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1. Introduction
A great many of the tests which are routinely used by econometricians are what David-
son and MacKinnon (1985) call tests in regression directions. For such a test, both
the null hypothesis and the (possibly implicit) alternative against which the test is
constructed are, at least locally, regression models of some sort. Any test in regression
directions can thus always be computed as a test for one or more omitted variables, and
explicit omitted variables tests are one common example of such tests. Other exam-
ples include tests for structural change (Chow, 1960), serial correlation (Durbin, 1970;
Godfrey, 1978), and exogeneity (Durbin, 1954; Hausman, 1978); many nonnested hy-
pothesis tests (Davidson and MacKinnon, 1981b, 1982); and differencing specification
tests (Plosser, Schwert, and White, 1982; Davidson, Godfrey, and MacKinnon, 1985).
Note that many of these are specification tests, in the sense of Hausman (1978), while
others are classical tests. When the regression errors are homoskedastic, such tests can
always be computed as t or F tests for omitted variables, although they will not always
be exact in finite samples. When the regression errors display heteroskedasticity of
unknown form, however, such tests are no longer valid even asymptotically.

The results of White (1980) make it clear that asymptotically valid tests can indeed be
computed in these cases. Building on those results, we show that doing so is not only
possible but indeed remarkably easy. We also show that there are numerous asymptot-
ically equivalent test statistics, which may well have different finite sample properties.
That is done in Section 2. In Section 3, we then go on to examine the properties
of these test statistics under sequences of local data generating processes, or DGPs.
In Section 4, we consider extensions to nonlinear models and models estimated by
two-stage least squares. In Section 5, we use second-order Edgeworth approximations
to analyze the approximate finite-sample performance of two of the test statistics dis-
cussed in Section 2. Finally, in Section 6, we present results from several Monte Carlo
experiments. These strongly suggest that one family of our tests should generally be
used in preference to the other, and also provide evidence on the usefulness of the
Edgeworth approximations.

2. Some Easily Computed Tests
We consider the case of testing a linear regression model against an alternative which
includes one or more additional regressors. The null and alternative models are

H0 : y = Xβ + u, (1)

and
H1 : y = Xβ + Zγu, (2)

where X and Z are, respectively, n × k and n × r matrices of strictly exogenous
variables, β and γ are unknown parameter vectors, and u is a vector of error terms
with the properties:

E(ut) = 0, ∀ t, E(ut, us) = 0, ∀ t 6= s, E(u2
t ) = σ2

t < σ2
M. (3)

–1–



Various technical assumptions are necessary, which are spelled out in White (1984).
The important ones are that X>X/n, Z>Z/n, X>Z/n, and Z>MXZ/n should all
tend to fixed matrices with ranks of k, r, min(r, k), and r, respectively, as n → ∞.
Here MX denotes the projection matrix I−X(X>X)−1X>. We shall also let Ω denote
the n× n diagonal matrix with σ2

t as a typical diagonal element.

The hypotheses H0 and H1 have been stated in a way which makes it appear that
we are solely concerned with classical tests of the hypothesis that γ = 0. That is not
in fact the case. Suppose that, following Hausman (1978) and Holly (1982), we are
actually interested in the null hypothesis

H∗
0 : X>Zγ = 0,

which implies that estimation of H0, will yield unbiased estimates of β. Although the
truth of H0 implies the truth of H∗

0 , the converse is not so. It is evident that H∗
0 is

equivalent to the hypothesis that

E
(
X>Z(Z>MXZ)−1Z>MXy

)
= 0. (4)

Now make the definition
Z∗ ≡ Z(Z>MXZ)−1Z>X,

dropping any redundant columns if k > r, and consider the new alternative hypothesis

H∗
1 : y = Xβ + Z∗γ∗ + u.

It is easily seen that

γ̂∗ =
(
X>Z(Z>MXZ)−1Z>X

)−1
X>Z(Z>MXZ)−1Z>MXy,

so that a test of y∗ = 0 is equivalent to a test of (4), and hence to a test of H∗
0 . If k ≥ r,

the number of degrees of freedom of the test will be r, and the classical test of H0 will
coincide with the specification test of H∗

0 . However, if k < r, the number of degrees
of freedom of the test will be k, and the two tests will not coincide. We are of course
assuming that the matrix [X Z∗] has full rank; if it does not, some columns of Z∗

will have to be dropped, and the degrees of freedom of the test adjusted accordingly.
Everything we say below is just as valid for testing H0 against H∗

1 as for testing it
against H1; the reader must simply substitute Z∗ for Z and correct the degrees of
freedom as necessary.

It is easy to derive the ordinary F statistic for the null hypothesis that y = 0. This
statistic is

y>MXZ(Z>MXZ)−1Z>MXy/r

y>M[X Z]y/(n− k − r
, (5)

where M[X Z] is analogous to MX , except that it projects off X and Z jointly. It is
clear by inspection that, under the assumption σ2

t = σ2 for all t, (5) could have been
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derived as a statistic for testing the hypothesis:

E(y>MXZ) = 0. (6)

Indeed, so far as observables are concerned, this hypothesis and the hypothesis γ = 0
are indistinguishable.

We now consider how to test the hypothesis (6) when the error terms have the prop-
erties (3). It is clear that, under H0, y>MXZ = u>MXZ, which has expectation zero
and covariance matrix Z>MXΩMXZ. If the error terms ut were normally distributed,
it would then follow immediately that the statistic

y>MXZ(Z>MXΩMXZ)−1Z>MXy (7)

is distributed as χ2(r) under H0. That will be true asymptotically even without a
normality assumption, provided that a central limit theorem applies to the vector
n−1/2u>MXZ, which is indeed the case under our assumptions.

The statistic (7) cannot be computed unless Ω is known. But the results of White
(1980), or very slight extensions of them, imply that

plim
n→∞

(
1−
n
Z>MXΩ̈MXZ

)
= plim

n→∞

(
1−
n
Z>MXΩMXZ

)
, (8)

where Ω̈ denotes one of a number of possible estimators for Ω. In particular, we
consider Ω̃ and Ω̂, which have diagonal elements of ũ2

t and û2
t , respectively, ũ being

the vector of residuals from OLS estimation of the null hypothesis (1), and û being the
residual vector from OLS estimation of the alternative (2). A proof of (8) can easily
be constructed from results in White (1984), and it is therefore omitted. The result
(8) implies that the test statistic (7) will still be asymptotically distributed as χ2(r)
under H0 if Ω is replaced by Ω̃, Ω̂, or any one of a number of similar estimators. Of
course, none of these estimators will be consistent for Ω; what matters is that we can
estimate Z>MXΩMXZ/n consistently. This is analogous to White’s (1980) result
that in order to obtain a consistent covariance matrix estimate, what matters is the
ability to estimate X>ΩX/n consistently.

Feasible versions of the test statistic (7), which use Ω̈ instead of Ω, can be computed
very easily. Let σ̈t denote the square root of the tth diagonal element of Ω̈, and
consider the regression

yt/σ̈t = σ̈t(MXZ)tγ + errors. (9)

Here (MXZ)t denotes the tth row of the matrix MXZ, which must be computed first
by projecting the columns of Z off X. The explained sum of squares from regression
(9), taken around zero and not around the mean of the regressand, is easily seen to
be the test statistic we want to compute. This regression is similar to, but simpler
than, the IV regression proposed by Messer and White (1984) as a procedure for
computing heteroskedasticity-consistent standard error estimates. It suffers from two
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minor disadvantages. First of all, if σ̈t happens to be exactly zero, as might be the case
if an observation has been dummied out, the regressand of (9) cannot be computed.
Following a suggestion of Messer and White (1984), one would then have to replace any
σ̈t which were zero by some small number, say .0001. Secondly, few regression packages
print the explained sum of squares of a regression about zero, so that calculating the
test statistic will usually involve a few auxiliary calculations.

An even simpler artificial regression is available if we restrict our attention to the case
of Ω = diag(ũt). The regression is

ι = ŨMXZγ + errors, (10)

where ι is an n--vector of ones, and Ũ = diag(ũt). The explained sum of squares
from this regression, which is equal to n minus the sum of squared residuals, is plainly
equal to

ι>ŨMXZ(Z>MXŨŨMXZ)−1Z>MXŨι

= ũ>MXZ(Z>MXΩ̃MXZ)−1Z>MX ũ.
(11)

Since ũ>MXZ = y>MXZ, this is the test statistic we are seeking to compute. The
artificial regression (10) avoids both of the disadvantages associated with (9), and, as
we shall see in Section 6, restricting attention to Ω̃ is by no means a bad thing to do.

A great many choices are potentially available for Ω̈. MacKinnon and White (1985)
considered four possibilities, all implicitly based on the unrestricted residuals ût, since
their paper was concerned with the estimation of heteroskedasticity-consistent covar-
iance matrices. The simplest of these, which we shall call HC0, uses Ω̂. A slightly more
complicated version, which we shall call HC1, uses (n/(n − k − r))Ω̂, the first factor
being a crude correction for degrees of freedom lost in estimating Ω̂. A third version,
called HC2, uses diag(û2

t /mtt), where mtt is the tth diagonal element of the matrix
M[X Z]; this amounts to using a more sophisticated degrees of freedom correction.
The fourth version, called HC3, utilizes the jackknife covariance matrix estimator. It
is somewhat more complicated than the others and will not be described here.

In Monte Carlo work, MacKinnon and White (1985) found that t statistics based on
all of the heteroskedasticity-consistent covariance matrices were too prone to reject
the null when it was true. In order of diminishing reliability, the ranking was always:
HC3, HC2, HC1, HC0, with HC3 always performing very much better than HC0.
The superiority of HC3 is somewhat unfortunate in the present context, because the
estimate of Ω implicit in HC3 is not (quite) diagonal, so that the artificial regression
(9) could not be used to compute the test statistic.

