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Abstract

The Gravity Hypothesis and Transportation Cost Minimization

John M, Hartwick
Queen's University

The Hitchcock-Koopmans transportation is linked to
the gravity "model" of regional analysis with the aid of
two new analytical results. Eighty transportation problems
are generated by Monte Carlo methods and solved by linear
programming. The transportation cost minimizing flows are
compared with the flows generated by gravity methods in
least squares regressions and in other non-parametric tests.
Flows generated by gravity methods are indicated to be
relatively poor proxies for those generated in a trans-
portation cost minimizing system.
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1. Introduction

The gravity hypothesis, that the flows commodities
or resources between two points can be approximated with
the aid of a simple log linear function, has proved useful
to regional economists obliged to work on problems with few
data. Proxy data can be generated easily from the gravity
“model".l Geographers have found the gravity hypothesis
useful for the same reason as economists and in addition
have turned to the hypothesis as a conceptual framework
for organizing diverse formulations for estimating flows
in space.2 Tideman [1968] appears to be the only person who
has successfully derived gravity - like functions from a
simple model of the profit maximizing behaviour of a firm
in geographic space. Isard [1960, p. 51%] pointed out that
the quality of proxies or estimates of interpoint flows
generated with the gravity function was relatively poor for
disaggregated industrial groups. Relatively good gquality
estimates were generated for aggregated industrial groups.
Isard worked with observed interpoint flows as the bases

for comparison with the flows generated with a gravity "model".

* Philip G. Hartwick handled the programming involved in the
empirical tests in this paper. I am much indebted to him
for his help.




In_this paper, I compare flows generated from
a transportation cost minimizing linear program with
those generated with the gravity function. This comparison
is intended to provide a test, alternate to Isard's,
dealing with the guality of estimates generated with
the gravity function.3 In this case, theoretically optimal
flows are used as the bases for comparison.

In Section 2 the Hitchock-Koopmans transportation
problem in linear programming is related to the gravity
"model". In Section 3 results on the quality of proxy
flows generated with the gravity function are reported.

In Section 4 special economic landscapes are considered

and related to the previous results.

2. The Transportation Problem and the Gravity "Model"

Our economic landscape consists of m geographically

distinct points of supply for a commodity per unit time
and n geographically distinct points of demand per unit
time. The demand péints are separated from the supply
points. The transportation problem is to determine a

schedule of flows from the supply points to the demand
points which minimizes the total transportation cost

involved in the shipment and at least satisfies all the

requirements of all demanders.




Let di (i =71,..}, m) be the initial supplies

and 6i (4 =1,..., n) be the initial demands. Let Tij

be the cost of transporting a unit of the commodity

between supply point i and demand point j and let
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j.

be the flow of the commodity between points i and

Formally, the transportation problem (Gale [1960,

PpP. 4—17]) is to determine gij so as to minimize
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The dual to the transportation problem is to
determine n prices wﬁ'at the demand points and m prices

ﬁi at the supply points so as to maximize
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It will be useful in the subsequent analysis
to note that the feasibility of the transportation problem
(2.2 - 2.4) can be expressed as finding elements Eij 20 which
satisfy the row and column constraints in the following

table.
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We shall link the transportation problem to the
gravity "model" in the following two theorems. First
we shall prove that if Eij is optimal for (2.1 - 2.4)
then demands will be exactly met? i.e. condition 2.2.
will have equalities for the solution values. Intuitively,
we obserVe that if this theorem were not true, then we
could take an excess demand, leave it at any supply point
and reduce the total transportation cost bill.

Secondly we shall prove that the transportation
problem is feasible if and only if the total initial
supplies at least equal the total initial demands. This
result is well-known but the proof we develop has not
been presented in the literature and firmly links the

gravity "model" to the transportation problem.

Theorem l:vaector(Eij)solves the transportation problem

(i.e. 2.1 - 2.4) then %“ E.. =6, (j=1,..., n)
i=1 I J
m A
Proof: Assume the contrary; that is assume X Eik > Gk
i=1
for the k th demand point.
Now wi Z 0 by the equilibrium theorem
1
[Gale 1960; th. 1.2] and Te = T4 < Tik for

(i=1,..., m)}

. > . .
since w, = 0 and we assume Tij >0 for all i and j.

~

By the equilibrium theorem again Eik = 0 for all i,
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m . P
That is £ § =0 < Sk which is a contradiction.
i=1 ik

Hence the theorem.
The converse of this theorem is of course not true.

Note the key condition is that %%— > 0 for

2y
all i and j and that nonlinear total transportation cost

functions can result in the above condition on demands.

Theorem 2: The transportation problem (2.1 - 2.4) is
n

m

feasible if and only if ¥ o, > % &§.
= l= o J
i=1 i=1

Proof: I Assume the problem is feasible.

