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Abstract

Many specification tests can be computed by means of artificial linear regressions.
These are linear regressions designed to be used as calculating devices to obtain test
statistics and other quantities of interest. In this paper, we discuss the general princi-
ples which underlie all artificial regressions, and the use of such regressions to compute
Lagrange Multiplier and other specification tests based on estimates under the null hy-
pothesis. We demonstrate the generality and power of artificial regressions as a means
of computing test statistics, show how Durbin-Wu-Hausman, conditional moment, and
other tests which are not explicitly Lagrange Multiplier tests may be computed, and
discuss a number of special cases which serve to illustrate the general results and can
also be very useful in practice. These include tests of parameter restrictions in non-
linear regression models and tests of binary choice models such as the logit and probit
models.
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1. Introduction
In recent years, numerous specification tests have been proposed which can be com-
puted by means of artificial linear regressions. These regressions are artificial in the
sense that they are designed to be used solely as calculating devices, the regressand
and regressors being constructed so that the desired test statistic is equal to, or can
easily be computed from, one of the quantities normally calculated by an OLS regres-
sion program. Artificial regressions essentially the same as those used to calculate test
statistics can also be used for other purposes, such as calculating consistent estimates
of the asymptotic covariance matrix of a vector of parameter estimates and computing
one-step efficient estimates from an initial consistent estimate.

The test statistic from an artificial regression is often n (the sample size) times the
R2, sometimes the explained sum of squares, or sometimes an ordinary t test or F test
based on the artificial regression. These tests are in some cases derived explicitly as
Lagrange Multiplier (LM) tests in their score form, and in other cases are equivalent to
such tests. Although many of the tests based on artificial regressions are well known,
there has not, to our knowledge, been an exposition of the general principles which
underlie them, and which may be used to develop new tests and extend existing ones.
The objective of this paper is provide such a general exposition, to demonstrate the
generality and power of artificial regressions as a means of computing test statistics,
and to discuss a number of special cases which serve to illustrate the general results
and can be useful in practice.

2. Some Examples
In this introductory section, we shall present three well-known artificial regressions and
indicate how they may be used for the calculation of test statistics. The discussion will
be informal at this point. In the next section, we shall discuss matters more formally
and in greater generality.

The best-known artificial regression is almost certainly the Gauss-Newton (or G-N)
regression, which was originally derived as a way to calculate least squares estimates
for nonlinear regression models (Hartley, 1961). Its use for testing restrictions on
nonlinear regression models is discussed by Engle (1982, 1984). These papers deal
with multivariate as well as univariate models. However, the simplest form of the G-N
regression applies to the class of univariate nonlinear regression models:

y = x(β) + u, (1)

where β = [β1
> β2

>]> is a k --vector of parameters (with k = k1 + k2), and x(β) is an
n--vector of nonlinear functions, which would usually depend on exogenous variables
and perhaps also on lagged values of the dependent variable. The parameter vector β
has been partitioned because we wish to consider testing the hypothesis that β2 = 0.

The G-N regression may be obtained as a first-order Taylor-series approximation to
(1) around some value of β, say β∗. Its general form is

y − x(β∗) = X(β∗)b + residuals. (2)
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Here and elsewhere, when we write “+ residuals” we mean simply whatever happens
to be the difference between the regressand and the rest of the right-hand side of the
regression. It is a way of indicating that no statistical meaning is intended: We merely
have a linear regression, which when run may yield useful results. The matrix of
derivatives X(β) ≡ [X1(β) X2(β)] is an n×n matrix with tith element the derivative
of xt(β) with respect to βi.

If we estimate (1) subject to the restriction that β2 = 0, so as to obtain restricted
estimates β̃ = [β̃1

> 0>]>, the G-N regression (2) becomes

ũ = X̃b + residuals = X̃1b1 + X̃2b2 + residuals, (3)

where ũ ≡ y−x(β̃) and X̃ ≡ X(β̃). Here and elsewhere we employ a useful notation
whereby functions of parameter vectors (in this case β) which are evaluated at par-
ticular values such as β̃ may be written without making the argument explicit. The
regressand of (3) is simply the vector of residuals from restricted estimation of (1), and
there are k regressors, each of which is a vector of the derivatives of x(β) with respect
to one of the elements of β, evaluated at β̃. If x(β) were a linear regression function
with Z the matrix of independent variables, X̃ would simply be equal to Z. When
the artificial regression (3) is run, nR2 is asymptotically equivalent to any asymptoti-
cally efficient chi-squared or F test of the restrictions β2 = 0. When the restrictions
are valid, the statistic will, under appropriate regularity conditions, be distributed as
central χ2(k2). An ordinary F test for b2 = 0 would be asymptotically equivalent to
the nR2 test.

A second well-known example of an artificial regression is provided by the so-called
outer-product-of-the-gradient regression (or OPG regression, for short). Unlike the
G-N regression, which applies only to nonlinear least squares models, the OPG regres-
sion is almost universally applicable to models that can be estimated by maximum
likelihood. We may suppose that there is a sample of size n which gives rise to a
loglikelihood function

`(θ) = `(θ1,θ2) =
n∑

t=1

`t(θ1, θ2), (4)

where θ1 is a k1--vector and θ2 is a k2--vector of parameters with k = k1 + k2. We
begin by defining a matrix G(θ) with typical element

Gtj(θ) =
`t(θ)
∂θj

.