It is easy to construct test statistics based on heteroskedasticity-consistent covariance
matrices analogous to HC0 through HC3 that use restricted residuals. The simplest,
which uses a matrix HCR0 similar to HC0, is the test statistic (11). Multiplying (11)
by (n− k)/n would be equivalent to using a matrix HCR1 similar to HC1. A still more
complicated statistic would employ a matrix HCR2 that uses σ̈2

t = ũ2
t /(1−ktt), where

ktt is the tth diagonal element of X(X>X)−1X>. In this case, the test statistic could
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be computed by regression (9) but not by regression (10). One could also construct
a statistic based on the jackknife estimator HCR3, but it would be relatively hard to
compute.

In Section 5 below, we study the finite sample properties of tests based on HC0 and
HCR0 using Edgeworth approximations. Then, in Section 6, we use Monte Carlo
methods to study the finite sample performance of all the test statistics mentioned
above. We also evaluate the usefulness of the Edgeworth approximations.

3. Asymptotic Behavior of the Tests
In this section, we consider the asymptotic behavior of the test statistics discussed
above under sequences of local data generating processes (DGPs). The generic test
statistic we are interested in may be written as

y>MXZ(Z>MXΩ̈MXZ)−1Z>MXy, (12)

where Ω̈ may denote any estimator of Ω which satisfies (8). The sequence of local
DGPs may be written as

y = Xβ0 + n−1/2Wδ0 + u, E(u) = 0, E(uu>) = Ω0. (13)

The matrix Ω0 is of course assumed to be diagonal. Strictly speaking, we should write
the vectors u and y and the matrices X, W, and Ω0 as functions of n, the sample
size. In addition to the assumptions made previously, we assume that δ0

>W>Wδ0/n,
δ0
>W>X/n, and δ0

>W>Z/n all tend to fixed matrices as n →∞.

The sequence of local DGPs (13) allows for the truth to differ from the null hypothesis
in any regression direction, since Wδ0 could be almost anything. As n gets large,
the DGP approaches a particular case of the null hypothesis H0, where β = β0 and
Ω = Ω0. It is of course possible for the DGP to lie within the alternative H1; that
will be the case if Wδ0 lies entirely in the space spanned by X and Z jointly.

We now define the matrices P0 and P̈ so that

P0P0
>= (Z>MXΩ0MXZ)−1 and P̈ P̈>= (Z>MXΩ̈MXZ)−1, (14)

noting that P0 and P̈ are r × r matrices and O(n−1/2). This allows us to rewrite the
test statistic (12) as

y>MXZP̈ P̈>Z>MXy. (15)

From (13) and (14), we see that

P0
>Z>MXy = n−1/2P0

>Z>MXWδ0 + P0
>Z>MXu, (16)

and it is evident that both terms in (16) are O(1). Under the assumptions we have
made or alluded to–that is, those of White (1984)–we can clearly apply a central
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limit theorem to P0
>Z>MXu. It follows that the vector P0

>Z>MXy is asymptotically
normal with mean vector

n−1/2P0
>Z>MXWδ0

and covariance matrix

E(P0
>Z>MXuu>MXZP0) = P0

>Z>MXΩ0MXZP0 = Ir. (17)

If the DGP were a special case of H0, it would follow immediately from (8) that
P̈ → P0 as n →∞. That remains true under (13), because a result equivalent to (8)
still holds.1 Hence the test statistic (15) is asymptotically equivalent to

y>MXZP0P0
>Z>MXy, (18)

which is simply the sum of squares of the elements of the random vector P0
>Z>MXy.

Since those elements are asymptotically normal with variance one, we conclude that
the test statistic is asymptotically distributed as noncentral Chi-squared with r degrees
of freedom and non-centrality parameter, or NCP,

1−
n
δ0
>W>MXZP0P0

>Z>MXWδ0

= 1−
n
δ0
>W>MXZ(Z>MXΩ0MXZ)−1Z>MXWδ0.

(19)

If in fact the error terms are homoskedastic, so that Ω0 = σ2
0I, the NCP (19) will

simplify to
1−
n
δ0
>W>MXZ(Z>MXZ)−1Z>MXWδ0/σ2

0 , (20)

which is identical to the NCP for the Chi-squared version of the ordinary F statistic
(5). Thus, when there is in fact no heteroskedasticity, it is asymptotically costless to
use a heteroskedasticity-robust test.

When there is heteroskedasticity, (19) makes it clear that the power of the test will
depend on the nature of Ω0. Multiplying all elements of Ω0 by a factor of λ will of
course reduce the NCP by a factor of 1/λ, as in the homoskedastic case. But changes
in the pattern of heteroskedasticity, even if they do not affect the average value of
Ω0, may well affect Z>MXΩ0MXZ and hence affect the power of the test. In the
homoskedastic case, if the DGP lies within H1, so that Wδ0 can be written as MXZγ0

for some γ0, the NCP (20) simplifies to

1−
n
γ0
>Z>MXZγ0/σ2

0 . (21)

However, no such simplification occurs for (19).

1 This statement is quite evidently true from the calculations in Section 5.
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4. Some Extensions
The basic ideas of Section 2 can readily be extended to a number of cases more compli-
cated than the one dealt with there. In this section, we first derive heteroskedasticity-
robust tests for linear models which have been estimated by two-stage least squares,
and then for univariate models which can be estimated by nonlinear least squares.
Extensions to other cases, including multivariate models, are of course possible, but
they will not be attempted here.

The first case we consider is where H0 and H1 are still given by (1) and (2), but some
columns of X and/or some columns of Z are asymptotically correlated with u. We
suppose that there exists a matrix of instruments, W, which includes all the columns
of X and Z that are valid instruments, plus enough other valid instruments so that
2SLS estimation of both H0 and H1 is feasible. For simplicity, we do not consider the
possibility that different instruments might be used in the estimation of H0 and H1.

The second stage regression, which yields 2SLS estimates of H1, is

y = PWXβ + PWZγ + errors, (22)

where PW = W (W>W )−1W>. As shown by Lovell (1963) and others, the estimate
of γ from (22) will be identical to the estimate from the regression

MPXy = MPXZγ + errors, (23)

where MPXy = I−PWX(X>PWX)−1X>PW . It is thus evident that the hypothesis
γ = 0 is observationally equivalent to the hypothesis

lim
n→∞

E(n−1/2y>MPXPWZ) = 0. (24)

Under the null hypothesis, y>MPXPWZ = u>MPXPWZ. The expectation of n−1/2

times this quantity clearly tends to zero, and the asymptotic covariance matrix of
n−1/2 times it is

1−
n
Z>PWMPXΩ0MPXPWZ, (25)

where Ω0 is the covariance matrix of u. Hence it is obvious that the test statistic

y>MPXPWZ(Z>PWMPXΩ̈MPXPWZ)−1Z>PWMPXy (26)

will be asymptotically χ2(r) under H0, where Ω̈ is any estimator of Ω for which a
result analogous to (8) holds. The statistic (26) may readily be computed by artificial
regressions similar to (9) and (10). In particular, suppose that Ω̈ = Ω̃ = diag(ũ2

t ),
where ũ = y−Xβ̃ (not y−PWXβ̃), β̃ being the 2SLS estimate of β from estimation
of H0. Then, letting Ũ denote diag(ũt), as before, we see that n minus the sum of
squared residuals from the artificial regression

ι = ŨMPXPWZγ + errors (27)
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will yield a version of the test statistic (26) that is analogous to (11).

We now consider the case of nonlinear regression models, writing the general model as

H1 : y = f(β, γ) + u, (28)

where f(·) represents a vector of twice continuously differentiable functions ft(·), which
depend implicitly on exogenous and/or predetermined variables, and explicitly on
parameter vectors β and γ. The vector of error terms is assumed to have the same
properties as the errors adhering to (1) and (2). The null hypothesis to be tested is
γ = 0, and in view of the nonlinearity of the model, we shall restrict our attention to
tests which do not require estimation under the alternative.

Under homoskedasticity, a particularly easy test statistic to compute is the Lagrange
Multiplier statistic, which is equal to the explained sum of squares (or n times the
uncentered R2) from the artificial regression

(1/σ̃)(y − f̃) = F̃βb + F̃γc + errors, (29)

where f̃ ≡ f(β̃,0), σ̃2 = (1/n)(y − f̃)>(y − f̃), and F̃β and F̃γ are matrices of
derivatives of f(·) with respect to β and γ, respectively, evaluated at the restricted
estimates (β̃,0). The test statistic may be written explicitly as

(1/σ̃2)(y − f̃)>M̃βF̃γ(F̃γ>M̃βF̃γ)−1F̃γ
>M̃β(y − f̃), (30)

where M̃β ≡ I−F̃β(F̃β>F̃β)−1F̃β
>. It will be asymptotically distributed as χ2(r) under

H0. For more details, see Engle (1982) or Davidson and MacKinnon (1984).

Under H0 and sequences of local DGPs, the test statistic (30) tends to

(1/σ2)u>MβFγ(Fγ>MβFγ)−1Fγ
>Mβu

as n →∞. Hence it is clear that (30) is really testing the hypothesis that

lim
n→∞

E(n−1/2u>MβFγ) = 0. (31)

Under heteroskedasticity, the variance-covariance matrix of u>MβFγ is

Fγ
>MβΩMβFγ ,

and so it is clear that an asymptotically valid test statistic is

(y − f̃)>M̃βF̃γ(F̃γ>M̃βΩ̃M̃βF̃γ)−1F̃γ
>M̃β(y − f̃), (32)

where Ω̃ = diag(ũ2
t ) as usual.

The test statistic (32) is simply n minus the sum of squared residuals from the artificial
regression.

