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Abstract

We examine several modified versions of the heteroskedasticity-consistent covariance
matrix estimator of Hinkley (1977) and White (1980). On the basis of sampling
experiments which compare the performance of quasi t statistics, we find that one
estimator, based on the jackknife, performs better in small samples than the rest. We
also examine finite-sample properties using modified critical values based on Edge-
worth approximations, as proposed by Rothenberg (1988). In addition, we compare
the power of several tests for heteroskedasticity and find that it may be wise to em-
ploy the jackknife heteroskedasticity-consistent covariance matrix even in the absence
of detected heteroskedasticity.
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1. Introduction

The linear regression model is extensively used by applied econometricians. Together
with its numerous generalizations, it constitutes the foundation of most empirical
work in economics. Despite this fact, little is known about properties of inferences
made from this model when standard assumptions are violated. In particular, classi-
cal techniques require one to assume that the error terms have a constant variance.
This assumption is often not very plausible. Nevertheless, a way of consistently esti-
mating the variance-covariance matrix of ordinary least squares estimates in the face
of heteroskedasticity of known form is available; see Eicker (1963), Hinkley (1977),
and White (1980). This heteroskedasticity-consistent covariance matrix estimator
allows one to make valid inferences provided the sample size is sufficiently large.

Unfortunately, it is not at all obvious what ‘sufficiently large’ means in practice, and
it is well known that statistics with identical large sample properties can perform
very differently in samples of small or modest size. In this paper, we examine some
estimators which are asymptotically equivalent to the heteroskedasticity-consistent
covariance matrix estimator alluded to above, but which may be expected to have
superior finite sample properties. Since covariance matrix estimators are most fre-
quently used to construct test statistics, we focus on the behavior of quasi t statistics
constructed using these different estimators. Using sampling experiments, we find
that all the new estimators outperform the original one, and that one of them, based
on the jackknife, consistently outperforms the other two. These experiments also
show that, in some circumstances, the original estimator can be highly misleading,
sometimes even more misleading than the conventional OLS covariance matrix which
ignores the possibility of heteroskedasticity.

We next consider an alternative approach due to Rothenberg (1988), in which the
original heteroskedasticity-consistent estimator is used in conjunction with modified
critical values based on Edgeworth approximations. This approach appears to work
well, especially when the sample is reasonably large. Finally, we consider the related
question of how well alternative tests for heteroskedasticity perform in the environ-
ments studied here. We find that the ‘portmanteau’ test of White (1980) generally
performs well. However, the evidence also suggests that it may be wise to use a
heteroskedasticity-consistent covariance matrix estimator even in the absence of de-
tected heteroskedasticity.

The structure of the paper is as follows. In section 2, we describe the problem
and the various estimators that will be examined. In sections 3 and 4, we describe
the experiments to be performed and present the results of those experiments. In
section 5, we discuss the use of modified critical values based on Edgeworth approx-
imations. Finally, in section 6, we examine the performance of alternative tests for
heteroskedasticity.
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2. Statement of the problem
In this paper, we deal exclusively with the linear regression model

y = Xβ + u, (1)

where y is an n × 1 vector of observations on a dependent variable, X is an n × k
matrix of observations on independent variables, assumed to be of full rank, and u
is an n × 1 vector of observations on an error term with mean zero. The ordinary
least squares estimator for this model is

β̂ = (X>X)−1X>y. (2)

Inferences about β may be based on the fact that β̂ − β has mean vector zero and
covariance matrix

(X>X)−1X>ΩX(X>X)−1, (3)

where E(uu>) = Ω.

Conventionally, it is assumed that E(uu>) = σ2In. Thus expression (3) simplifies to
σ2(X>X)−1, which can be conveniently estimated as

σ̂2(X>X)−1, σ̂2 =
û>û
n− k

, û =
(
In −X(X>X)−1X>)

y. (4)

If X is non-stochastic and u is normally distributed, exact inferences in finite samples
can then be based on the t or F distributions. Otherwise, (4) serves as the basis for
valid asymptotic inference.

The assumption that the errors are homoskedastic is often implausible. Instead, one
may assume that E(u2

t ) = σ2
t , where σt varies in some unknown fashion over observa-

tions. A heteroskedasticity-consistent covariance matrix estimator which allows one
to estimate (3) consistently under general conditions is

(X>X)−1X>Ω̂X(X>X)−1, (5)

where
Ω̂ = diag(û2

1, û
2
2, . . . , û

2
n);

see White (1980).

