _ = 2 2
IE[In ZZ (E,-E )e | ] = rE[lE1 E, %3 ]

i

- 2o 2 _

--t‘J‘lEIE1 E1| o(1).
It is straightforward to show that o°- o= op(l) under Ho' Hence part (ii)
of the theorem follows from

(a.14) n'} (ﬁf - ) = o (1)
i

-1 Ty, oTo T _
(a.15) n Z [B XXB - BOE(XX )Bo] = op(l)

11



‘ -1p [2 12 T _
(a. 16) n Z: [EiXIB - BECKX )Bo] =0 (1)

(a.14) follows from (a.8) and (a.9) above, whereas (a.15) follows from the
LLN noting that B is n'”?-consistent under H . Using this fact and (a.10)
and (a.11) we obtain (a.16). =

Proof of Theorem 2

-1/2

Let b0 = Bo(l—n 8). From the proof of Theorem 1,

nl/zan_ ° =[n" A 17t -1/22 él [EI -E 0] on 2|+ ¢
1/2(b —b ) A xi 11 . 1
)

Given the proof of Theorem 1, for the proof of theorem 2 it suffices to

prove that

(b.1) n 12 E [ﬁ ] =0 (1)
i
1 —

(b.2) n Z Xi[Ei— ] =0 (1)

(b.1) follows from

-1 ~ ~ ~

(b.3) n Z:Ei[ . Ei] = o (1)
-1 »~ ~ _

(b.4) n ZEi[EI - Ei] = o (1)

We prove (b.3) noting that its left side is bounded by
~ . e A
m?xlEi - Eil n Z Ei = op(l)
by lemma 1,2,3 and the LLN. (b.4) is bounded by

-1 172 1/2
[z ] [ [E—E]] = o (1)

by lemma 1, (a.7), (a.8) and (a.11). The proof of (b.2) is identical to the

proof of (b.1).m

12
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Size Results: Proportion of Rejections when Ho is true

Table 1

*

n =25; Number of Replications = 10000;

A= A =0.43 0.1

5% 1% 5% 1% S% 1%
o = 0.33] 0.3886 0.2610 0.4861 0.3715 0.5533 0. 4406
0.5376 0.4262 0.6458 0.5476 0.7009 0.6200
0.1596 0.0631 0.1599 0.0644 0. 1805 0.0729
0.2034 0.0924 0.2112 0.1046 0.2241 0.1083
o =2 0.4330 0.3130 0.4626 0.3479 0.4849 0.3661
0.6369 0.5413 0.6518 0.5568 0.6710 0.5828
0.1621 0.0660 0.1661 0. 0687 0.1858 0.0781
0.2046 0.0945 0.2142 0.1089 0.2277 0.1157
o =17 0.4083 0.2683 0.3778 0.2506 0. 3705 0.2410
0.6330 0.5222 0.5736 0.4600 0.5519 0.4441
0.1805 0.0797 0.2085 0.1053 0.2379 0.1274
0.2298 0.1168 0.2689 0.1609 0.2937 0.1783

n =100; Number of Replications = 2500;

A= A =0.43 0.1

S% 1% 5% 1% 5% 1%
o = 0.33] 0.2688 0.1460 0.4652 0.3316 0.6156 0. 5056
0.3968 0.2548 0.5740 0.4572 0.7332 0. 6500
0.0852 0.0244 0.0936 0.0236 0.1020 0.0280
0.1404 0.0504 0.1496 0.0484 0.1484 0.0552
o =2 0.3132 0.1956 0.4088 0.2936 0. 4960 0.3716
0.4660 0.3496 0.5688 0.4680 0.6632 0. 5668
0.0856 0.0248 0.0956 0.0240 0.1036 0.0288
0.1416 0.0504 0.1540 0.0504 0.1524 0.0564
c =17 0.2668 0.1556 0.2860 0.1744 0.2832 0.1708
0.4464 0.3328 0.4240 0.3100 0.4304 0.3224
0.0852 0.0240 0.0996 0.0272 0.1140 0.0348
0.1448 0.0560 0.1708 0.0620 0.1640 0.0700

*The first row corresponds to the number of rejections, under Ho’ when E(Y|Z)
is estimated by k-NN, where k = n1 The third row

corresponds to the benchmark t-statistic, when the added regressor is given

by 1+exp{21+22}

and the fourth when the added regressor

/72

1+(21+22)2, i.e when E(Y|Z) is perfectly known.