ι = ŨM̃βF̃γc + errors, (33)
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where ũ = diag(ũt). Thus in order to compute the test statistic, it is simply necessary
to do the following:

1. Obtain nonlinear least squares estimates β̃ under H0, and retain ũ = y − f̃ .

2. Calculate the matrices of derivatives Fβ and Fγ and evaluate them at (β̃,0) to
obtain F̃β and F̃γ .

3. Regress the columns of F̃γ on F̃β to obtain residuals M̃βF̃γ .

4. Run the artificial regression (33), and compute n minus the sum of squared resid-
uals, which will be asymptotically distributed as χ2(r) under H0.

5. Finite Sample Corrections to the Behavior of the Tests
In this section, we make use of Edgeworth expansions of the distributions of asymp-
totic t statistics based on the covariance matrices HC0 and HCR0 in order to obtain
corrections to their asymptotic distributions. It is possible to perform those expansions
not only for the case in which the null hypothesis is satisfied, but also for a sequence
of local DGPs such as (13). We begin with a general result, similar to one found in
Rothenberg (1984), who treats a wider variety of problems than we do in this paper,
but in less detail.

THEOREM: For each positive integer n, consider the random variable

xn ≡ n−1/2zn
>yn

(n−1yn
>Anyn)1/2

(34)

computed from a random n--vector yn that satisfies the equation

yn = n−1/2wnδ + un, (35)

in which the random n--vector un is distributed as N(0, In), where In is an n × n
identity matrix, the non-random n--vector wn satisfies wn

>wn = n, and δ is a scalar
independent of n. Further, let the non-random n--vector zn satisfy the conditions
zn
>zn = n and wn

>zn = cos θ. Let the non-random n × n symmetric matrix An be
such that the five quantities

an = n−1zn
>Anzn

bn = n−1Tr(A2
n)

cn = n−1wn
>Anzn

dn = n−1wn
>Anwn

en = TrAn − n

(36)

are all O(1) as n →∞.

Then the characteristic function of xn given by ψ(t) ≡ E(eitxn), equals

eitδ cos θe−t2/2
(
1 + 1−

n

4∑
r=1

(−it)ranr

)
+ o(n−1) (37)
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where the four functions anr are defined by

an1 = cnδ +
(

1−
2
en − 3−

4
bn

)
δ cos θ + 1−

2
dnδ3 cos θ;

an2 = bn − an − 1−
2
en − 1−

2
dnδ2 + 1−

4
bnδ2 cos2 θ − cnδ2 cos θ;

an3 = cnδ + 1−
2
(an − bn)δ cos θ;

an4 = 1−
4
bn − 1−

2
an.

(38)

REMARK: The ani can readily be interpreted in terms of the moments or cumulants
of the distribution of xn. In fact,

E(xn) = δ cos θ − n−1an1 + o(n−1)

and the variance of xn is
1 + 2n−1an2 + o(n−1).

Similarly, the skewness of xn is

E
(
xn − E(xn)

)3
/(

Var(xn)
)3/2 = −6n−1an3 + o(n−1),

and the kurtosis of xn is

E
(
xn − E(xn)

)4
/(

Var(xn)
)2 − 3 = 24n−1an4 + o(n−1).

Note also that if δ = 0, so that yn is just white noise, the mean and skewness of xn

are zero to order n−1, while to this order the variance and kurtosis differ from their
limits as n →∞, which are 1 and 0, respectively, by

n−1(2bn − 2an − en) and 6n−1(bn − 2an). (39)

The proof of this theorem is in the Appendix.

The result of the above theorem is readily applied to situations in which the vector y
(subscripts n will henceforth be dropped unless they are essential for comprehension)
is generated by a sequence of local DGPs similar to (13), with the disturbances u
subject to a normality requirement. This sequence is

y = Xβ0 + n−1/2wδ + Ω
1/2
0 ε, ε ∼ N(0, In). (40)

The random variable x is then defined by

x =
n−1/2z>MXy

(n−1y>MXAMXy)1/2
. (41)
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We also define η ≡ Ω
−1/2
0 (MXy + PXΩ

1/2
0 ε), where PX = I −MX . Thus η obeys

the equation
η = n−1/2(Ω−1/2

0 w)δ + ε, (42)

and we renormalize w so that

w>MXΩ−1
0 MXw = n. (43)

Then the random variable x of (41) can be expressed in terms of η as follows:

x =
n−1/2z>MXΩ

1/2
0 η

(n−1η>Ω1/2
0 MXAMXΩ

1/2
0 η)1/2

. (44)

The required normalizations are

n−1z>MXΩ0MXz = 1 and n−1Tr(Ω0MXAMX) = 1 + O(n−1). (45)

We may now express the asymptotic t statistics based on HC0 and HCR0 in the form
(44). From (12), it is easy to see that these statistics have the general form

yMXz

(z>MXΩ̈MXz)1/2

We replace Ω̈ by Ω̂ for HC0 and by Ω̃ for HCR0, where

Ω̂ = diag
(
(M[X Z]y)2t

)
and Ω̃ = diag

(
(MXy)2t

)
.

Let D ≡ diag
(
(MXz)2t

)
. Then, for HC0,

z>MXΩ̂MXz = y>M[X Z]DM[X Z]y = η>Ω1/2
0 M[X Z]DM[X Z]Ω

1/2
0 η. (46)

Similarly, for HCR0,

z>MXΩ̃MXz = y>MXDMXy = η>Ω1/2
0 MXDMXΩ

1/2
0 η. (47)

The expressions in (46) and (47) are of the correct form to be denominators in (44),
since

Tr(Ω0MXDMXz) = Tr(Ω0D) + O(1) = z>MXΩ0MXz + O(1) = n + O(1)

by (45). A similar argument applies to Tr(Ω0M[X Z]DM[X Z]).
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Expression (37) for the characteristic function can now be worked out for the t statistics
based on HC0 and HCR0. It is enough to give expressions for the quantities a, b, c, d,
and e and for the angle θ. From the definitions, we have for HC0:

a = n−1z>MXΩ0M[X Z]DM[X Z]Ω0MXz;

b = n−1Tr
(
Ω0M[X Z]DM[X Z]Ω0M[X Z]DM[X Z]

)
;

c = n−1w>M[X Z]DM[X Z]Ω0MXz;

d = n−1w>M[X Z]DM[X Z]w;

e = Tr
(
Ω0M[X Z]DM[X Z]

)− n;

cos θ = n−1w>MXz.

(48)

For HCR0, it suffices to replace M[X Z] everywhere by MX.

For dealing with questions of the size or power of test statistics that use HC0 and
HCR0, we need to pass from the characteristic function (37) to an expression for the
density of the statistics. It is straightforward to show that to (37) corresponds the
density

φ(x− δ cos θ)
(
1 + 1−

n

4∑
r=1

arHr(x− δ cos θ)
)

+ o(n−1), (49)

where φ(·) is the standard normal density and Hr(·) is the r th Hermite polynomial,
defined by the relation

drφ(x)
dxr

= φ(x)Hr(x). (50)

In particular, we have
H0(x) = 1;

H1(x) = −x;

H2(x) = x2 − 1;

H3(x) = 3x− x3;

H4(x) = x4 − 6x2 + 3.

(51)

For a random variable x with density (49), the probability in the tail where x > y is
then

Φ
(−(y − δ cos θ)

)− 1−
n

φ(y − δ cos θ)
4∑

r=1

arHr−1(x− δ cos θ), (52)

with Φ(·) the distribution function of the standard normal. Now let x∗α be the critical
value for a one-sided test of size α, where 0 < α < 1, based on a statistic with tail
probability (52) for δ = 0, and let xα be the same thing for a test based on a statistic
that follows the N(0, 1) distribution Then, from (38) and (51),

α = Φ(−x∗α)− 1−
n

φ(x∗α)
(
x∗α

(
a− b + 1−

2
e
)

+ (3x∗α − (x∗α)3)
(

1−
4
b− 1−

2
a
))

+o(n−1).
(53)
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This equation may either be solved directly (numerically) for x∗α, or else a Taylor
approximation can be made around xα, with the result

x∗α = xα − 1−
n

(
xα

(
a− b + 1−

2
e
)

+ (3xα − x3
α)

(
1−
4
b− 1−

2
a
))

+o(n−1). (54)

Since the density (49) is, for δ = 0 and a1 = a3 = 0, symmetric about the origin,
equations (53) and (54) are equally applicable for two-sided tests of size 2α.

For either (53) or (54), the o(n−1) symbol is not uniform in α, so that for small α
the approximations cannot be expected to be very reliable. In particular, the density
(49) need not even be non-negative definite. If in (34) one puts An = n/(n− 1)MZ ,
x will for δ = 0 have the Student’s t distribution with n− 1 degrees of freedom. Since
Tr(An) = n, we get e = 0. Also, a = 0, and b = n/(n − 1) = 1 + O(n−1). Thus the
approximation (54) becomes

x∗α = xα + (4n)−1(xα + x3
α),

which is, to order n−1, the Cornish-Fisher approximation for critical values of the Stu-
dent’s t distribution. To provide a standard of comparison, see Table 1, which compares
true values of x∗α for α = .025 and α = .005 with the Cornish-Fisher approximation
and with the solution to equation (53).

Nevertheless, (53) and (54) do demonstrate why a t statistic based on HCR0 can often
be expected to behave better under the null hypothesis than one based on HC0. For
the simple case in which there are no regressors X in the null hypothesis, so that
MX = I, we find from (48) that, for HCR0, a = b = n−1Tr(Ω0D)2, and e = 0 (with
δ = 0). Since a1 = a2 = a3 = 0 in this case, the only discrepancy from the N(0, 1)
distribution comes therefore from a4, which is equal to −a/4. To this order, then,
HCR0 has mean zero, variance one, no skewness, and a touch of platykurtosis (i.e.,
thinner tails than the standard normal). The distribution of HC0 is not so simple, and
it can thus be expected to differ more from its asymptotic distribution.