The estimator (5), which we shall refer to henceforth as HC, takes no account of the
well-known fact that OLS residuals tend to be ‘too small’. One simple way to modify
HC is to use a degrees of freedom correction similar to the one conventionally used
to obtain unbiased estimates of σ2. This yields the modified estimator

n

n− k
(X>X)−1X>Ω̂X(X>X)−1, (6)
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which was suggested by Hinkley (1977). We shall refer to this estimator as HC1.

The degrees of freedom adjustment in HC1 is not the only way to compensate for
the fact that the OLS residuals tend to underestimate the true errors. If there is no
heteroskedasticity, it is easily seen that

E(û2
t ) = (1− ktt)σ2, (7)

where ktt is the tth diagonal element of the matrix X(X>X)−1X>. Thus Horn, Horn,
and Duncan (1975) suggest using

σ̃t =
û2

t

1− ktt
(8)

as an ‘almost unbiased’ estimator for σt. Following their approach, we propose the
estimator

(X>X)−1X>Ω̃X(X>X)−1, (9)

where
Ω̃ = diag(σ̃2

1 , σ̃2
2 , . . . , σ̃2

n),

as an alternative way to estimate (3) consistently. We shall refer to this estimator
as HC2. It is immediate from (7) that HC2 will be unbiased when the ut are in fact
homoskedastic. In contrast, as Hinkley (1977) points out, HC1 will only be unbiased
in the special case of a ‘balanced’ experimental design, for which ktt = k/n for all t.

All of these covariance matrix estimators are intimately related to what statisticians
refer to as the ‘jackknife’. Efron (1982, p. 19) points out that what is essentially HC
can be obtained by the infinitesimal jackknife method. Hinkley (1977) derived HC1

as the covariance matrix of what he called the ‘weighted jackknife’ estimator, and
it would have been possible to derive HC2 using a very similar argument, although
Hinkley did not in fact do so. All of this suggests that the ordinary jackknife (see
Efron, 1982) might provide another modified heteroskedasticity-consistent covariance
matrix estimator, and indeed that turns out to be the case.

The basic idea of the jackknife is to recompute the estimates of a model n times,
each time dropping one of the observations, and then to use the variability of the
recomputed estimates as an estimate of the variability of the original estimator. For
more details, see Efron (1982). Let β̂(t) denote the OLS estimate of β based on all
observations except the tth. It is easily shown that

β̂(t) = β̂ − (X>X)−1Xt
>u∗t , (10)

where Xt denotes the tth row of X and u∗t = ût/(l − ktt). Then, from expression
(3.13) of Efron (1982), the jackknife estimate of the covariance matrix of β̂ is given
by the k × k matrix
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n− 1
n

n∑
t=1

(
β̂(t) − 1−

n

n∑
s=1

β̂(s)

)(
β̂(t) − 1−

n

n∑
s=1

β̂(s)

)>
. (11)

After considerable manipulation,1 it can be shown that (11) reduces to

n− 1
n

(X>X)−1
(
X>Ω∗X − 1−

n
X>u∗u∗>X

)
(X>X)−1 (12)

where Ω∗ is an n×n diagonal matrix with diagonal elements of u∗2t and off-diagonal
elements of zero, and u∗ is a vector of the u∗t . We shall refer to this covariance matrix
estimator as HC3. It is evident that HC3 is asymptotically equivalent to HC, HC1,
and HC2, since 1/n times the middle factor clearly converges to 1/n times X>ΩX.

As Messer and White (1984) have shown, it is easy to trick a conventional regression
package which is capable of IV estimation into producing HC or HC1. If the ktt can
be obtained and used to compute the σ̃t, their technique can also be used to make
a regression package produce HC2. Calculating HC3 will inevitably be a little more
difficult. Almost all the calculations can, however, be performed with a regression
package, since (12) can be rewritten as

n− 1
n

(X>X)−1X>Ω∗X(X>X)−1 − n− 1
n2

γ̂γ̂>, (13)

where γ̂ = (X>X)−1X>u∗. It is tempting to omit the factor (n− 1)/n in HC3. The
effect of this omission will normally be very small. Moreover, experimental results
(see below) suggest that this small effect would normally be in the right direction.
because we did not know that when the experiments were designed, however, we
retained the factor (n− 1)/n in those experiments.