That is there exists gij 20 such that

v

n
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Summing (2.2) over j and (2.3) over i we get
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Define 6n+l = E oy - § Gj as in Table 2.1
m n+l
Now define K = [ o; = B Y
i=1 j=1 J
1 _ 9% \
Note that Eij = ;R;l (i=1,..., m

j=l'-oo'n+l)

satisfies (2.2), (2.3) and (2.4) is~thus a feasible

solution.4

Observe that the feasible solution constructed in
part II of theorem 2 is a gravity-like fofmulation where
the constructed flows are not adjusted with transportation
costs as they are in the usual proxy flows generated from

a gravity function. The familiar gravity function is

{(2.8) %45 =k S%;i f (tij)
where Xij is the proxy flow, oy the flow at the point of
origin, Sj is the flow at the point of destination, tij
is the cost of transporting a unit of the flow between
points i and j, S is the total flow moving between points
in the system, and k is a constant. Transshipping
between either two points of demand or two of supply is

ruled out. The function f(tij) is generally taken to be

—d - . » 13
of the form tij with & taking the value 1 or 2 a priori.




If Xij is an observed flow, then k and o are selected in

order to make the estimate, the right hand side of (2.8},
approximate "closely" the value of the observed flow, the
left-hand side of (2.8).

We shall refer to the value :%;i as the
simple gravity estimate. Observed that by dividing (2.8)

g,8.

through by —5—1, substituting for f(t,.), and taking logs
S 1]

of both sides, we get

Xy
(2.9) log —d =38 + oL log tij
%15
016.
where 8 = log k and ﬁij =. __§;l

Equation (2.,9) was estimated in a least-squares
regression in which xij was a flow optimizing a Hitchock-
Koopmans linear programming transportation problem, tij
was the unit transportation cost in moving the commodity
from péint i'torpoint j, 0; was the supply quantity at
point i, éj was the demand quantity at point j and'S was

the sum of all supply quantities.




3. The Quality of Gravity Estimates

In excess of seventy-five separate regressions were
run for an equation of the form of (2.9). Data were
generated randomly for guantities of supplies and demands
and transportation costs in an 8 by 9 Hitchock-Koopmans
transportation problem? The gravity estimation is considered
to be of a high guality if the estimate of « is negative,
statistically significantly different from zero, and stable.
We do not ask that o be equal to either 1 or 2.

First we observe that of the 80 regressions run &
ranged from + .0455 to - 1,703, Observe that none reached
the classic gravity value of physics of - 2.00.

In Table 3.1 we note that a higher proportion were
indeed of the conventionally accepted sign, namely negative,
Also we observe that the Kendall rank correlation coefficient
between the transport cost minimizing flows and the simple
gravity flows is generally positive or of the expected sign.
The rank correlation coefficient between the transport cost
minimizing flows and the transportation costs is generally
also of the expected sign, namely negative.

The exceptions are of course important to take note
of since they indicate the fact that gravity measures are
not consistently of high quality.

The stability of the estimates of o were tested by

applying the Chow test to pairs of regressions of equation
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Table 3.1

Summary of Empirical Tests

Kendall Rank

Kendall Rank

Kendall Rank

Kendall Rank

Correlation: |Correlation Correlation: Correlation
x..'s £ 8.8 significant of xw..m‘kﬂm 's Significant at
Slopes significant ij i3 " 1.95 confidence J 3. .95 confidence
Number with lat .95 confidence level NH..m_& level: x,.'s#
values of Slopes () level mwu.m J ﬂwu.m o
Positive
sign 12 0 30 20 13 0
negative
sign 68 av 5 1 22 9
Total 80 7 35 21 35 9
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(2.9) taken in a sequence. The pairs were chosen

sequentially as the randomly generated problems were

developed in the computer. That is the first regression

was compared with the second, the second with the third

and so on. The results are reported in Table 3.2,
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CHOW TEST

No. of Slope Values
Significant
at .95 Confidence 15
Level o
Not Significant;: 2
Total :} 17

Table 3.2
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Note that we indeed have values of ol which
fail the Chow test or are derived in a statistical sense
from a different population.

In general then I conclude that the gravity
function (2.9} yields poor estimates of actual interpoint
flows where the actual flows simultaneously assume a
transportation cost minimizing set of values for a dis-
tribution system. The simplest way to summarize the
results of the "Monte Carlo! experiments seemed to be to
plot the scatter consisting of a set of pairs, each pair
being comprised of a slope value ¥ and and the corresponding
intercept value B. These values were duly recorded and
a remarkably regular linear pattern emerged. The pattern

is contained in Figure 3.1
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The first thing we see is that the two parameters« and

k in equation (2.8) with the substitution for f(tij) are
not independent and so an estimate of one determines the
value of the other.

(2.10) B = 1.4 - 3<(,

Moreover the nature of the dependency of the slope value

and intercept in equation (2.9) is such that all estimated
gravity functions (eqguations 6f the form of (2.9)) have the
common solution (tij’ ;%%) = (3, 1.4). In-other words, the
gravity function is stagie in the sense expressed by equation
(2.10) or equivalently in the sense that the log linear

gravity function pivots azbout a unique point for estimation

based on alternative data sets.