This is the contribution to the gradient of the loglikelihood function with respect
to the j th parameter made by the tth observation. The vector of scores associated
with `(θ), that is, the gradient of the loglikelihood function (4), will be denoted by
g(θ) ≡ G>(θ)ι, where ι is an n--vector of ones.

As is well-known, the matrix n−1G>(θ̈)G(θ̈) consistently estimates the expectation
of the outer product of the gradient, which is the information matrix I(θ), whenever
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θ̈ consistently estimates θ. Then, if we let θ̃ denote the ML estimates obtained by
maximizing the loglikelihood function (4) subject to the restrictions θ2 = 0, the OPG
artificial regression used for testing these restrictions is

ι = G(θ̃)c + residuals. (5)

The quantity nR2 from regression (5), which in this case is equal to the explained sum
of squares from the regression, is a test statistic that is asymptotically distributed as
χ2(k2) under the null hypothesis. An early application of this procedure may be found
in Godfrey and Wickens (1981).

Since the OPG regression is almost always available, one may ask why artificial regres-
sions are needed at all. They are needed because the finite-sample properties of the
OPG regression are often rather poor. The explained sum of squares from the OPG
regression (5) with θ = θ̃ is

ι>G̃(G̃>G̃)−1G̃>ι = g̃>(G̃>G̃)−1g̃. (6)

The only difference between this and any other form of the LM statistic is that the
matrix n−1G̃>G̃ is used to estimate the information matrix I(θ). Presumably because
n−1G̃>G̃ often provides a poor estimate of I(θ) when n is not very large, test statistics
based on the OPG regression often have finite-sample distributions which are poorly
approximated by their asymptotic distributions. Monte Carlo evidence on this point
has been provided by Davidson and MacKinnon (1984b, 1985a), Bera and McKenzie
(1986) and Godfrey, McAleer, and McKenzie (1988), among others. All these papers
found that variants of the LM statistic (6) were much more prone incorrectly to reject
the null hypothesis than alternative forms of the LM test, many of which were based
on different (and less generally applicable), artificial regressions.

The last artificial regression that we shall consider in this section is associated with
the simplest type of binary choice model. The dependent variable yt may be either
zero or one, and it is assumed that Pr(yt = 1) = Ψ(Xtβ), where Ψ(x) is a thrice
continuously differentiable function which maps from the real line to the 0–1 interval,
is weakly increasing in x, and has the properties

Ψ(x) ≥ 0, Ψ(−∞) = 0, Ψ(∞) = 1, and Ψ(−x) = 1− Ψ(x).

The most commonly used binary choice models are the probit model, where Ψ(x) is the
cumulative standard normal distribution function, and the logit model, where Ψ(x) is
the logistic function

(
1 + exp(−x)

)−1.

For binary choice models of this type, the artificial regression uses as regressand a
vector r(β) with typical element

rt(β) =
yt − Ψ(Xtβ)

(
Ψ(Xtβ)Ψ(−Xtβ)

)1/2
, (7)
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and as regressors a matrix R(β) with typical element

Rti(β) =
ψ(Xtβ)Xti(

Ψ(Xtβ)Ψ(−Xtβ)
)1/2

, (8)

where ψ(x) is the first derivative of Ψ(x). This artificial regression can be derived as
a variant of the G-N regression. We can write a binary choice model as

yt = Ψ(Xtβ) + ut (9)

where ut equals either 1 − Ψ(Xtβ) or −Ψ(Xtβ) and can easily be shown to have
variance Ψ(Xtβ)Ψ(−Xtβ). Taylor-expanding (9) as if it were an ordinary nonlinear
regression model, and correcting for the heteroskedasticity of the ut, yields the artificial
regression defined by (7) and (8).

If the parameter vector β is partitioned as β> = [β1
> β2

>]> and the binary choice
model is estimated by maximum likelihood subject to the restrictions that β2 = 0,
with restricted ML estimates β̃ = [β̃1

> 0>]>, then running the artificial regression

r(β̃) = R(β̃)b + residuals

yields both an nR2 and an explained sum of squares, either of which can serve as
a test statistic for the restrictions. The two test statistics are both asymptotically
distributed as χ2(k2), but they are not numerically equal, and there is reason to prefer
the explained sum of squares in finite samples. For more details, and extensions, see
Engle (1984) and Davidson and MacKinnon (1984b).

3. The General Case
All of the artificial regressions discussed in the previous section, along with many
others, can be understood in terms of a general framework of artificial regressions that
share a set of basic properties and can therefore be used for a wide variety of purposes.
We shall deal with the following general case. There is a fully specified, parametrized
model characterized by its loglikelihood function, which for a sample of size n can be
written as

`(θ) =
n∑

t=1

`t(θ), (10)

where θ is a k --vector of model parameters. We shall frequently wish to partition θ as
[θ1
> θ2

>]> in order to consider the restrictions θ2 = 0. In such cases, θi is a ki--vector,
for i = 1, 2, with k = k1 + k2. As before, g(θ) denotes the k --vector of scores, and
G(θ) denotes the n× k matrix of the derivatives of `t(θ) with respect to the elements
of the vector θ.