Since covariance matrix estimators are usually used to compute test statistics, we
focus our experiments directly on the behavior of such test statistics. In particular,
we examine the small-sample performance of quasi t statistics to test hypotheses that
particular elements of β assume specified values. For related evidence on how well
estimators such as HC and HC1 approximate the true covariance matrix directly, see
Cragg (1983) and Nicholls and Pagan (1983).

One important property of these quasi t statistics may be noted immediately. When
the hypothesis being tested is true, the numerator of such a statistic does not depend
on β, and it is homogeneous of degree one in σ. The covariance matrices (4), (6),
(9), and (12) also do not depend on β, and they are homogeneous of degree two in σ.
Thus these test statistics themselves do depend on either β or σ. They only depend
on the Xt and the ut, which may be normalized to have arbitrary variance. Since

1 When we wrote earlier versions of this paper, we were under the false impression that
the jackknife covariance estimator is computationally too complicated to be worth
studying. We are extremely grateful to an anonymous referee for pointing out that
it can be expressed in the form of (12).
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the exact finite sample properties of these test statistics are otherwise quite difficult
to obtain analytically, we investigate these properties using sampling experiments.

3. Design of the experiments

In all of our experiments, we utilized the following model:

yt = β0 + β1X1t + β2X2t + ut, (14)

where n = 50, 100, or 200. For the regressors X1 and X2, we used the rate of growth
of real U.S. disposable income and the U.S. treasury bill rate, respectively, seasonally
adjusted for 1963-3 to 1975-4. The dependent variable can perhaps be thought of
as a savings rate. These fifty observations were then replicated the required number
of times when more than fifty observations were used. We chose the regressors in
this way because we wanted them to be representative of real data, and so that the
matrix X>X/n would not change as the sample size n was changed. Plots of X1 and
X2 against time are shown in Figure 1.
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Figure 1. Regressors used in sampling experiments

There were six sets of experiments, in each of which the ut were chosen differently.
In the first set, referred to as case 1, the ut were NID(0, σ2), so that the OLS t stat-
istics are appropriate. The object here is to see how costly it is to use the various
heteroskedasticity-consistent estimators when there is in fact no heteroskedasticity.
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In the next two sets of experiments (cases 2 and 3), the variance of ut changed
abruptly, as if due to some sort of structural change. The errors ut were chosen as
N(0, σ2) for t = 1, . . . , 25, t = 51, . . . , 75, t = 101, . . . , 125, and t = 151, . . . , 175, and
as N(0, α2σ2) for the remaining observations. The structural change parameter α
was chosen to be 2 in case 2 and 4 in case 3. Notice that the pattern of structural
change we used is equivalent to replicating the first 25 observations as many times as
necessary (1, 2, or 4, depending on whether n = 50, 100, or 200), with the ut having
variance σ2, and replicating the second 25 observations as many times as necessary,
with the ut having variance α2σ2. This pattern was chosen so that increasing the
sample size from 50 to 100 or 200 would not change the relationship between the ut

and the regressors.

In the final three sets of experiments (cases 4, 5 and 6), the variance of ut varied be-
cause the βj varied randomly. Specifically, the model (14) was modified by assuming
that

βj = β̄j + vjt, vjt ∼ N(0, ω2
j ), j = 0, 1, 2. (15)

Together with (14), the random coefficient specification (15) implies that

yt = β̄0 + β̄1X1t + β̄2X2t + ut + v0t + v1tX1t + v2tX2t. (16)

Assuming that ut and the vjt are independent of each other, the variance of the error
term in (16) is

σ2 + ω2
0 + X2

1tω
2
1 + X2

2tω
2
2 = σ2

0(1 + X2
1tγ

2
1 + X2

2tγ
2
2). (17)

Without loss of generality (since the statistics we will be studying are independent
of β) we normalized X1t and X2t so that

∑
Xit = 1 for i = 1, 2. Then, for case 4,

we chose γ1 = 1, γ2 = 1, for case 5 we chose γ1 = 3, γ2 = 1, and for case 6 we chose
γ1 = 1, γ2 = 3.