4. Gravity and Special Economic Landscapes

In this section, we shall examine whether it is
possible to predict the nature of flows in a landscape from
knowledge of transportation costs and/or particular quantities
of supplies and demands. For example consider the situation
in which the unit transportation costs between any two points,
one of supply and one of demand, are equal. What will be the
nature of the transportation cost minimizing set of flows?

Will simple gravity estimates (recall the definition
6,08

iij = —é~lw where S is the sum of all supplies) be optimal?
It is easy to visualize the nature of the problems posed
in the classic gravity "model” diagram illustrating equation

(2.9) below as Figure 4.1.
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"normal®

"neutral" landscape

"simple gravity" optimal

Figure 4.1

log ti.

v

J




-17~

See

Figure 4.1

If simple gravity is also transportation cost minimizing

- o Xis o , . .
then Xij = xij and log Xl? 0 which in Figure 4.1 means
ij
7

all observations lie along the log tij axis. The "normal"
case is when all observations form an approximately "linear

scatter" to the right of the log Xij axis such that a least

squares line through the scatter has a negative slope. Such

a line is indicated in Figure 4.1.
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If simple gravity were-optimal for a system with equal
transportation costs between any two points of demand

and supply, then all observations would be co-incident

at a point on the log tij axis. A moment's reflection
will make clear that any feasible solution to the relevant
transportation problem which satisfies all demands with
equalities will be optimal. Recall that we proved in
theorem 1 that a necessary condition for a solution to the
transportation problem to be optimal was that all demands
were just satisfied or met as equalities in (2.2).

Theorem 2 made use of the fact that simple gravity estimates
were always feasible and satisfied demands as equalities.

If we label the situation when all transportation
costs are equal as a "neutral" landscape then for arbitrary
tij' we see in Fibure 4.1 a hypothetical schedule satisfying
a transportation cost minimization criterion. A hypothetical
situation in which "simple gravity" is optimal as well as
there being a "neutral" landscape, is point b in Figure 4.1.
Note that the existence of a multiplicity of optimal
solutions to the "neutral" landscape problem implies that
the slopes and intercepts will in general not satisfy
relationship (2.10). 1In fact since the intercept does not
exist in the case of the "neutral" landscape and in addition
the slope does not exist (even as infinity) when the observed
line degenerates to a point such as b, we can consider the
"neutral" landscape situation as a poorly-behaved exception

to the relationship captured in equation (2.10).
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Consider the possibility of other cases in which
the simple gravity values are also transportation cost
minimizing ones. Let me indicate one special situation.
Let all supplies, demands, and transportation costs be
integers. It is well known that the transportation cost
minimizing solution to such a problem has integer values.8
Thus a necessary condition for simple gravity values to be
transportation cost minimizing in the probdém specified in
integers is that the simple gravity solution be in integers.
Clearly, randomly generated transportation problems with
integer specifications will generally not have integer
simple gravity values. This can be confirmed by setting
down a few examples in a form such as that in Table 2.1.
Thus we can concludé that simple gravity values will in
general not be transportation cost minimizing values and

will not generally be observed in nature.




Footnotes:

1. See for example Leontief and Strout [1963] for the
use of gravity estimates in an interregional input-
output model. Lowry [1964] used gravity to generate
flows of commuting tripsiin an urban model.

2. See for example Wilson [1970} :Chapter 3].

3. It is interesting to note that both the NBER urban
model and Curtis Harris' massive interregional model
at the University of Maryland use the Hitchock-Koopmans
transportation problem to generate shadow prices on
flows at sites of origin and destination in order to
generate new output levels of commodities and housing
in the next!period". In a real sense, the estimates
of interpoint flows generated by transportation cost
minimization have superceded those generated in a
gravity "model" in some recent applied work.

4. Neither Gale [1960] nor Dantzig [1963], the two well-
known sources I examined, consider this result. 1In
fact Dantzig proves a theorem in Section 15.2 (?Allocation
with Surplus and Deficit") in which he explicitly assumes
"the availabilities exceed the requirements but
requirements must be met exactly". Theorem 1 indicates
that the assumption is not required.

5. This proof of part II was presented in a class assignment
by my student, Miss Diane Cummings, when she was an
undergraduate at Queen's University.

6. As Samuelson [1952] indicated, transportation cost
minimization, as an objective which nature is assumed
to pursue, is a special case of the maximization of
gross Ysocial payoff" (gross economic rent) minus
transportation costs. One might expect the flows
generated from a program in which transportation costs
are minimized only to approximate those generated
when net "social payoff" is maximized. These considerations
open up a broad area investigation, namely whether
efficient economic organization in space is trans-
portation cost minimizing, and we shall not pursue the
topic.

7. When xij = 2ij for all i and j we can say that the
solution of the transportation problem yields no
information, that is

.--2




X. .

Xy
I I log §£l = 0 where log §il is a
i3 ij ij

measure of information in the sense of electrical
engineers. For additional comments on the use of
information theoretic concepts in economics as well
as for examples, see Theil [1967] and Hartwick [1971].

See for example Dantzig [1963; p. 305].
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