We assume that the data were generated by a data-generating process, or DGP, char-
acterized by the loglikelihood (10) for some true (but unknown) parameter vector θ0

such that

θ0 ≡
[

θ0
1

θ0
2

]
.
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Often, we additionally assume that θ0
2 = 0. The model represented by (10) is assumed

to satisfy all the usual conditions for maximum likelihood estimation and inference to
be asymptotically valid; see, for example, Amemiya (1985, Chapter 4). In particular,
we assume that the true parameter vector θ0 is interior to a compact parameter space Θ
and that the information matrix

I(θ) ≡ lim
n→∞

E
(

1−
n

g(θ)g>(θ)
)
,

which in this case is k × k, is a finite, non-singular matrix for all θ in Θ.

Various artificial regressions can be associated with the model (10). They always
involve two things: a regressand, say r(θ), and a matrix of regressors, say R(θ). The
artificial regression can be evaluated at any point θ ∈ Θ. It may be written as:

r(θ) = R(θ)b + residuals. (11)

Note that we again use “residuals” as a neutral term to avoid any implication that
(11) is a statistical model.

Our theory of artificial regressions depends on assumptions that r(θ) and R(θ) have
certain defining properties. These properties are as follows, where all probability limits
are calculated with as DGP any process characterized by the loglikelihood (10) for some
set of parameters in Θ.

Property 1: Under the DGP characterized by θ,

ρ(θ) ≡ plim
n→∞

n−1r>(θ)r(θ)

exists and is a finite, smooth, real-valued function of θ.

Property 2: R>(θ)r(θ) = ρ(θ)g(θ).

Property 3: If θ̈ → θ0, then n−1R>(θ̈)R(θ̈) → ρ(θ0)g(θ0).

These properties are not shared by every linear regression used solely to calculate
quantities of interest, which we may in general call auxiliary regressions. Nevertheless,
in this article, any regression termed “artificial” will satisfy these three properties.

The two crucial features of artificial regressions satisfying properties 1 through 3 are
expressed in the following two theorems.

Theorem 1: Suppose that the artificial regression (11) is associated with the fully
specified, parametrized model (10), in the sense that Properties 1, 2, and 3 are satisfied
for all θ ∈ intΘ, a compact k --dimensional parameter space. Suppose further that the
model (10) satisfies the regularity conditions of Amemiya (1985, Chapter 4). Then, if
the artificial regression is evaluated at some θ́ ∈ Θ such that θ́− θ0 = Op(n−1/2), the
artificial parameter estimates b́ obtained by OLS have the property that

n1/2b́ = n1/2(θ̂ − θ́) + op(1) (12)
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as n →∞, where θ̂ is the (asymptotically efficient) ML estimator of the model (10).

Proof: The proof of Theorem 1 is both simple and illuminating. A Taylor expansion
of the gradient g(θ́) around θ0 yields

g(θ́) ∼= g(θ0) + H(θ0)(θ́ − θ0) = g0 + H0(θ́ − θ0), (13)

where H0 ≡ H(θ0) denotes the Hessian matrix of the loglikelihood function `(θ), and
“∼=” denotes asymptotic equivalence. Multiplying all quantities in (13) by appropriate
powers of n, so that they are Op(1), and using Properties 2 and 3 and the fact that
θ́ − θ0 = Op(n−1/2), we see that

n−1/2Ŕ>ŕ = n−1/2ρ́g(θ́)
∼= n−1/2ρ0g0 − (n−1R0>R0)n1/2(θ́ − θ0). (14)

If (14) is now evaluated at the ML estimator θ̂ instead of at θ́, the left-hand side of
the equation is zero by the first-order conditions for the maximum of the loglikelihood
function, so that

0 ∼= n−1/2ρ0g0 − (n−1R0>R0)n1/2(θ̂ − θ0). (15)

Subtracting (15) from (14) and rearranging then yields

(n−1R0>R0)n1/2(θ̂ − θ́) ∼= n−1/2Ŕ>ŕ,

which implies that

n1/2(θ̂ − θ́) ∼= (n−1R0>R0)−1n−1/2Ŕ>ŕ ∼= b́.

The final step here makes use of the fact that n−1R0>R0 ∼= n−1Ŕ>Ŕ. The last equation
is just a restatement of (12), and so the theorem is proved.

Theorem 2: Under the regularity conditions of Theorem 1, nR2 from the artificial
regression (11), evaluated at any θ́ ∈ Θ such that θ́ − θ0 = Op(n−1/2), is asymp-
totically equal to

1−
n

ǵ>I−1(θ0)ǵ. (16)

Proof: The R2 from (11) is equal to the ratio of the explained sum of squares to the
total sum of squares. The total sum of squares, divided by the sample size n, tends
to ρ0 as n → ∞, by Property 1 and the fact that θ́ → θ0. The explained sum of
squares is

ŕ>Ŕ(Ŕ>Ŕ)−1Ŕ>ŕ.

By Property 2, this becomes

n−1ŕ>Ŕ(n−1Ŕ>Ŕ)−1Ŕ>ŕ = n−1ρ́2ǵ>(n−1Ŕ>Ŕ)−1ǵ,
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which, by Property 3, is asymptotically equal to

n−1ρ0ǵ>I−1(θ0)ǵ.