Each experiment involved 2000 replications, and there were eighteen experiments in
all (six cases for each of n = 50, n = 100, and n = 200).2 For each of the βi,
we calculated four test statistics of the hypothesis that βi equals its value. These
statistics, denoted OLS, HC1, HC2, and HC3, utilize the covariance matrices after
which they are named. In addition, we calculated a control variate which utilizes the
true covariance matrix (3) and is thus exactly N(0, 1).

For each experiment, we calculated the sample mean, standard deviation, skewness,
and kurtosis (over the 2000 replications) of each of these test statistics. There was
nothing in the experimental results to suggest that any of them had a non-zero
mean, or that their distributions were not symmetric. In the tables, therefore, we
only report the standard deviation (under ‘S.D.’) and the kurtosis (under ‘Kurt.’),
which should be one and three, respectively, if the test statistic in question is N(0, 1).

2 In fact, we conducted six additional experiments in which n = 150, but the results
were predictable given those for n = 100 and n = 200 and are therefore not reported.
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If the standard deviation were in fact unity, the sample standard deviation would,
assuming normality, have a variance of 1/4000. The number reported under ‘Kurt.’
is a standard test statistic for kurtosis, namely, the estimated fourth moment about
the mean, divided by the square of the estimated second moment.

Although the moments of the sample distributions of the test statistics are of interest,
they do not directly tell us how often we will be led to make invalid inferences by
using test statistics whose distributions differ from N(0, 1). It is more interesting to
ask what proportion of the time each of the test statistics exceeds certain critical
values. The critical values we chose were the 5% and 1% levels; absolute critical
values for the standard normal at these levels are 1.960 and 2.576, respectively.

The obvious way to estimate these rejection frequencies is to use the estimator
q̂ = R/N , where R is the observed number of rejections and N is the number of
replications (here 2000). A consistent estimate of the variance of this estimator is
q̂(1 − q̂)/N . Since all of the test statistics have the same numerator as the control
variate, they should all be highly correlated with it, and it should therefore be pos-
sible to obtain more accurate estimates than q̂. Davidson and MacKinnon (1981)
have proposed a simple technique for doing so, which we utilize here. If the con-
trol variate has exceeded its critical value more than the expected number of times,
the estimated rejection frequency for the statistic in question will be reduced by an
amount that depends on how closely it and the control variate are correlated; the
reverse will be true if the control variate has exceeded its critical value less than the
expected number of times. The variance of the resulting estimate will depend on the
amount of correlation between the control variate and the other statistic, and it will
never exceed q(1− q)/N , asymptotically. For details, see Davidson and MacKinnon
(1981).

The fact that we estimated rejection frequencies in this way should be borne in
mind when reading the tables. The same estimated rejection frequency may have
quite different standard errors in different cases, because the correlation between the
control variate and the test statistic may be different. This means that the gain from
utilizing this technique varies from case to case. In some cases, the standard errors
reported in the tables are more than sixty percent below what they would have been
if q̂ had been used, equivalent to using 12,000 or more replications; in others, the
standard errors are only about twenty percent lower, equivalent to using less than
3000 replications. These are asymptotic standard errors, but the very large number
of replications should endure their validity.

4. Results of the experiments

The results of twelve of the eighteen experiments just discussed are presented in
tables 1 through 4. Cases 2 and 4 are omitted to save space; the results for case 2
were similar to those for case 3, but not as pronounced, while the results for case 4
were reasonably similar to those for cases 5 and 6. An asterisk indicates that the
quantity in question differs significantly at the one per cent level from what it should
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be if the test statistic were really N(0, 1). The numbers under ‘C.V.’ are the standard
deviation and kurtosis of the control variate. The tables largely speak for themselves,
but we will discuss a few points of interest.

The most obvious result in tables 1 through 4 is that almost all the quasi t statistics
have standard deviations greater than unity, so that rejection frequencies of tests
based on them almost always exceed the nominal size of the tests. As one would
expect, these standard deviations tend to decline as the sample size increases. They
also vary systematically with the coefficient being estimated, the quasi t statistics
for β1 tending to have much larger variances than those for β0 or β2. The pattern of
heteroskedasticity has a major impact on the distributions of the quasi t statistics.
They tend to be closest to their asymptotic N(0, 1) distribution when there is no
heteroskedasticity, in table 1.