The second uses k = n

2/3

is given by



Table 1 (continued)
n =1000; Number of Replications = 250;

A=1 A =0.43 0.1

5% 1% 5% 1% 5% 1%
0.33| 0.2000 0.0720 0.4800 0.3320 0.7200 0.6560
0.2520 0.1080 0.5240 0.3520 0.8320 0. 7960
0.0520 0.0120 0.0720 0.0280 0. 0560 0.0360
0.1480 0.0600 0.1360 0.0520 0. 1560 0. 0640
2 0.2440 0.1120 0.4640 0.3320 0. 6800 0. 5800
0.2920 0.1640 0.5160 0.4040 0. 7800 0.7160
0.0520 0.0120 0.0720 0.0280 0. 0600 0. 0360
0.1480 0.0560 0.1400 0.0520 0. 1600 0. 0600
7 0.2280 0.1200 0.3040 0.2040 0.3720 0. 2240
0.3000 0.2080 0.4120 0.3080 0. 5520 0. 4240
0.0520 0.0120 0.0760 0.0280 0.0760 0. 0280
0.1480 0.0560 0.1360 0.0520 0. 1560 0. 0600




*
Table 2
Power Results: Proportion of Rejections when HlAis true
n =25; Number of Replications = 10000;

A=1 A =0.43 A =0.1

5% 1% 5% 1% 5% 1%
o = 0.33]| 0.9830 0.9645 0.9818 0.9614 0.9809 0.9572
0.9418 0.9022 0.9422 0.9039 0.9420 0.9013
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
o =2 0.8885 0.8140 0.7251 0.5948 0.6541 0.5137
0.8212 0.7490 0.6887 0.5823 0.6359 0.5166
0.9998 0.9993 0.9952 0.9862 0.9910 0.9716
c=17 0.3701 0.2311 0.3143 0.1882 0. 3090 0.1826
0.4772 0.3522 0.4628 0.3381 0.4436 0. 3266
0.8933 0.7747 0.7047 0.5297 0.6514 0.4724

n =100; Number of Replications = 2500;

A=1 A =0.43 A=0.1

5% 1% 5% 1% 5% 1%
o = 0.33] 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
o =2 1.0000 1.0000 1.0000 1.0000 1.0000 0. 9996
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
o =17 0.9428 0.8884 0.5556 0.4120 0. 4536 0.2892
0.9536 0.9112 0.6000 0.4680 0. 4972 0.3528
1.0000 1.0000 0.9908 0.9648 0.9716 0.9068

*The first row corresponds to the number of rejections, under H1A’ when E(Y|Z)
is estimated by k-NN, where k = nl/z. The second uses k = n2/3. The third row
corresponds to the benchmark t-statistic, when the added regressor is given

by 1+(21+22)2, i.e when E(Y|Z) is perfectly known.



Table 2 (continued)
n =1000; Number of Replications = 250;

A= A =0.43 0.1

S% 1% 5% 1% 5% 1%
0.33| 1.0000 1,0000 1. 0000 . 0000 . 0000 1.0000
1.0000 1.0000 1.0000 . 0000 . 0000 1.0000
1.0000 1.0000 1. 0000 . 0000 . 0000 1.0000
2 1.0000 1.0000 1. 0000 . 0000 . 0000 1.0000
1.0000 1.0000 1. 0000 . 0000 . 0000 1.0000
1.0000 1.0000 1. 0000 . 0000 . 0000 1.0000
7 1.0000 1.0000 1.0000 . 0000 . 0000 1.0000
1.0000 1.0000 1.0000 . 0000 . 0000 1.0000
1.0000 1.0000 1.0000 . 0000 . 0000 1.0000




*

Table 3

Power Results: Proportion of Rejections when HZAis true

n =25; Number of Replications = 10000;

A=1 A =0.43 A=0.1

S% 1% 5% 1% S% 1%
o = 0.33| 0.8896 0.8241 0.9857 0. 9655 0.9940 0.9844
0.8439 0.7653 0.9841 0.9603 0. 9959 0.9864
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
c =2 0.8194 0.7194 0.8483 0.7501 0.8430 0.7304
0.7734 0.6664 0.8615 0.7671 0.8621 0.7584
0.9990 0.9966 0.9938 0.9850 0.9911 0.9776
c =17 0.5189 0.3912 0.4106 0.2649 0. 3757 0.2395
0.5537 0.4310 0. 4925 0.3589 0.4735 0. 3359
0.9402 0.8861 0. 8288 0.7140 0.7904 0. 6553

n =100; Number of Replications = 2500;

A=1 A =0.43 A=0.1

5% 1% 5% 1% 5% 1%
o = 0.33] 0.9960 0.9992 1.0000 1.0000 1.0000 0.9996
0.9980 0.9980 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1. 0000 1. 0000 1.0000
c =2 0.9996 0.9992 1. 0000 1.0000 1.0000 0. 9996
0.9980 0.9976 1. 0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000
c =17 0.9900 0.9808 0.8920 0.8276 0.8176 0.7116
0.9932 0.9840 0.9128 0.8684 0.8508 0.7772
1.0000 1.0000 0.9972 0. 9952 0.9964 0.9844

*The first row corresponds to the number of rejections, under HzA’ when E(Y|Z)
is estimated by k-NN, where k = ni/z. The second uses k = n?’s. The third row
corresponds to the benchmark t-statistic, when the added regressor is given

by 1+exp{21+22}, i.e E(Y|Z) is perfectly known.



Table 3 (continued)

n =1000; Number of Replications = 250;

A= A =0.43 A 0.1

S% 1% 5% 1% S% 1%
0.33| 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000