Multiplying this by n and dividing it by the total sum of squares removes the factor
of ρ0. The asymptotic equivalence of (16) and nR2 from (11) then follows at once.

By itself, Theorem 2 does not say anything about the distribution of nR2, but it
underlies the use of artificial regressions for LM tests. Let θ̃ denote a vector of ML
estimates subject to the restriction that θ2 = 0. The score form of the LM test statistic
for testing the hypothesis θ2 = 0 against the alternative θ2 6= 0 is

1−
n

g̃>I−1(θ0)g̃. (17)

If in fact θ2 = 0, it is a familiar result — see, for example, Cox and Hinkley (1974,
Chapter 9) — that (17) is asymptotically distributed as χ2(k2). Moreover, any test
statistic of the form of (17), but with the matrix I(θ0) replaced by any matrix which
estimates I(θ0) consistently under the null hypothesis, will be asymptotically equiv-
alent to (17). It follows directly from Theorem 2 that if we are given r̃ ≡ r(θ̃) and
R̃ ≡ R(θ̃) which satisfy Properties 1–3, then the LM statistic (17), or a test statistic
asymptotically equivalent to it, may be computed as nR2 from the artificial regression

r̃ = R̃b + residuals. (18)

In many cases, ρ(θ) is equal to one, perhaps after rescaling of the artificial variables
r̃ and R̃, and in some cases n−1r̃>r̃ is equal to one. In all such cases, the explained
sum of squares from (18) is asymptotically equal to the test statistic (17). Other
expressions asymptotically equal to (17) can also be found. It is easy to show that
k2 times the F statistic for the (artificial) hypothesis b2 = 0 is such an expression.
When k2 = 1, so that only one restriction is being tested, the square of the t statistic
for b2 = 0 is also asymptotically equal to (17), and the t test itself is asymptotically
valid. Which of these variants of the LM test statistic will in finite samples have a
distribution closest to the nominal asymptotic one depends on the details of the model
under test.

It is sometimes useful to make explicit the distinction between R̃1 and R̃2. Regression
(18) can be written as

r̃ = R̃1b1 + R̃2b2 + residuals. (19)

The first-order conditions for θ̃ imply that r̃>R̃1 = 0, so that the explained and total
sums of squares from (19) must be identical to those from the regression

r̃ = M̃1R̃2b2 + residuals,

where
M̃1 ≡ I− R̃1(R̃1

>R̃1)−1R̃1
>
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is the matrix that projects orthogonally onto the orthogonal complement of the sub-
space spanned by R̃1. Thus we see that the numerator of the nR2 form of the test
can also be written as

r̃>M̃1R̃2(R̃2
>M̃1R̃2)−1R̃2

>M̃1r̃

= (n−1/2r̃>M̃1R̃2)(n−1R̃2
>M̃1R̃2)−1(n−1/2R̃2

>M̃1r̃).
(20)

Writing the test statistic in this form makes it quite clear that it must have k2 degrees
of freedom, since n−1/2R̃2

>M̃1r̃ is a k --vector.

In some cases of practical interest, some of the parameters θ1 that may vary freely
under the null hypothesis can be treated as nuisance parameters and the artificial
regressors corresponding to them dropped from the artificial regression. This situation
arises if the information matrix is block-diagonal between these nuisance parameters
and all of the other parameters of the model, so that those columns of R(θ) which
correspond to the nuisance parameters will be asymptotically orthogonal to all the
remaining columns of R(θ). This situation arises in the case of the nonlinear regression
model with normal errors and allows us to show that the Gauss-Newton regression (3)
can be regarded as a special case of the general class of artificial regressions discussed
above.

If we assume that the vector u in (1) is normally distributed, the contribution from
the tth observation to the loglikelihood function is

`t(β, σ) = − 1−
2

log(2π)− log(σ)−
(
yt − xt(β)

)2
2σ2

.

The derivatives of `t(β, σ) are

∂`t

∂βi
=

1
σ2

Xti(β)
(
yt − xt(β)

)
(21)

and
∂`t

∂σ
=
−1
σ

+

(
yt − xt(β)

)2
σ2

. (22)

When (21) is multiplied by (22), the expectation of the resulting product is zero, which
establishes the familiar result that the information matrix for nonlinear regression
models is block-diagonal between β and σ. If we are only interested in restrictions
on β, we can construct an artificial regression in which σ is treated as a nuisance
parameter. The block-diagonality property implies that the artificial regression need
not include a regressor corresponding to σ.

If we make the following definitions corresponding to the artificial variables used in
the G-N regression (2), namely,

rt(β) = yt − xt(β) and Rti(β) = Xti(β) for i = 1, . . . , k,
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then we see that these artificial variables satisfy the defining properties 1, 2, and 3. In
particular, ρ(β) = σ2, and

R>(β)r(β) = X>(β)
(
y − x(β)

)
,

which is the gradient of the normal loglikelihood with respect to β, times ρ(β), and

1−
n
R>(β)R(β) = 1−

n
X>(β)X(β),

which is ρ(β) times the β −−β block of the information matrix.

It is well known that the assumption of normality is quite unnecessary for the asymp-
totic theory of nonlinear regression models estimated by least squares. The conven-
tional theory of the G-N regression shows that it, too, can validly be used with models
in which the errors are non-normal. It may well be possible to extend the general
theory of artificial regressions to a semi-parametric context, and then the use of the
G-N regression with non-normal errors would be covered by such an extended theory.
Such an extension is beyond the scope of this paper, however.