In every single case, the standard deviation of the quasi t statistic based on HC1

exceeded that for HC2, which in turn exceeded that for HC3. Since there was certainly
no tendency for HC3 to have too small a variance, this implies that HC3 is the
covariance matrix estimator of choice. The difference between HC1 and HC3 is often
striking, and the difference between HC and HC3 would, of course, be even more
striking. From table 1, it is clear that using HC or HC1 when there is in fact no
heteroskedasticity and the sample size is small could easily lead to serious errors of
inference, while using HC3 is almost as reliable as using OLS.

Even HC3 did not always perform well when the sample size was small and there
was substantial heteroskedasticity. Its worst performance was in case 5 (table 3) for
β1 when n = 50. The standard deviation of the HC3 t statistic is 1.177 here, and
it would incorrectly reject the null hypothesis 3.1% of the time at the nominal 1%
level. But although HC3 performs poorly here, it performs much better than its
competitors, since HC2 would reject the null 4.7% of the time, HC1 would reject it
6.8% of the time, and the usual OLS t statistic would reject it 27.2% of the time.

Thus, subject to the usual qualifications about results of sampling experiments, those
in tables 1 to 4 suggest the following conclusions:

1. Among the heteroskedasticity-consistent estimators, HC3 is clearly the procedure
of choice.

2. The usual OLS covariance estimator can be very seriously misleading in the
presence of heteroskedasticity. When it is, HC3 is also likely to be misleading if
the sample size is small, but much less so than OLS.

3. When there is no heteroskedasticity, all the HC estimators are less reliable than
OLS, but HC3 does not seem to be much less reliable.

5. An alternative approach

What we have done so far is to modify the heteroskedasticity-consistent covariance
matrix estimator so as to obtain test statistics whose finite sample distributions are
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closer to their asymptotic ones. This is not the only approach to making more ac-
curate inferences in finite samples. An alternative approach, which is theoretically
appealing but technically demanding, would be to use the original test statistic based
on HC in conjunction with size-corrected critical values. The latter may be obtained
by the use of Edgeworth expansions, in this case second-order asymptotic approxi-
mations to the distribution of the test statistic.

In a recent paper, Rothenberg (1988) has applied this technique to exactly the prob-
lem that interests us in this paper. His fundamental result is that

t′α = tα

(
1 +

(
c1(1 + t2α) + c2(1− t2α) + c3

)
/2n

)
, (18)

where tα is a level α critical value for the normal distribution and t′α is an adjusted
level α critical value. The parameters c1, c2, and c3 are constants which depend
in a complicated way on the regressors, the pattern of heteroskedasticity, and the
coefficient (or linear combination of coefficients) for which the test is to be conducted.
In practice, the parameters c1 through c3 will have to be estimated using the least
squares residuals, since the pattern of heteroskedasticity is unknown.

We conducted a number of experiments to see how this approach of using HC with
adjusted critical values compares with the much simpler approach of using HC3

with the usual asymptotic critical values. We looked only at cases 2 and 4, the
ones which were not reported in tables 1 to 4. Case 2 was chosen because the
heteroskedasticity was relatively mild in that case, and case 4 was chosen because it
was representative of all the random coefficient cases. Results for both these cases for
samples of size 50, 100, 200, and 400 are shown in table 5, which tabulates rejection
frequencies for tests which are nominally at the 5% and 1% levels. ‘Edge-E’ shows
the rejection frequencies when c1, c2, and c3 are estimated from the data, as they
would have to be in practice, while ‘Edge-T’ shows the rejection frequencies when the
true values of those parameters are used. All results are based on 10,000 replications,
so experimental error should be very small.3

The results for Edge-T show that Rothenberg’s Edgeworth expansions are generally
quite good, and they become very good indeed as the sample size gets past 100. If
anything, the corrected critical values tend to be too conservative. Unfortunately,
these good results usually do not carry over to Edge-E, for which the correct critical
values are almost always not conservative enough. When the sample size is 50, HC3

always yields more accurate inferences than Edge-E, and that is usually the case for
n = 100 as well. For n = 200 and n = 400, however, HC3 no longer outperforms
Edge-E overall, although both perform very well. As one might expect from the
nature of Edgeworth approximations, Edge-E typically performs less well at the 1%

3 We used 10,000 replications here instead of 2000 because early results showed that
HC3 and Edge-E performed similarly for samples of medium size, and we wanted to
minimize experimental error. Results are based on ten sets of 1000 replications.
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level than at the 5% level. Except for a very few cases at the 1% level with n = 50,
Edge-E does always outperform HC.