Unfortunately, since in practice Ω0 is not known, the quantities a, b, and e appearing
in (53) and (54) must be estimated. We now discuss some convenient and consistent
estimators. Let

σ̂2
t = (M[X Z]y)2t and σ̃2

t = (MXy)2t .

In order to achieve the normalization (45), we now set

ω̂t = σ̂2
t

/(
1−
n

n∑
t=1

σ̂2
t (MXz)2t

)
, and

ω̃t = σ̃2
t

/(
1−
n

n∑
t=1

σ̃2
t (MXz)2t

)
.
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Then Ω̈ can be either diag(ω̂t) or diag(ω̃t). For an estimate of e, we use

ê = Tr
(
Ω̈M[X Z]DM[X Z]

)− n for HC0, or

ẽ = Tr
(
Ω̈MXDMX

)− n for HCR0.

Since Ω0 appears quadratically in the expressions for a and b, we need slightly more
complicated estimators. One can see from (48) that b = n−1Tr(Ω2

0D2)+O(n−1), and
so a consistent estimator is

b̂ = (3n)−1Tr(Ω̈2D2),

since E(σ̂4
t ) = 3σ4

t + o(1).

In the expression for a, because neither M[X Z]DM[X Z] nor MXDMX is diagonal,
cross terms with products ωtωt′, for t 6= t′, appear as well as terms with ω2

t . Thus we
need the estimator

â = 1−
n
z>MXΩ̈MDMΩ̈MXz − 2−

3

1−
n
z>MXΩ̈diag(MDM)Ω̈MXz,

where M = MX or M[X Z], as required, and diag(MDM) denotes a diagonal matrix
with the same diagonal elements as MDM .

We shall conclude this section with a discussion of the power of t statistics based on
HC0 and HCR0 in the event that the sequence of local DGPs satisfies the alternative
hypothesis implied by the use of the vector z. Thus the DGP is assumed to be

y = Xβ0 + n−1/2zγ0 + Ω
1/2
0 ε. (55)

This means that, for (43) to be satisfied, we replace the vector w of (40) by ζ−1/2z,
where ζ is defined as n−1z>MXΩ−1

0 MXz, and we replace the δ of (40) by ζ−1/2γ0.

From the definition of cos θ, we find that cos θ = ζ−1/2n−1z>MXz, and so the non-
centrality parameter of the asymptotic distribution of the test statistics, which from
(37) is δ cos θ, becomes γ0n−1z>MXz. In fact, it is quite compatible with all earlier
normalizations to impose in addition that z>MXz = n, and this fixes also the normal-
ization of γ0, so that the noncentrality parameter is just γ0. For a test in chi-squared
form, the noncentrality parameter (19) would then be γ2

0 .

Now we define the power function of a one-sided test based on a statistic x as
P (α, γ0) = Pr(x > x∗α), where the probability is calculated under the DGP (55),
and x∗α is the level α critical value. From (52), it follows that

P (α, γ0) = Φ
(−(x∗α − γ0)

)− 1−
n
φ(x∗α − γ0)

4∑
r=1

ar(γ0)Hr−1(x∗α − γ0) + o(n−1),

where the coefficients ar have been written as explicit functions of γ0. But a Taylor
expansion about xα, the N(0, 1) critical value, gives with the aid of (54) that

Φ
(−(x∗α − γ0)

)
= Φ

(−(xα − γ0)
)

+ 1−
n
φ(xα − γ0)

4∑
r=1

ar(γ0)Hr−1(xα) + o(n−1),
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so that

P (α, γ0) = Φ
(−(xα − γ0)

)− 1−
n
φ(xα − γ0)

4∑
r=1

ar(γ0)Hr−1(xα − γ0)

+ 1−
n
φ(xα − γ0)

4∑
r=1

ar(0)Hr−1(xα) + o(n−1).

(56)

Notice that Φ
(−(xα−γ0)

)
is the asymptotic power function, that is, the power function

of a statistic that is N(0, 1) under the null and N(γ0, 1) under the alternative (55). The
summations in (56) can be evaluated by use of (38) and (51), and in the notation of
(38) the result is

1−
2
δ2xα(d− 2 cos θ + c cos2 θ) + δx2

α

(
c− (a− b/4) cos θ

)
.

From (48), we find for the present circumstances in which the vector w of (48) is
replaced by ζ−1/2z, δ is replaced by ζ1/2γ0, and cos θ is replaced by ζ−1/2, that

1−
2
δ2xα(d− 2c cos θ + a cos2 θ) =

1−
2n

γ2
0xαz>(I−Ω0MX)>MDM(I−Ω0MX)z, (57)

and
δx2

α

(
c− (a− b/4) cos θ

)
)

= γ0x2
α

(
1−
n
z>(I−MXΩ0)MDMΩ0MXz +

1−
4n

Tr(Ω2D2)
)
,

(58)

where, as before, M denotes either M[X Z], for HC0, or MX , for HCR0. A little
algebra shows that (57) yields the same expression for both possibilities for M, which
is most easily written as

1−
2n

γ2
0xαz>MX(I−Ω0MX)D(I−MXΩ0)MXz.

On the other hand, (58) yields for HC0

γ0x2
α

1−
n

(
−z>MX(I−Ω0MX)D(I−MXΩ0)MXz + 1−

4
Tr(Ω2D2)

)

but for HCR0

γ0x2
α

1−
n

(
z>MX(I−Ω0MX)DMXΩ0MXz + 1−

4
Tr(Ω2D2)

)
.

The difference in the power functions is thus, to order n−1, simply

n−2φ(xα − γ0)z>MX(I−Ω0MX)DMXz. (59)

This quantity cannot be signed, so that there is no unambiguous ranking of the two
t statistics, based on HC0 and HCR0, with regard to power. In the absence of het-
eroskedasticity, with Ω0 = I (since our normalizations require this rather than that
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Ω0 = σ2
0I), expression (59) vanishes, and for both tests the power function is to order

n−1 given by

P (α, γ0) = Φ
(−(xα − γ0)

)− 1
4n2

φ(xα − γ0)γ0x2
αTr(D2).

This can be compared with the power function of the standard t statistic, which is
given by

n−1/2z>MXy
(
(n− k − 1)−1y>M[X Z]y

)1/2
, (60)

where k is the rank of X; recall that zMXz = n. Calculations based on expression
(60) lead to the following power function to order n−1:

P (α, γ0) = Φ
(−(xα − γ0)

)− 1
4n

φ(xα − γ0)γ0x2
α.

The loss of power resulting from the use of HC0 and HCR0 rather than the usual OLS
standard error is thus measured by n−1Tr(D2)− 1. this quantity is, not surprisingly,
always non-negative, since

Tr(D2) =
n∑

t=1

(MXz)4t ≥ 1−
n

( n∑
t=1

(MXz)2t
)2

= n, (61)

by the Cauchy-Schwartz inequality and the normalization. Equality in (61) occurs
only if all the (MXz)t are equal.

6. Monte Carlo Experiments
In this section, we present the results of several Monte Carlo experiments designed
to study the performance of the test statistics HC0 through HC3 and HCR0 through
HCR3 under the null hypothesis. We also investigate the usefulness of the Edgeworth
expansions derived in the previous section. Because those expansions are for the case
of testing for a single omitted variable, we only report results for that case, and we
express all the test statistics as quasi t statistics. We also performed several unreported
experiments in which we looked at tests for two or more omitted variables, and we
obtained results qualitatively similar to those reported below.

In all of our experiments, we utilized the following model:

yt = β0 + β1X1t + β2X2t + γ1Z1t + ut, (62)

where n = 50, 100, 200, or 400. In all but one case, the regressors X1 and X2 were
the ninety day Treasury Bill rate for Canada and the change in the log of real GNP
for Canada, seasonally adjusted at annual rates, while Z1 was the unemployment rate
for Canada, seasonally adjusted. These series were for the period 1970:3 to 1984:4, a
total of fifty observations. When more than fifty observations were used, the original
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fifty were replicated the required number of times. We chose the regressors in this
way because we wanted them to be representative of real data, and so that the matrix
X>X/n would not change as the sample size n was changed.

We report the results of four sets of experiments. In the first set, Case 1, the errors
were normal, and there was in fact no heteroskedasticity. In the second set, Case 2,
the variance of ut was proportional to Z2

1t. In the third set, Case 3, the variance of
ut changed abruptly, as if due to some sort of structural change. The errors ut were
specified to be N(0, σ2) for t = l, . . . , 25, t = 51, . . . , 75, and so on, and N(0, 16σ2)
for t = 26, . . . , 50, t = 76, . . . , 100, and so on. This pattern was chosen so that the
relationship between the regressors and the variance of the error term would not change
with the sample size. The final set of experiments, Case 4, was similar to Case 3 except
that the regressors were different. In this case, X1 was the unemployment rate, X2

was the price of the U.S. dollar in terms of Canadian dollars, and Zt was the change
in the log of the GNE price deflator for Canada, seasonally adjusted at annual rates.

In Tables 2 through 5, we report the results of sixteen experiments (four cases for
each of n = 50, n = 100, n = 200, and n = 400). Each experiment involved 2,000
replications. In addition to the quasi t statistics based on HC0 through HC3 and HCR0

through HCR3, we calculated the ordinary t statistic for the (true) hypothesis that
γ1 = 0, and also a control variate which utilizes the true covariance matrix and is thus
exactly N(0, 1). To save space, not all the results are reported for n greater than 50.
We omit results for HC1 and HC2 because they always fall between those for HC0 and
HC3, and we omit results for HCR2 and HCR3 because those statistics always perform
very similarly to HCR1, and they do not seem to be worth the additional complexity of
calculation. Differences between HCR1, HCR2, and HCR3 are of course most marked
for n = 50, so any differences worth noticing do show up in the tables.