In contrast, the assumption of homoskedasticity is essential if we are to make asymp-
totic inferences based on the usual estimated covariance matrix s2(X̂>X̂)−1. But the
work of Eicker (1963) and White (1980), among others, has shown that it is possible
to make valid inferences asymptotically even in the presence of heteroskedasticity of
unknown form. There exist auxiliary regressions which permit the straightforward
calculation of test statistics robust to the presence of such heteroskedasticity; see, for
example, Davidson and MacKinnon (1985b) and Wooldridge (1991). However, these
auxiliary regressions have only k2 rather than k regressors, and thus they cannot sat-
isfy properties 1 through 3. Although they can be very useful, they are therefore not
artificial regressions in the sense that the term is used in this paper.

Artificial regressions can be useful for a variety of purposes besides calculating test
statistics. Suppose, for example, that we evaluate r(θ) and R(θ) at the unrestricted
estimates θ̂ and run the regression

r̂ = R̂b + residuals. (23)

It is obvious by the first-order conditions that the OLS estimate θ̂ must be identically
zero, so running (23) is an easy way to verify that θ̂ does indeed satisfy the first-order
conditions. Moreover, the OLS covariance matrix estimate from (23) will be

r̂>r̂
n− k

(R̂>R̂)−1,

and, by properties 1 and 3, this is evidently a valid estimate of the inverse of the
information matrix. Whether it is an estimate that we would actually want to use in
practice will depend, in part, on whether n−1r̂>r̂ equals one identically or not, and on
whether the degrees of freedom correction is deemed to be appropriate.
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Of considerably greater interest to the results on testing which follow is the fact that
artificial regressions can be used to calculate one-step efficient estimates. Suppose that
we are somehow able to obtain a vector θ́ of consistent, but asymptotically inefficient,
estimates. The manner in which θ́ is obtained is unimportant; all we require is that
θ́ − θ0 = Op(n−1/2). If we then evaluate r(θ) and R(θ) at θ́ and run the artificial
regression

ŕ = Ŕb + residuals,

the resulting OLS estimates b́ have the property (12) by Theorem 1. Consequently,
the one-step estimator

θ̀ ≡ θ́ + b́ = θ́ + (Ŕ>Ŕ)−1Ŕ>ŕ

is asymptotically equivalent to θ̂. In situations where θ̂ is difficult or expensive to
obtain but θ́ is readily obtainable, this can be a very valuable result.

More specifically, Theorem 1 allows us to go in one step from the restricted estimates
θ̃, obtained by ML estimation of the model (10) under the null hypothesis that θ2 = 0,
to estimates asymptotically equivalent to the unrestricted ML estimates θ̂ of the same
model, where the asymptotic equivalence is good whether or not θ2 = 0, provided only
that θ2 = Op(n−1/2). Further, one can go in one step in the reverse direction as well,
starting from the unrestricted estimates θ̂ and obtaining estimates asymptotically
equivalent under the null hypothesis to the restricted estimates θ̃. The trick is to
use in the former case what we may call the artificial regression for the unrestricted
model, that is, the regression with the full set of artificial regressors [R̃1 R̃2], and in
the latter case the artificial regression for the restricted model, where the regressors
R̂2 are absent. Formally, the b̃ obtained by OLS on regression (19), when added to
θ̃ ≡ [θ̃1

> 0>]> give an answer equal through order n−1/2 to θ̂, while the b̂1 obtained by
OLS on the regression

r̂ = R̂1b1 + residuals,

when added to θ̂1, give an answer equivalent to θ̃1 to the same order of approximation.
These very convenient results follow from Theorem 1 and the facts that θ̃ is consistent
for θ0 if θ2 = Op(n−1/2) and that θ̂1 is consistent for θ0

1 if θ2 = 0.

4. Tests where the Alternative is Implicit
Up to this point, all the tests we have discussed have involved an explicit alternative
hypothesis. The null is a special case of the alternative, and the restrictions being
tested are (or can be reformulated as) zero restrictions. In this section, we show that
artificial regressions can be used to perform tests where there is no explicit alternative
hypothesis. Thus we can write down an artificial regression analogous to (19), with
R̃2 replaced by an n× l matrix Z̃ ≡ Z(θ̃):

r̃ = R̃1c1 + Z̃c2+ residuals. (24)

Provided that the matrix Z̃ satisfies certain conditions (discussed below), which es-
sentially give it the same properties as R̃2, and assuming that the matrix [R̃1 Z̃] has
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full rank, the nR2 from (24) and other asymptotically equivalent statistics must be
asymptotically distributed as χ2(l) when the data are actually generated by (10) with
θ2 = 0. Thus (24) provides a way to compute a wide variety of test statistics, which
need not necessarily be derived explicitly as LM statistics.