These results suggest that Edgeworth expansions for t statistics based on HC are valu-
able, but they may be more useful as a theoretical tool than as a practical method to
obtain corrected critical values. This may however be too pessimistic. In principle,
Rothenberg’s technique could be applied to HC1, HC2, or HC3 instead of to HC, and
it is quite possible that this would produce improved results. The approach could
also be modified by the use of alternative asymptotic expansions, by improved meth-
ods for estimating the parameters c1, c2, and c3, or by more sophisticated methods
for choosing a critical value, not necessarily equal to t′α, but making use of the infor-
mation that t′α conveys. Thus future research may well make Edgeworth expansions
look more attractive than they do at present.

6. Tests for heteroskedasticity
Using the heteroskedasticity-consistent covariance matrix estimator as a starting
point, White (1980) proposed a test for heteroskedasticity of unknown form. In the
case of our model (14), the White test may be carried out by regressing the squared
OLS residuals û2

t on a constant, X1, X2, X2
1 , X2

2 , and X1X2. The test statistic is n
times the R2 from this regression, and it is asymptotically distributed as chi-squared
with (in this case) 5 degrees of freedom. In the tables, this test will be referred to
as HT.

In view of the success of HC2 and HC3, it is natural to wonder whether modified
versions of the White test might perform better than the original. In the case of
HC3, it is not obvious how one should modify the test. However, in the case of
HC2, it is straightforward to modify it by using σ̃2

t instead of û2
t as the regressand.

Unfortunately, this modified version of HT turned out to have poorer small-sample
properties under the null than the original, and we therefore dropped it from our
experiments.

Lagrange Multiplier tests for heteroskedasticity have recently become very popular.
In the case of the random coefficient model described in section 3, a particularly
simple form of the LM test may be computed by regressing û2

t on a constant, X2
1 ,

and X2
2 . The test statistic is then n times the R2 from this regression, and it is

asymptotically distributed as chi-squared with (in this case) 2 degrees of freedom.
For details, see Koenker (1981) and Breusch and Pagan (1979). A similar test may
be constructed to test against a structural change in variance. In this case, û2

t is
regressed on a constant and on a dummy variable equal to 0 half the time and to 1
the other half; the test has one degree of freedom. These tests will be referred to as
LM1 and LM2, respectively.

Over the years, numerous ad hoc tests for heteroskedasticity have been proposed.
Among the most popular of these is the F test suggested by Goldfeld and Quandt
(1965). The data are ordered by time or by one of the regressors, separate regressions
are performed on the first and last thirds of the data (leaving out a third in the

–10–



middle), and the ratio of the sums of squared residuals is then formed. Under the
null, this ratio is distributed as F with both numerator and denominator degrees of
freedom equal to n/3 − k. The test has the advantage of being exact, but it may
have little power if the actual heteroskedasticity is not closely related to time or to
one of the regressors. We calculated three tests of this type. In all cases, the partial
regressions used 17, 34, or 68 observations (so that 16 were omitted in the middle of
each 50). F1 is the test based on ordering the data in the same way that they are
ordered for the structural change in variance (i.e., by time, given the odd way that
time works in our experiments). F2 is the test based on ordering the data according
to X1, and F3 is the test based on ordering according to X2.

Before we can examine the power of any of these tests, we must determine how well
the asymptotic tests (HT, LM1, and LM2) perform under the null. Unfortunately,
there are no obvious control variates comparable to the one used in our previous
experiments. Thus, in order to obtain reasonably accurate estimates, we utilized
8000 replications. The results of these experiments are shown in table 6. The left-
hand columns show the estimated rejection probabilities at nominal levels of 5% and
1%, together with estimated standard errors. An asterisk indicates that the estimate
differs from the nominal level by more than 2.576 estimated standard errors. It is
noteworthy that LM1 always rejects the null significantly less often than it should,
while HT also tends to reject the null too infrequently. The right-hand columns of
table 6 show estimated critical values, followed by 95% confidence intervals based
on the usual non-parametric approximations. These estimated critical values will
be used in comparing the power of different tests, and the fact that they are only
estimates should be borne in mind.