We report the standard deviation and the kurtosis of both the control variate and the
actual statistics. These should be roughly one and three respectively, and when they
differ significantly at the one per cent level from those values, we note the fact with
an asterisk. The information about the control variate can be useful in interpreting
the results. For example, in Case 3 some of the results for n = 400 actually seem to
be worse than those for n = 200. But this is clearly explained by the fact that the
control variate has a standard deviation of 1.031 in the former case and only 0.992 in
the latter.

Our estimates of rejection frequencies at nominal significance levels explicitly incorpo-
rate the information in the control variate, using a technique proposed by Davidson
and MacKinnon (1981a). If the control variate has exceeded its critical value by more
than the expected number of times, the estimated rejection frequency for the statistic
in question will be reduced by an amount that depends on how closely it and the con-
trol variate are correlated; the reverse will be true if the control variate has exceeded
its critical value less than the expected number of times. The standard error of the
resulting estimate depends on the amount of correlation between the control variate
and the statistic in question, and thus tends to fall as n increases. For example, in
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Table 2 the standard errors of the rejection frequencies at the 5% nominal level for HC0

are 0.38 for n = 50 and 0.27 for n = 400. If the usual estimator of these frequencies
had been used (i.e. one that simply divides the observed number of rejections by the
number of replications), and if the estimates had been the same, these standard errors
would have been 0.68 and 0.53, respectively. There are thus substantial gains to be
had by using the information in the control variate in this way.

Tables 2 through 5 are reasonably self-explanatory. As in MacKinnon and White
(1985), HC3 always outperforms HC2, which always outperforms HC1, which always
outperforms HC0. The latter is often very unreliable, typically performing worse than
the ordinary t statistic (OLS) for n = 50, except in the extreme case of Table 5. On
the other hand, the tests based on restricted residuals perform strikingly well. Even
HCR0 usually yields more reliable inferences than HC3, especially when the sample
size is small and heteroskedasticity is severe; see in particular Table 5. Differences
among the HCR statistics are relatively slight, with HCR1 usually doing just about as
well as any of them.

One major difference between the tests based on restricted and unrestricted residuals
is that the former invariably display platykurtosis, while the latter invariably display
leptokurtosis, at least for the smaller sample sizes. This is what the Edgeworth ex-
pansions predict. As a result, all the tests are more reliable at the 10% level than at
the 5% or 1% levels. Tests based on restricted residuals tend to reject too infrequently
at low significance levels, while tests based on unrestricted residuals tend to reject too
frequently at those levels.

In Tables 6 through 9, we evaluate the performance of the Edgeworth expansions
derived in Section 5. We see how well the standard deviation predicted by expression
(39) predicts the standard deviation actually observed, and how well the 10%, 5% and
1% critical values obtained by solving equation (53) compare with the estimated 95%
confidence intervals for the corresponding estimated critical values. These confidence
intervals are based on non-parametric inference, and they are therefore not symmetric
around the estimate; for details on their calculation, see Mood and Graybill (1963, pp.
406–409).

We also estimate rejection frequencies using critical values based on the Edgeworth
approximations, using the information in the control variate as before. This is done
twice, once for the critical values calculated knowing Ω (referred to as “True Coeffi-
cients” in the table), and once for critical values calculated at each replication using
Ω̃ or Ω̂ (referred to as “Estimated Coefficients”). The critical values based on true
coefficients perform very well indeed for HCR0, and reasonably well for HC0, when
n is 100 or more. The critical values based on estimated coefficients perform much
less well. One would generally obtain more reliable inferences simply by using HCR1

than by using HCR0 with corrected critical values, and one would almost always obtain
more reliable inferences by using HC3 than by using HC0 with corrected critical values,
especially when the sample size is small. Thus it would appear that the Edgeworth
expansion approach may be more useful in improving our theoretical understanding
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of the properties of these tests (see Section 5) than in actually helping us to make
accurate inferences in practice.

7. Conclusion

In this paper, we have proposed computationally simple procedures for performing
heteroskedasticity-robust tests in regression directions. Although tests based on un-
restricted residuals are often quite unreliable in small samples, and should therefore be
used with caution, tests based on restricted residuals seem to perform remarkably well.
If they have a fault, it is a tendency not to reject frequently enough when the nominal
size of the test is small. We would argue that such tests should be used routinely when
the sample size is not too small and there is any doubt about the validity of the usual
homoskedasticity assumption.

References

Chow, G. C. (1960). “Tests of equality between sets of coefficients in two linear
regressions,” Econometrica, 28, 591–605.

Davidson, R. and MacKinnon, J. G. (1981a). “Efficient estimation of tail-area
probabilities in sampling experiments,” Economics Letters, 8, 73–77.

Davidson, R. and MacKinnon, J. G. (1981b). “Several tests for model specification
in the presence of alternative hypotheses,” Econometrica, 49, 781–793.

Davidson, R. and MacKinnon, J. G. (1982). “Some non-nested hypothesis tests and
the relations among them,” Review of Economic Studies, 49, 551-565.

Davidson, R. and MacKinnon, J. G. (1984). “Model specification tests based on
artificial linear regressions,” International Economic Review, 25, 485-502.

Davidson, R. and MacKinnon, J. G. (1985). “The interpretation of test statistics,”
Canadian Journal of Economics, 18, 38–57.

Davidson, R., Godfrey, L. G., and MacKinnon, J. G. (1985). “A simplified version of
the differencing test,” International Economic Review, 26, 639–647.

Durbin, J. (1954). “Errors in variables,” Review of the International Statistical
Institute, 22, 23–32.

Durbin, J. (1970). “Testing for serial correlation in least-squares regression when
some of the regressors are lagged dependent variables,” Econometrica, 38,
410–421.

Engle, R. F. (1982). “A general approach to Lagrange multiplier model diagnostics,”
Journal of Econometrics, 20, 83–104.

–19–



Godfrey, L. G. (1978). “Testing against general autoregressive and moving
average error models when the regressors include lagged dependent variables,”
Econometrica, 46, 1293–1301.

Hausman, J. A. (1978). “Specification tests in econometrics,” Econometrica, 46,
1251–1272.

Holly, A. (1982). “A remark on Hausman’s specification test,” Econometrica, 50,
749–759.

Lovell, M. C. (1963). “Seasonal adjustment of economic time series,” Journal of the
American Statistical Association, 58, 993–1010.

MacKinnon, J. G. and White, H. (1985). “Some heteroskedasticity consistent
covariance matrix estimators with improved finite sample properties,” Journal of
Econometrics, 29, 305–325.

Messer, K. and White, H. (1984). “A note on computing the heteroskedasticity
consistent covariance matrix using instrumental variables techniques,” Bulletin of
the Oxford Institute of Statistics, 46, 181–184.

Mood, A. M. and Graybill, F. A. (1963). Introduction to the Theory of Statistics,
Second Edition, New York, McGraw-Hill.

Plosser, C. E., Schwert, G. W., and White, H. (1982). “Differencing as a test of
specification,” International Economic Review, 23, 535–552.

Rothenberg, T. J. (1984). “Approximate power functions for some robust tests of
regression coefficients,” U. C. Berkeley Discussion Paper 84-1.

White, H. (1980). “A heteroskedasticity-consistent covariance matrix estimator and
a direct test for heteroskedasticity,” Econometrica, 48, 817–838.

White, H. (1984). Asymptotic Theory for Econometricians, New York, Academic Press.

–20–



Appendix

Subscripts n will be dropped throughout. Let the random variable x0 be defined as
n−1/2z>u. Then x0 ∼ N(0, 1). From (35), we obtain:

n−1/2z>y = n−1z>wδ + x0 = δ cos θ + x0. (63)

Using the definitions in (36),

n−1y>Ay = n−1u>Au + 2n−3/2δw>Au + n−2δ2w>Aw

= n−1(u>MzAMzu + 2u>MzAPzu + u>PzAPzu)

+ 2n−3/2δw>Au + n−1δ2d,

(64)

where Pz = I−Mz = n−1z>z.

Now Pu = n−1/2x0z and Mzu is a vector of jointly normal random variables inde-
pendent of x0. Further

n−1E(u>MzAMzu) = n−1Tr(MzA) = 1 + n−1(e− a).

Define a random variable z, independent of x0, by

n−1u>MzAMzu = 1 + n−1/2z + n−1(e− a).

It follows that E(z) = 0, and one calculates further that

Var(z) = 1−
n

Var(u>MzAMzu) = 2−
n
Tr(MzAMzA) = 2b + o(1).

Thus z = O2(1), where the order symbol O2 refers to the mean-square norm ‖ · ‖2.
For a random variable v, ‖v‖2 = E(v2).

Next, we define two more normal, zero-mean random variables, both of order unity in
mean square and independent of x0, by the equations:

w1 = n−1/2w>AMzu, and

w2 = n−1/2z>AMzu.

Equation (64) can now be rewritten as

n−1y>Ay = 1 + n−1/2z + n−1(e− a + 2x0w2 + ax2
0 + 2δw1 + 2δdx0 + δ2d).

The random variable in parentheses is O2(1), and thus it is bounded in probability.
Consequently, (n−1y>Ay)−1/2 can be expanded by the binomial theorem:

(n−1y>Ay)−1/2 = 1− 1−
2
n−1/2z

− 1−
2n

(
e− a + δ2d + 2δw1 + 2x0(δd + w2) + ax2

0 − 3−
4
z2

)
+ op(1).
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The calculation of the characteristic function ψ(t) of the theorem can best be under-
taken in two stages, the first involving the computation of the conditional expectation
E(eitx |x0). By a Taylor expansion of the exponential function, we get

E(eitx |x0) = eit(x0+δ cos θ)
(
1− 1−

4n
bt2(x0 + δ cos θ)2

− 1−
2n

it(x0 + δ cos θ)
(
e− a + δ2d− 3−

2
b + 2δdx0 + ax2

0

))
+ op(1).