We now briefly indicate how to prove the above proposition. Since the proof is similar
to standard proofs for LM tests based on artificial regressions, many details are omit-
ted. As noted above, it is necessary that Z̃ satisfy certain conditions, in order that it
should have essentially the same properties as R̃2. First, we require that

plim
n→∞

(
1−
n

r̃>Z̃
)

= 0

under the null hypothesis; if this condition were not satisfied, we obviously could not
expect the plim of c2 in (24) to be zero. Second, we require that

plim
n→∞

(
1−
n

Z̃>r̃r̃>Z̃
)

= ρ0 plim
n→∞

(
1−
n

Z̃>Z̃
)

(25)

and
plim
n→∞

(
1−
n

Z̃>r̃r̃>R̃1

)
= ρ0 plim

n→∞

(
1−
n

Z̃>R̃1

)
, (26)

conditions which are similar to the requirement that

plim
n→∞

(
1−
n

R̃1
>r̃r̃>R̃1

)
= ρ0 plim

n→∞

(
1−
n

R̃1
>R̃1

)
. (27)

This last requirement does not have to be assumed separately, because it is a conse-
quence of properties 2 and 3, the definition of the information matrix I(θ), and the
consistency of θ̃. Third, we require that laws of large numbers be applicable to the
quantities whose probability limits appear on the right-hand sides of (25), (26), and
(27). Finally, we require that a central limit theorem be applicable to the vector

n−1/2Z̃>M̃1r̃. (28)

All of these conditions and assumptions must, of course, be verified in individual cases.
Since this paper is concerned with the general properties of artificial regressions, it
seems inappropriate to consider any particular case in detail. In some instances, it is
not too difficult to find sufficient conditions that will guarantee the needed regularity,
while in others, especially in time-series contexts, rather elaborate arguments may be
necessary, especially for a central limit theorem to apply to (28). There is no doubt,
however, that in numerous cases of interest sufficient regularity is present.

Now consider the vector (28). Asymptotically, it has mean zero under the null hypo-
thesis, and its asymptotic covariance matrix is

plim
n→∞

(
1−
n

Z̃>M̃1r̃r̃>M̃1Z̃
)
,
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which is equal to

plim
n→∞

(
1−
n

(
Z̃>r̃r̃>Z̃ − Z̃>r̃r̃>R̃1(R̃1

>R̃1)−1R̃1
>Z̃ − Z̃>R̃1(R̃1

>R̃1)−1R̃1
>r̃r̃>Z̃

+ Z̃>R̃1(R̃1
>R̃1)−1R̃1

>r̃r̃>R̃1(R̃1
>R̃1)−1R̃1

>Z̃
))

. (29)

Rewriting (29) so that each term is a product of Op(1) probability limits, using (25),
(26), and (27), and simplifying, we find that

plim
n→∞

(
1−
n

Z̃>M̃1r̃r̃>M̃1Z̃
)

= ρ0 plim
n→∞

(
1−
n

Z̃>M̃1Z̃
)
. (30)

This plus the asymptotic normality of (28) implies that the expression

(
n−1/2r̃>M̃1Z̃

)
plim
n→∞

(
1−
n

Z̃>M̃1Z̃
)(

n−1/2Z̃>M̃1r̃
)

is asymptotically distributed as ρ0 times χ2(l). This expression is what the numerator
of nR2 from regression (24) tends to as n → ∞. By property 1, the denominator of
nR2 tends to ρ0. Thus we conclude that nR2 from regression (24) is asymptotically
distributed as χ2(l) if the DGP satisfies the null hypothesis.

There are numerous examples of tests, not designed against explicit alternatives, which
can be based on artificial regressions. One example is the class of tests called Durbin-
Wu-Hausman tests, which we consider in the next section. These can be based on any
artificial regression. Other examples are provided by several tests based on the OPG
regression, which we will consider in the remainder of this section.

Newey (1985) suggested using the OPG regression to calculate what he called “condi-
tional moment tests”; see also Tauchen (1985), who used a related auxiliary regression
for quite similar purposes. The basic idea of conditional moment tests is that para-
metric statistical models are generally based on assumptions which imply that certain
moment conditions must hold. For example, suppose that a model depends on under-
lying error terms ut which are assumed to be NID(0, σ2). Estimation of the model
will generally yield observable counterparts of these, say ût, which are functions of the
parameter estimates θ̂. Then, in large samples, we would expect that

1−
n

n∑
t=1

û2
t and 1−

n

n∑
t=1

(û4
t − 3û2

t ), (31)

the empirical counterparts of conditions on the third and fourth moments of the ut,
should both be approximately equal to zero. Newey demonstrates that moment con-
ditions such as these can be tested by running the artificial regression

ι = Ĝc1 + Ẑc2 + residuals, (32)
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where Ĝ ≡ G(θ̂), and Ẑ is chosen so that ι>Ẑ generates the moment conditions to be
tested. In the case of (31), Ẑ would consist of two vectors, with typical elements û3

t

and û4
t − 3σ̂4.

Moment conditions may also arise from the theory of the phenomenon being modeled.
For example, in the context of models of rational behavior by economic agents, error
terms are often supposed to be orthogonal to everything in agents’ information sets.
Thus, if Wt denotes an l --vector of variables that should be orthogonal to ut, we could
define Ẑt as the l × 1 vector Wtût and then test the l orthogonality conditions by
regressing ι on Ĝ and Ẑt. However, because of the poor finite-sample properties of
tests based on the OPG regression, conditional moment tests should be used with
great caution when the sample size is not very large.