The powers of various tests for heteroskedasticity are compared in tables 7, 8, and 9,
which deal with cases 2, 4, and 6, respectively. All experiments are based on 2000
replications. For the most part, these tables are self-explanatory, so we will mention
only a few points of interest. White’s test performs least well relative to some of
the other tests when the heteroskedasticity takes the form of a structural change in
variance. LM2 and F1, which are specifically designed to test against this form of
heteroskedasticity, both outperform HT substantially. Even LM1 and the other F
tests do as well as or better than HT in this case. The facts that HT has any power
all here, and likewise that the OLS covariance matrix is inconsistent, are attributable
principally to the larger variance of X1 in the second half of sample.

When the heteroskedasticity arises from a random coefficient model, HT performs
very well. Curiously, LM1, which is specifically designed to test against this alterna-
tive, does not perform much better than HT, on average; it outperforms it in most
cases, but not in all. When the weights for the random coefficient model are (1,3)
or (3,1), so that most of the heteroskedasticity is associated with only one of the
regressors, the corresponding F test performs very well, somewhat better than HT.

The results, then, are somewhat mixed. No one test has greatest power against
all alternatives. Perhaps the most interesting result is that, in many cases, the
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power of all the tests is fairly low, even though, as we saw earlier, there is enough
heteroskedasticity in the errors to cause serious errors of inference when using OLS
t statistics. This suggests that a strategy of first testing for heteroskedasticity, and
then using either OLS or HC3 depending the outcome of the test, may not be a good
one to follow.

We investigated the effects of using such a strategy, based on White’s test at the
20%, 10%, and 5% (asymptotic) levels, for all the cases we studied. One might
expect the properties of the resulting pretest t statistic to be a convex combination
of the properties of the HC3 and OLS t statistics, with weights given by the power
of the test. In fact, the pretest t statistics did not perform as badly as that; they
were closer to the HC3 t statistics than the power of the test would suggest. This
presumably indicates that HT tends to have power when the heteroskedasticity in
the sample is particularly damaging.

Nevertheless, whenever there actually was heteroskedasticity, we found that t statis-
tics based on pretesting were consistently and often substantially less well-behaved
than those based on HC3. This was most apparent when the size of the test was low
and the sample size was small, so that the power of HT was low. Since the cost of
using HC3 instead of OLS when heteroskedasticity is absent is apparently not very
great (see table 1), it would seem wise to employ t statistics based on HC3 even when
there is little evidence of heteroskedasticity.

7. Conclusions
We have examined the performance of three modified versions of White’s (1980)
heteroskedasticity-consistent covariance matrix estimator. All of them can be thought
of as in some way derived from the jackknife, and the one which is explicitly the jack-
knife covariance estimator, HC3, always performs better than the other two, which in
turn always outperform the original. We have also studied an alternative approach
to obtaining reliable inferences in small samples when there is heteroskedasticity of
unknown form, namely, the Edgeworth approximations of Rothenberg (1988). This
approach is a good deal more difficult to implement than using HC3, and it appears
to perform less well than the latter when the sample size is small.

In addition, we have studied the properties of several alternative tests for het-
eroskedasticity. We found that they often lack power to detect damaging levels of it.
This fact, together with our other results, suggests that it may wise to use HC3 in
preference to the usual OLS covariance estimator, even when there is little evidence of
heteroskedasticity. This of course is subject to the proviso that the sample size should
not be extremely small, nor the design of the X>X matrix extremely unbalanced, so
that HC3 might perform significantly less well than it did in our experiments.
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Table 1. Case 1: No Heteroskedasticity

Coef. n C.V. Stat. S.D. Kurt. 5% 1%

β0 50 1.030 OLS 1.053∗ 3.06 0.059∗ (0.0032) 0.016∗ (0.0019)

2.89 HC1 1.099∗ 3.21 0.066∗ (0.0037) 0.020∗ (0.0021)

HC2 1.081∗ 3.22 0.063∗ (0.0037) 0.018∗ (0.0020)

HC3 1.035 3.24 0.058 (0.0037) 0.013 (0.0020)

β0 100 0.998 OLS 1.007 2.89 0.052 (0.0024) 0.011 (0.0014)