However,
E(eitx0) = e−t2/2,

since x0 ∼ N(0, 1), and

E(xreitx0) = (−1)rHr(t)e−t2/2 for r = 1, 2, . . . ,

as can readily be seen from the definition (50) of the Hermite polynomials. Thus it is
a matter of simple and tedious algebra to verify the conclusion of the theorem, with
the proviso that the random variable denoted op(n−1) possesses an expectation. But
this follows from standard results on quadratic forms of normal variables.

Table 1. Performance of Two Approximations

D.F. Cornish-Fisher Values Solution of (53) True Values

α = .025 40 2.019 2.020 2.021

30 2.039 2.041 2.042

10 2.198 2.206 2.228

α = .005 40 2.699 2.694 2.704

30 2.740 2.731 2.750

10 3.068 2.972 3.169

–22–



Table 2. Case 1: No Heteroskedasticity

N. Obs. C.V. Stat. S.D. Kurt. 10% 5% 1%

50 1.004 OLS 1.022 3.16 10.91 (0.38) 5.36 (0.32) 1.01 (0.14)

3.01 HC0 1.214∗ 3.64∗ 16.71∗ (0.55) 10.31∗ (0.38) 3.67∗ (0.35)

HC1 1.165∗ 3.64∗ 15.20∗ (0.52) 9.22∗ (0.47) 3.17∗ (0.33)

HC2 1.113∗ 3.70∗ 13.43∗ (0.53) 7.60∗ (0.45) 2.64∗ (0.29)

HC3 1.024 3.79∗ 10.45 (0.52) 5.71 (0.41) 1.43 (0.23)

HCR0 1.023 2.45∗ 9.96 (0.52) 4.65 (0.41) 0.38∗ (0.13)

HCR1 0.992 2.45∗ 9.21 (0.51) 4.01 (0.40) 0.29∗ (0.12)

HCR2 0.988 2.45∗ 9.11 (0.51) 3.91∗ (0.39) 0.24∗ (0.11)

HCR3 0.989 2.58∗ 9.29 (0.51) 4.01 (0.40) 0.53∗ (0.15)

100 0.993 OLS 1.004 3.10 10.51 (0.31) 5.72∗ (0.25) 0.95 (0.16)

3.04 HC0 1.101∗ 3.34∗ 13.87∗ (0.46) 7.48∗ (0.39) 2.21∗ (0.26)

HC3 1.011 3.39∗ 10.80 (0.46) 5.68 (0.36) 1.43 (0.22)

HCR0 1.007 2.76 10.55 (0.48) 4.98 (0.37) 0.73 (0.17)

HCR1 0.992 2.76 10.04 (0.46) 4.57 (0.35) 0.68 (0.16)

200 1.011 OLS 1.014 2.88 10.11 (0.24) 4.99 (0.22) 0.89 (0.12)

2.89 HC0 1.067∗ 3.05 11.73∗ (0.41) 5.93∗ (0.33) 1.66∗ (0.23)

HC3 1.021 3.07 9.79 (0.39) 4.97 (0.31) 1.36 (0.19)

HCR0 1.024 2.79 10.48 (0.40) 4.72 (0.31) 0.93 (0.17)

HCR1 1.016 2.79 10.19 (0.40) 4.48 (0.31) 0.88 (0.16)

400 1.018 OLS 1.021 3.13 10.11 (0.19) 4.85 (0.21) 1.30 (0.12)

3.11 HC0 1.049∗ 3.28 10.97∗ (0.31) 6.04∗ (0.27) 1.47∗ (0.17)

HC3 1.027 3.29∗ 9.97 (0.31) 5.03 (0.27) 1.27 (0.16)

HCR0 1.025 3.08 10.22 (0.31) 4.88 (0.25) 0.97 (0.16)

HCR1 1.021 3.08 10.12 (0.31) 4.91 (0.26) 0.83 (0.14)

Numbers under “C.V.” are the standard deviation and kurtosis of the control variate.

Numbers under “S.D.” and “Kurt.” are the standard deviation and kurtosis of the test
statistics.

Numbers under “10%”, “5%”, and “1%” are the estimated rejection percentages at those
nominal levels. The standard errors of these estimates, which incorporate the information in
the control variate, are in parentheses.

An asterisk indicates that a quantity is significantly different at the 1% level from what it
should be if the statistic being analyzed were N(0, 1).

Number of replications = 2,000.
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Table 3. Case 2: Variance Proportional to Square of Omitted Variable

N. Obs. C.V. Stat. S.D. Kurt. 10% 5% 1%

50 0.985 OLS 1.326∗ 3.09 22.19∗ (0.46) 14.06∗ (0.38) 5.44∗ (0.34)

2.99 HC0 1.365∗ 3.87∗ 21.10∗ (0.65) 14.09∗ (0.60) 6.25∗ (0.46)

HC1 1.309∗ 3.87∗ 19.07∗ (0.65) 13.18∗ (0.58) 5.53∗ (0.44)

HC2 1.233∗ 4.02∗ 16.60∗ (0.64) 10.77∗ (0.57) 4.46∗ (0.42)

HC3 1.119∗ 4.19∗ 13.17∗ (0.62) 8.30∗ (0.54) 3.34∗ (0.37)

HCR0 1.039 2.42∗ 11.26 (0.61) 4.36 (0.43) 0.72 (0.19)

HCR1 1.008 2.42∗ 9.55 (0.59) 3.54∗ (0.40) 0.46∗ (0.15)

HCR2 1.002 2.43∗ 9.02 (0.58) 3.54∗ (0.40) 0.46∗ (0.15)

HCR3 1.003 2.58∗ 9.23 (0.59) 3.78∗ (0.41) 0.77 (0.19)

100 1.030 OLS 1.377∗ 3.15 22.03∗ (0.36) 14.65∗ (0.35) 5.40∗ (0.26)

3.18 HC0 1.228∗ 3.65∗ 15.53∗ (0.54) 9.77∗ (0.49) 4.27∗ (0.37)

HC3 1.104∗ 3.75∗ 11.77∗ (0.55) 6.99∗ (0.44) 2.86∗ (0.34)

HCR0 1.058∗ 2.65∗ 11.38 (0.55) 5.62 (0.43) 1.02 (0.22)

HCR1 1.042∗ 2.65∗ 10.91 (0.54) 5.31 (0.42) 0.70 (0.18)

200 0.996 OLS 1.324∗ 3.05 21.42∗ (0.31) 13.99∗ (0.29) 5.42∗ (0.23)

3.03 HC0 1.108∗ 3.29∗ 13.71∗ (0.51) 8.73∗ (0.45) 2.32∗ (0.27)

HC3 1.049∗ 3.31∗ 11.97∗ (0.49) 7.24∗ (0.42) 1.77∗ (0.23)

HCR0 1.031 2.77 11.69∗ (0.49) 6.00 (0.43) 0.76 (0.14)

HCR1 1.023 2.77 11.18 (0.49) 5.72 (0.42) 0.66∗ (0.13)

400 1.023 OLS 1.349∗ 3.03 21.83∗ (0.28) 13.74∗ (0.24) 5.40∗ (0.20)

3.03 HC0 1.073∗ 3.25 10.95 (0.37) 6.83∗ (0.34) 1.61∗ (0.20)

HC3 1.044∗ 3.25 10.23 (0.36) 5.84∗ (0.31) 1.49∗ (0.17)

HCR0 1.032 2.89 10.25 (0.38) 4.96 (0.30) 0.83 (0.14)

HCR1 1.028 2.89 10.07 (0.38) 4.99 (0.31) 0.76 (0.14)

Numbers under “C.V.” are the standard deviation and kurtosis of the control variate.

Numbers under “S.D.” and “Kurt.” are the standard deviation and kurtosis of the test
statistics.

Numbers under “10%”, “5%”, and “1%” are the estimated rejection percentages at those
nominal levels. The standard errors of these estimates, which incorporate the information in
the control variate, are in parentheses.

An asterisk indicates that a quantity is significantly different at the 1% level from what it
should be if the statistic being analyzed were N(0, 1).

Number of replications = 2,000.
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Table 4. Case 3: Structural Change in Variance

N. Obs. C.V. Stat. S.D. Kurt. 10% 5% 1%

50 0.996 OLS 1.220∗ 3.20 17.16∗ (0.47) 10.83∗ (0.44) 3.46∗ (0.24)

3.09 HC0 1.285∗ 3.63∗ 19.22∗ (0.63) 13.34∗ (0.57) 4.70∗ (0.37)

HC1 1.232∗ 3.63∗ 17.53∗ (0.62) 12.30∗ (0.55) 3.89∗ (0.32)

HC2 1.171∗ 3.77∗ 15.57∗ (0.60) 10.45∗ (0.54) 2.93∗ (0.31)

HC3 1.073∗ 3.96∗ 13.09∗ (0.60) 7.54∗ (0.51) 1.76∗ (0.26)

HCR0 1.052∗ 2.49∗ 12.77∗ (0.62) 4.94 (0.44) 0.68 (0.18)

HCR1 1.020 2.49∗ 10.90 (0.60) 4.23 (0.40) 0.43∗ (0.15)

HCR2 1.014 2.49∗ 10.32 (0.58) 3.95∗ (0.39) 0.39∗ (0.14)

HCR3 1.017 2.65∗ 10.36 (0.59) 4.60 (0.42) 0.68 (0.18)

100 1.030 OLS 1.232∗ 3.17 17.58∗ (0.37) 10.14∗ (0.35) 3.24∗ (0.22)

3.18 HC0 1.156∗ 3.36∗ 13.66∗ (0.48) 8.09∗ (0.44) 2.76∗ (0.30)

HC3 1.050∗ 3.43∗ 10.43 (0.47) 5.64 (0.41) 1.86∗ (0.24)

HCR0 1.040 2.72∗ 10.34 (0.51) 4.98 (0.40) 0.81 (0.19)

HCR1 1.025 2.72∗ 9.81 (0.51) 4.74 (0.38) 0.77 (0.19)

200 0.996 OLS 1.187∗ 3.03 16.70∗ (0.30) 10.54∗ (0.26) 3.19∗ (0.21)

3.03 HC0 1.057∗ 3.24 11.96∗ (0.45) 6.31∗ (0.35) 1.57∗ (0.21)

HC3 1.006 3.26 10.20 (0.44) 5.44 (0.31) 1.31 (0.21)

HCR0 1.000 2.85 10.14 (0.43) 4.84 (0.31) 1.05 (0.18)

HCR1 0.992 2.85 9.65 (0.42) 4.78 (0.31) 1.00 (0.17)

400 1.023 OLS 1.227∗ 3.05 16.73∗ (0.32) 9.76∗ (0.29) 2.84∗ (0.18)

3.03 HC0 1.073∗ 3.22 11.40∗ (0.38) 6.99∗ (0.32) 1.51∗ (0.19)

HC3 1.047∗ 3.22 10.33 (0.39) 5.90∗ (0.31) 1.35 (0.18)

HCR0 1.041 2.89 10.28 (0.39) 5.80 (0.31) 0.97 (0.17)

HCR1 1.037 2.89 9.88 (0.39) 5.59 (0.32) 0.97 (0.17)

Numbers under “C.V.” are the standard deviation and kurtosis of the control variate.