5. Durbin-Wu-Hausman Tests
Hausman (1978), following Durbin (1954) and Wu (1973), suggested that it may of-
ten be useful to test whether there is any significant difference between two sets of
estimates, one of which is consistent and efficient under relatively strong conditions,
and one of which is consistent under weaker conditions. The original application was
comparing estimates obtained by least squares with ones obtained by instrumental
variables. It might also be natural to compare the vector of restricted estimates θ̃1

with the vector of unrestricted estimates θ̂1 from model (10). Because of the possibil-
ity of a one-step artificial regression, it is not actually necessary to obtain θ̂1 in order
to do so, and this observation provides the easiest way to see how to use an artificial
regression to perform a Durbin-Wu-Hausman, or DWH, test.

The estimate of b1 from the artificial regression (19) is

b̃1 = (R̃1
>M̃2R̃1)−1R̃1

>M̃2r̃,

where M̃2 ≡ I − R̃2(R̃2
>R̃2)−1R̃2

>. Adding this quantity to θ̃1 yields a one-step es-
timator which is asymptotically equivalent to θ̂1 in the sense discussed in Section 4.
Hence a test based on a comparison of θ̃1 and θ̃1 + b̃1 is equivalent to one based on a
comparison of θ̃1 and hatθ1.

There is no need to restrict attention to regression (19); regression (24), of which the
former is a special case, can equally well be used to obtain one-step estimates of θ1 .
The estimate of c1 from (24) is

c̃1 = (R̃1
>M̃ZR̃1)−1R̃1

>M̃Z r̃

= −(R̃1
>M̃ZR̃1)−1R̃1

>P̃Z r̃,
(33)

where P̃Z ≡ Z̃(Z̃>Z̃)−1Z̃> and M̃Z ≡ I − P̃Z. The corresponding one-step estimate
of θ̂1 is simply

θ̃1 + c̃1 = θ̃1 + (R̃1
>M̃ZR̃1)−1R̃1

>M̃Z r̃. (34)

These one-step estimates are less efficient than θ̃1 if θ2 = 0, because, as (34) makes
clear, they are equal to θ̃1 plus something which should be random noise when the
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model is correctly specified. If the model were not correctly specified, however, the
second term in (34) would not be random noise, and c̃1 would differ systematically
from zero. Thus the DWH test simply asks whether or not the second term in (34) is
random noise.

We have seen that the difference between the one-step estimate and the restricted
ML estimate θ̃1 is c̃1, which is given in (33). The DWH test is thus concerned with
whether the vector

n−1/2R̃1
>P̃Z r̃ = n−1/2R̃1

>P̃ZM̃1r̃ (35)

has mean zero asymptotically. Note that the equalities in (33) and (35) both follow
from the fact that R̃1

>r̃ = 0. The vector on the right-hand side of (35) looks just like
the vector (28), with R̃1

>P̃Z playing the role of Z̃>. Hence the result (30) implies that

plim
n→∞

(
1−
n

R̃1
>P̃ZM̃1r̃r̃>M̃1P̃ZR̃1

)
= ρ0 plim

n→∞

(
1−
n

R̃1
>P̃ZM̃1P̃ZR̃1

)
.

It is now evident that we may test the hypothesis that expression (35) has mean zero
asymptotically by using the test statistic

n

r̃>r̃
r̃>P̃ZR̃1(R̃1

>P̃ZM̃1P̃ZR̃1)+R̃1
>P̃Z r̃, (36)

where (·)+ denotes a generalized inverse. We must use a generalized inverse here
because the matrix

R̃1
>P̃ZM̃1P̃ZR̃1

may not have full rank k1; in fact, it can have rank at most equal to min(k1, l).

The test statistic (36) may, of course, be calculated by means of an artificial regression,
namely,

r̃ = R̃1d1 + P̃ZR̃∗
1d2 + residuals, (37)

where R̃∗
1 is a matrix which consists of as many columns of R̃1 as possible, subject to

the constraint that the matrix [R̃1 P̃ZR̃∗
1] must have full rank. Note that the nR2

from regression (37) is

n

r̃>r̃
r̃>P̃ZR̃∗

1(R̃
∗
1
>P̃ZM̃1P̃ZR̃∗

1)
−1R̃∗

1
>P̃Z r̃,

and this is numerically equal to the test statistic (36). Thus we have provided a general
procedure for performing a DWH test by means of an artificial regression. DWH tests
are potentially of interest when either the less efficient set of estimates is not explicitly
obtained by relaxing a set of restrictions— although, as Davidson and MacKinnon
(1987) prove, this is always implicitly the case —or when k1 is substantially smaller
than k2, so that the DWH test involves substantially fewer degrees of freedom than a
classical test would.

Ruud (1984) and Newey (1985) have previously shown that tests asymptotically equiv-
alent to DWH tests can be computed as score tests, so that various artificial regressions
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can be used to compute these tests. However, the only artificial regression which has
been explicitly suggested for this purpose is the OPG regression discussed in Section 2.
The above results are very much more general. They show that for any test statistic
which can be computed by means of an artificial regression, whether or not it is explic-
itly an LM test, there is a DWH version which can be computed by a similar artificial
regression. One simply replaces the n× l matrix Z̃, whatever it may be, by the matrix
P̃ZR̃∗

1, which will in regular cases be n ×min(k1, l). For more on the interpretation
of DWH tests, see Davidson and MacKinnon (1989).

6. Double-length Regressions
In Section 2, we discussed three widely-used artificial regressions. There are many
others, most of which, we suspect, have yet to be discovered. In this section, we
discuss one useful but not yet widely used class of artificial regressions, the “double-
length” artificial regressions proposed by Davidson and MacKinnon (1984a). These
apply to any model of the form

ft(yt, ȳt,θ) = εt, εt ∼ NID(0, 1), (38)

where ft(·) is a nonlinear function which may depend on exogenous variables (hence the
t subscript), ytis an observation on the dependent variable, ȳt is a vector of observations
on lagged values of yt, and θ is a vector of parameters. Suitable regularity conditions
must be assumed, of course; see the cited article for details. Since the nonlinear
function ft(·) may include a transformation to the standard normal, (38) is actually a
rather general class of models; univariate and multivariate nonlinear regression models
with normal errors are both special cases of it, for example.

For a model of this class, the contribution to the loglikelihood made by the tth obser-
vation is

`t = − 1−
2

log(2π)− 1−
2
f2

t + kt,

where

kt(yt, ȳt,θ) ≡ log
∣∣∣∣
∂ft(yt, ȳt, θ)

∂θi

∣∣∣∣
is a Jacobian term. Now let us make the definitions

Fti(yt, ȳt, θ) ≡ ∂ft(yt, ȳt,θ)
∂θi

,

and

Kti(yt, ȳt, θ) ≡ ∂kt(yt, ȳt, θ)
∂θi

.

Further, we define F (θ) and K(θ) as the n × k matrices with typical elements
Fti(yt, ȳt, θ) and Kti(yt, ȳt, θ), respectively. It is easy to see that the gradient is

g(θ) = −F>(θ)f(θ) + K>(θ)ι. (39)
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The fundamental result proved in Davidson and MacKinnon (1984a) is that, for this
class of models, the information matrix I(θ) satisfies

I(θ) = plim
n→∞

(
1−
n

(
F>(θ)F (θ) + K>(θ)K(θ)

))
, (40)

and so it can be consistently estimated by the matrix
1−
n

(
F>(θ̈)F (θ̈) + K>(θ̈)K(θ̈)

)
,

where θ̈ is any consistent estimate of θ. Hence one valid form of the LM statistic for
testing hypotheses about θ is

(−f̃>F̃ + ι>K̃)(F̃>F̃ + K̃>K̃)−1(−F̃>f̃ + K̃>ι), (41)

where, as usual, quantities with a tilde are evaluated at θ̃, the vector of ML estimates
of θ subject to the restrictions to be tested. The test statistic (41) is evidently just
the explained sum of squares from the double-length artificial regression

[
f̃
ι

]
=

[−F̃

K̃

]
b + residuals. (42)

This artificial regression has 2n “observations.” The regressand is f̃t for “observation”
t and unity for “observation” t + n, and the regressors corresponding to θ are −F̃t for
“observation” t and K̃t for “observation” t+n, with F̃t and K̃t denoting the tth rows
of F̃ and K̃, respectively. It is clear from (39) and (40) that regression (42) satisfies
properties 1, 2, and 3, provided that, in property 1, n is replaced by 2n, corresponding
to the double length of the artificial regression. Similarly, all results mentioning nR2

from the regression should in this context be read as 2nR2.

Double-length artificial regressions are particularly useful for testing whether or not
the dependent variable in a regression model should be transformed in some way. For
example, they may be used to test both the hypothesis that λ = 0 and the hypothesis
that λ = 1 in the Box-Cox regression model

(yλ
t − 1)/λ = xt(β) + ut, ut ∼ NID(0, σ2); (43)

see Box and Cox (1964). Under the null hypothesis that λ = 0, the regressand of
(43) is simply log yt, whereas under the null hypothesis that λ = 1, and provided
that xt(β) includes the equivalent of a constant term, the regressand is effectively just
yt. LM tests for λ = 0 and λ = 1 based on double-length regressions were derived
by Davidson and MacKinnon (1985a). They found that those test statistics have
finite-sample distributions much closer to their asymptotic distributions than similar
LM test statistics based on the OPG regression that were proposed by Godfrey and
Wickens (1981), a result confirmed by Godfrey, McAleer, and McKenzie (1988). They
also found, analytically, that except when σ2 is quite small, both forms of the LM
statistic have much greater power than the well-known test proposed by Andrews
(1971). Further applications of double-length regressions are discussed in Davidson
and MacKinnon (1988).
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7. Conclusion

In this paper, we have discussed several aspects of the general theory of artificial lin-
ear regressions. We have shown that, whenever it is possible to construct an artificial
regression which satisfies our properties 1, 2, and 3, one can evaluate that regression
at restricted estimates and use n times the R2 from the regression as a test statistic.
Moreover, it is possible in many cases to calculate tests based on artificial regressions
without ever explicitly specifying an alternative hypothesis. One simply has to con-
struct test regressors so that they satisfy certain properties. This opens the door to
a wide range of tests. One-step efficient estimates are readily calculated by means of
artificial regressions, and we have used this fact to show that it is always possible to
calculate a Durbin-Wu-Hausman variant of any test based on an artificial regression.
We have also discussed a number of specific artificial regressions which can be very
useful in practice.
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