Numbers under “S.D.” and “Kurt.” are the standard deviation and kurtosis of the test
statistics.

Numbers under “10%”, “5%”, and “1%” are the estimated rejection percentages at those
nominal levels. The standard errors of these estimates, which incorporate the information in
the control variate, are in parentheses.

An asterisk indicates that a quantity is significantly different at the 1% level from what it
should be if the statistic being analyzed were N(0, 1).

Number of replications = 2,000.
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Table 5. Case 4: Structural Change in Variance; Different Regressors

N. Obs. C.V. Stat. S.D. Kurt. 10% 5% 1%

50 0.984 OLS 1.879∗ 2.52∗ 41.94∗ (0.52) 32.73∗ (0.56) 17.91∗ (0.54)

2.80 HC0 1.481∗ 3.43∗ 25.10∗ (0.82) 17.03∗ (0.73) 7.34∗ (0.56)

HC1 1.420∗ 3.43∗ 22.84∗ (0.80) 16.00∗ (0.72) 6.16∗ (0.52)

HC2 1.332∗ 3.63∗ 19.70∗ (0.78) 13.19∗ (0.69) 4.70∗ (0.47)

HC3 1.208∗ 3.86∗ 15.56∗ (0.73) 9.50∗ (0.63) 3.15∗ (0.39)

HCR0 1.074∗ 2.09∗ 9.82 (0.65) 3.79∗ (0.43) 0.60 (0.17

HCR1 1.042∗ 2.09∗ 8.42∗ (0.61) 3.08∗ (0.39) 0.35∗ (0.13)

HCR2 1.048∗ 2.08∗ 8.78 (0.62) 3.08∗ (0.39) 0.40∗ (0.14)

HCR3 1.059∗ 2.18∗ 9.22 (0.64) 3.85∗ (0.43) 0.55∗ (0.17)

100 0.968 OLS 1.834∗ 2.93 39.88∗ (0.50) 30.96∗ (0.52) 17.21∗ (0.41)

3.09 HC0 1.211 ∗ 3.55∗ 17.02∗ (0.61) 10.81∗ (0.54) 3.73∗ (0.40)

HC3 1.087∗ 3.64∗ 12.91∗ (0.58) 7.55∗ (0.51) 2.18∗ (0.31)

HCR0 1.013 2.46∗ 10.72 (0.56) 4.16 (0.43) 0.40∗ (0.14)

HCR1 0.997 2.46∗ 10.05 (0.56) 3.50∗ (0.40) 0.35∗ (0.13)

200 0.990 OLS 1.857∗ 2.93 38.22∗ (0.41) 30.35∗ (0.43) 17.52∗ (0.40)

3.16 HC0 1.108∗ 3.00 14.19∗ (0.54) 8.59∗ (0.45) 2.48∗ (0.29)

HC3 1.049∗ 3.01 12.28∗ (0.52) 7.41 ∗ (0.44) 1.71∗ (0.26)

HCR0 1.014 2.56∗ 10.75 (0.50) 5.70 (0.40) 0.24∗ (0.11)

HCR1 1.006 2.56∗ 10.49 (0.49) 5.02 (0.39) 0.24∗ (0.11)

400 1.002 OLS 1.886∗ 2.91 37.73∗ (0.30) 29.86∗ (0.32) 16.55∗ (0.30)

2.90 HC0 1.077∗ 3.23 11.84∗ (0.45) 6.95∗ (0.39) 1.79∗ (0.20)

HC3 1.047∗ 3.23 10.88 (0.43) 6.44∗ (0.40) 1.58∗ (0.20)

HCR0 1.025 2.85 10.65 (0.44) 6.04∗ (0.39) 0.95 (0.19)

HCR1 1.022 2.85 10.60 (0.44) 5.73 (0.38) 0.85 (0.17)

Numbers under “C.V.” are the standard deviation and kurtosis of the control variate.

Numbers under “S.D.” and “Kurt.” are the standard deviation and kurtosis of the test
statistics.

Numbers under “10%”, “5%”, and “1%” are the estimated rejection percentages at those
nominal levels. The standard errors of these estimates, which incorporate the information in
the control variate, are in parentheses.

An asterisk indicates that a quantity is significantly different at the 1% level from what it
should be if the statistic being analyzed were N(0, 1).

Number of replications = 2,000.
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Table 6. Performance of Edgeworth Approximations: Case 1

Sample Size: 50 100 200 400

Unrestricted residuals (HC0)

Standard Deviation: Predicted 1.153 1.090 1.049 1.025

Estimated (S.E.) 1.214 (0.019) l.101 (0.017) 1.067 (0.017) 1.049 (0.017)

10% Critical Value: Predicted 1.908 1.797 1.725 1.686

95% Conf. Int. [1.911, 2.061] [1.769, 1.892] [1.661, 1.799] [1.629, 1.794]

5% Critical Value: Predicted 2.283 2.158 2.068 2.016

95% Conf. Int. [2.275, 2.527] [2.101, 2.342] [1.978, 2.191] [1.983, 2.170]

1% Critical Value: Predicted 2.998 2.867 2.749 2.670

95% Conf. Int. [2.967, 3.737] [2.776, 3.248] [2.586, 3.080] [2.669, 3.171]

Rej. Frequencies: True coefficients

10% Level (S.E.) 11.15 (0.51) 10.70 (0.45) 9.64 (0.38) 9.97 (0.31)

5% Level (S.E.) 5.96 (0.38) 5.05 (0.33) 4.77 (0.31) 4.92 (0.27)

1% Level (S.E.) 1.31 (0.23) 1.17 (0.19) 1.04 (0.13) 1.14 (0.15)

Rej. Frequencies: Est. coefficients

10% Level (S.E.) 14.38∗ (0.55) 11.77∗ (0.49) 9.94 (0.39) 9.98 (0.33)

5% Level (S.E.) 8.98∗ (0.49) 6.63∗ (0.39) 5.31 (0.32) 5.11 (0.27)

1% Level (S.E.) 3.81∗ (0.36) 2.21∗ (0.26) 1.56∗ (0.22) 1.37 (0.15)

Restricted residuals (HCR0)

Standard Deviation: Predicted 1.018 1.013 1.008 1.004

Estimated (S.E.) 1.023 (0.016) 1.007 (0.016) 1.024 (0.016) 1.025 (0.016)

10% Critical Value: Predicted 1.684 1.672 1.660 1.653

95% Conf. Int. [1.600, 1.724] [1.611, 1.731] [1.610, 1.725] [1.600, 1.752]

5% Critical Value: Predicted 1.945 1.960 1.962 1.962

95% Conf. Int. [1.871, 2.004] [1.880, 2.019] [1.888, 2.041] [1.936, 2.098]

1% Critical Value: Predicted 2.369 2.476 2.527 2.552

95% Conf. Int. [2.214, 2.543] [2.338, 2.701] [2.448, 2.788] [2.558, 2.865]

Rej. Frequencies: True coefficients

10% Level (S.E.) 9.56 (0.52) 9.99 (0.46) 10.10 (0.40) 10.02 (0.31)

5% Level (S.E.) 4.82 (0.42) 4.90 (0.37) 4.72 (0.31) 4.88 (0.25)

1% Level (S.E.) 0.79 (0.19) 0.87 (0.19) 1.14 (0.17) 1.26 (0.19)

Rej. Frequencies: Est. coefficients

10% Level (S.E.) 9.56 (0.52) 9.99 (0.47) 10.12 (0.41) 9.88 (0.31)

5% Level (S.E.) 5.30 (0.43) 5.67 (0.39) 4.96 (0.31) 5.28 (0.26)

1% Level (S.E.) 1.20 (0.23) 1.62∗ (0.23) 1.40 (0.20) 1.42 (0.18)
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Table 7. Performance of Edgeworth Approximations: Case 2

Sample Size: 50 100 200 400

Unrestricted residuals (HC0)

Standard Deviation: Predicted 1.218 1.146 1.084 1.045

Estimated (S.E.) 1.365 (0.022) 1.228 (0.019) 1.108 (0.018) 1.073 (0.017)

10% Critical Value: Predicted 2.009 1.895 1.785 1.718

95% Conf. Int. [2.117, 2.289] [1.900, 2.086] [1.771, 1.953] [1.664, 1.849]

5% Critical Value: Predicted 2.375 2.269 2.144 2.059

95% Conf. Int. [2.524, 2.732] [2.358, 2.664] [2.131, 2.306] [2.020, 2.206]

1% Critical Value: Predicted 3.066 2.986 2.849 2.735

95% Conf. Int. [3.232, 3.789] [3.171, 3.712] [2.710, 3.144] [2.670, 3.182]

Rej. Frequencies: True coefficients

10% Level (S.E.) 13.37∗ (0.59) 10.90 (0.52) 10.99 (0.48) 9.91 (0.36)

5% Level (S.E.) 8.08∗ (0.52) 6.28∗ (0.42) 5.88 (0.40) 4.96 (0.30)

1% Level (S.E.) 3.50∗ (0.38) 1.82∗ (0.27) 1.12 (0.18) 0.91 (0.15)

Rej. Frequencies: Est. coefficients

10% Level (S.E.) 17.06∗ (0.65) 13.26∗ (0.56) 11.99∗ (0.50) 9.91 (0.36)

5% Level (S.E.) 12.08∗ (0.58) 8.65∗ (0.49) 7.62∗ (0.43) 5.73 (0.31)

1% Level (S.E.) 6.64∗ (0.50) 3.91∗ (0.38) 2.32∗ (0.27) 1.54∗ (0.18)

Restricted residuals (HCR0)

Standard Deviation: Predicted 1.034 1.031 1.019 1.011

Estimated (S.E.) 1.039 (0.016) 1.058 (0.017) 1.031 (0.016) 1.032 (0.016)

10% Critical Value: Predicted 1.708 1.701 1.680 1.665

95% Conf. Int. [1.633, 1.717] [1.681, 1.807] [1.657, 1.808] [1.623, 1.776]

5% Critical Value: Predicted 1.939 1.976 1.977 1.971

95% Conf. Int. [1.830, 1.979] [1.957, 2.117] [1.955, 2.088] [1.915, 2.083]

1% Critical Value: Predicted 2.276 2.446 2.520 2.551

95% Conf. Int. [2.284, 2.601] [2.423, 2.688] [2.371, 2.600] [2.489, 2.830]

Rej. Frequencies: True coefficients

10% Level (S.E.) 9.01 (0.58) 10.39 (0.54) 10.69 (0.48) 9.82 (0.37)

5% Level (S.E.) 4.63 (0.45) 5.49 (0.43) 5.72 (0.42) 4.99 (0.31)

1% Level (S.E.) 1.57 (0.27) 1.34 (0.25) 1.06 (0.16) 0.91 (0.15)

Rej. Frequencies: Est. coefficients

10% Level (S.E.) 10.02 (0.60) 10.63 (0.54) 10.69 (0.48) 9.73 (0.37)

5% Level (S.E.) 4.88 (0.45) 6.27∗ (0.44) 6.25∗ (0.42) 5.18 (0.31)

1% Level (S.E.) 1.95∗ (0.30) 2.19∗ (0.31) 2.04∗ (0.23) 1.63∗ (0.20)
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Table 8. Performance of Edgeworth Approximations: Case 3

Sample Size: 50 100 200 400

Unrestricted residuals (HC0)

Standard Deviation: Predicted 1.190 1.119 1.066 1.035

Estimated (S.E.) 1.285 (0.020) 1.156 (0.018) 1.057 (0.017) 1.073 (0.017)

10% Critical Value: Predicted 1.969 1.848 1.755 1.702

95% Conf. Int. [2.065, 2.221] [1.823, 1.995] [1.670, 1.823] [1.698, 1.856]

5% Critical Value: Predicted 2.344 2.219 2.107 2.037

95% Conf. Int. [2.427, 2.619] [2.176, 2.409] [2.027, 2.228] [2.047, 2.189]

1% Critical Value: Predicted 3.052 2.937 2.804 2.704

95% Conf. Int. [3.181, 4.223] [2.954, 3.496] [2.600, 3.160] [2.631, 2.989]

Rej. Frequencies: True coefficients

10% Level (S.E.) 13.20∗ (0.56) 9.99 (0.47) 9.93 (0.42) 9.89 (0.40)

5% Level (S.E.) 7.50∗ (0.49) 5.33 (0.39) 4.92 (0.28) 5.40 (0.31)

1% Level (S.E.) 1.61 (0.25) 1.45 (0.21) 1.12 (0.18) 1.13 (0.16)

Rej. Frequencies: Est. coefficients

10% Level (S.E.) 16.67∗ (0.63) 11.73∗ (0.50) 10.43 (0.45) 10.28 (0.39)

5% Level (S.E.) 12.25∗ (0.58) 6.56∗ (0.42) 5.75 (0.34) 5.97∗ (0.32)

1% Level (S.E.) 5.88∗ (0.47) 2.95∗ (0.32) 1.50 (0.23) 1.43 (0.19)

Restricted residuals (HCR0)

Standard Deviation: Predicted 1.037 1.027 1.016 1.009

Estimated (S.E.) 1.052 (0.017) 1.040 (0.016) 1.000 (0.016) 1.041 (0.016)

10% Critical Value: Predicted 1.710 1.694 1.674 1.661

95% Conf. Int. [1.672, 1.753] [1.635, 1.758] [1.595, 1.696] [1.649, 1.815]

5% Critical Value: Predicted 1.965 1.981 1.976 1.970

95% Conf. Int. [1.906, 2.020] [1.914, 2.097] [1.886, 2.066] [1.980, 2.112]

1% Critical Value: Predicted 2.367 2.491 2.540 2.560

95% Conf. Int. [2.358, 2.626] [2.397, 2.775] [2.335, 2.723] [2.497, 2.712]

Rej. Frequencies: True coefficients

10% Level (S.E.) 10.03 (0.58) 9.29 (0.51) 9.13 (0.41) 9.91 (0.39)

5% Level (S.E.) 4.86 (0.44) 4.89 (0.39) 4.78 (0.31) 5.59 (0.32)

1% Level (S.E.) 1.37 (0.25) 0.96 (0.21) 1.10 (0.18) 0.97 (0.17)

Rej. Frequencies: Est. coefficients

10% Level (S.E.) 11.49 (0.61) 9.57 (0.51) 9.14 (0.42) 9.86 (0.38)

5% Level (S.E.) 5.88 (0.47) 5.28 (0.41) 4.95 (0.30) 5.89∗ (0.31)

1% Level (S.E.) 1.69∗ (0.26) 1.69∗ (0.25) 1.36 (0.21) 1.33 (0.18)
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Table 9. Performance of Edgeworth Approximations: Case 4

Sample Size: 50 100 200 400

Unrestricted residuals (HC0)

Standard Deviation: Predicted 1.230 1.167 1.099 1.054

Estimated (S.E.) 1.481 (0.023) 1.211 (0.019) 1.108 (0.017) 1.077 (0.017)

10% Critical Value: Predicted 2.002 1.924 1.811 1.734

95% Conf. Int. [2.281, 2.460] [1.900, 2.091] [1.760, 1.927] [1.679, 1.833]

5% Critical Value: Predicted 2.336 2.286 2.167 2.075

95% Conf. Int. [2.687, 2.964] [2.371, 2.526] [2.162, 2.360] [2.067, 2.262]

1% Critical Value: Predicted 2.967 2.977 2.861 2.748

95% Conf. Int. [2.142, 4.417] [2.996, 3.701] [2.760, 3.058] [2.692, 3.123]

Rej. Frequencies: True coefficients

10% Level (S.E.) 16.58∗ (0.73) 11.30 (0.55) 10.67 (0.49) 10.39 (0.44)

5% Level (S.E.) 10.62∗ (0.65) 6.25∗ (0.47) 6.54∗ (0.41) 5.87 (0.37)

1% Level (S.E.) 4.01∗ (0.43) 1.57 (0.27) 1.10 (0.22) 1.24 (0.19)

Rej. Frequencies: Est. coefficients

10% Level (S.E.) 19.85∗ (0.77) 14.51∗ (0.59) 11.52∗ (0.52) 10.54 (0.45)

5% Level (S.E.) 14.97∗ (0.72) 8.94∗ (0.52) 7.62∗ (0.44) 6.44∗ (0.40)

1% Level (S.E.) 7.70∗ (0.57) 4.65∗ (0.41) 2.75∗ (0.30) 1.79∗ (0.19)

Restricted residuals (HCR0)

Standard Deviation: Predicted 1.035 1.033 1.021 1.011

Estimated (S.E.) 1.074 (0.017) 1.013 (0.016) 1.014 (0.016) 1.025 (0.016)

10% Critical Value: Predicted 1.712 1.706 1.684 1.667

95% Conf. Int. [1.592, 1.680] [1.608, 1.708] [1.603, 1.752] [1.606, 1.735]

5% Critical Value: Predicted 1.914 1.960 1.968 1.966

95% Conf. Int. [1.780, 1.940] [1.840, 1.974] [1.906, 2.053] [1.946, 2.112]

1% Critical Value: Predicted 2.179 2.362 2.467 2.522

95% Conf. Int. [2.207, 2.579] [2.171, 2.509] [2.318, 2.505] [2.438, 2.722]

Rej. Frequencies: True coefficients

10% Level (S.E.) 7.98∗ (0.60) 8.85 (0.55) 10.21 (0.50) 10.29 (0.44)

5% Level (S.E.) 4.38 (0.46) 4.16 (0.43) 5.55 (0.39) 5.73 (0.38)

1% Level (S.E.) 1.64 (0.28) 0.86 (0.21) 0.62 (0.17) 1.00 (0.19)

Rej. Frequencies: Est. coefficients

10% Level (S.E.) 8.29∗ (0.61) 9.30 (0.56) 10.21 (0.50) 10.24 (0.44)

5% Level (S.E.) 4.75 (0.47) 4.76 (0.45) 6.36∗ (0.42) 6.05∗ (0.39)

1% Level (S.E.) 1.40 (0.26) 1.28 (0.25) 1.63 (0.25) 1.74∗ (0.20)
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