2.85 HC1 1.023 2.91 0.055 (0.0027) 0.013 (0.0018)

HC2 1.014 2.91 0.053 (0.0028) 0.013 (0.0018)

HC3 0.994 2.92 0.048 (0.0025) 0.012 (0.0018)

β0 200 1.011 OLS 1.016 2.82 0.054 (0.0019) 0.009 (0.0012)

2.80 HC1 1.024 2.85 0.057∗ (0.0026) 0.012 (0.0014)

HC2 1.020 2.85 0.056 (0.0026) 0.011 (0.0015)

HC3 1.010 2.85 0.052 (0.0022) 0.011 (0.0015)

β1 50 1.018 OLS 1.037 3.16 0.057 (0.0033) 0.013 (0.0019)

3.02 HC1 1.217∗ 3.47∗ 0.094∗ (0.0048) 0.038∗ (0.0033)

HC2 1.159∗ 3.55∗ 0.082∗ (0.0046) 0.030∗ (0.0031)

HC3 1.074∗ 3.69∗ 0.067∗ (0.0046) 0.023∗ (0.0029)

β1 100 0.998 OLS 1.010 3.11 0.051 (0.0024) 0.013 (0.0015)

2.99 HC1 1.100∗ 3.42∗ 0.072∗ (0.0039) 0.026∗ (0.0029)

HC2 1.071∗ 3.46∗ 0.067∗ (0.0037) 0.024∗ (0.0027)

HC3 1.030 3.52∗ 0.055 (0.0036) 0.018∗ (0.0024)

β1 200 1.006 OLS 1.009 3.16 0.052 (0.0025) 0.011 (0.0013)

3.04 HC1 1.059∗ 3.38∗ 0.065∗ (0.0033) 0.014 (0.0018)

HC2 1.043∗ 3.39∗ 0.060∗ (0.0034) 0.014 (0.0018)

HC3 1.022 3.41∗ 0.056 (0.0034) 0.011 (0.0017)

β2 50 1.029 OLS 1.051∗ 3.06 0.062∗ (0.0033) 0.016∗ (0.0021)

2.94 HC1 1.100∗ 3.16 0.073∗ (0.0036) 0.022∗ (0.0024)

HC2 1.083∗ 3.16 0.071∗ (0.0036) 0.022∗ (0.0024)

HC3 1.040 3.17 0.059 (0.0039) 0.017∗ (0.0024)

β2 100 0.994 OLS 1.002 2.95 0.051 (0.0025) 0.010 (0.0016)

2.92 HC1 1.021 2.97 0.050 (0.0030) 0.012 (0.0018)

HC2 1.013 2.97 0.049 (0.0030) 0.011 (0.0018)

HC3 0.994 2.97 0.045 (0.0028) 0.009 (0.0017)

β2 200 1.003 OLS 1.008 2.84 0.052 (0.0019) 0.010 (0.0015)

2.81 HC1 1.015 2.87 0.054 (0.0025) 0.013 (0.0016)

HC2 1.011 2.87 0.053 (0.0025) 0.013 (0.0016)

HC3 1.002 2.87 0.051 (0.0024) 0.011 (0.0016)
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Table 2. Case 3: Structural Change in Variance, a=4

Coef. n C.V. Stat. S.D. Kurt. 5% 1%

β0 50 0.979 OLS 1.095∗ 2.99 0.084∗ (0.0041) 0.019∗ (0.0027)

2.97 HC1 1.072∗ 3.02 0.082∗ (0.0044) 0.017∗ (0.0026)

HC2 1.044∗ 3.05 0.072∗ (0.0042) 0.015 (0.0025)

HC3 0.989 3.10 0.061∗ (0.0039) 0.010 (0.0022)

β0 100 1.036 OLS 1.130∗ 2.97 0.071∗ (0.0019) 0.018∗ (0.0026)

2.99 HC1 1.084∗ 2.98 0.066∗ (0.0037) 0.016∗ (0.0021)

HC2 1.068∗ 2.99 0.065∗ (0.0036) 0.014 (0.0021)

HC3 1.041∗ 3.01 0.061∗ (0.0036) 0.012 (0.0019)

β0 200 1.006 OLS 1.087∗ 3.09 0.074∗ (0.0030) 0.018∗ (0.0015)

3.07 HC1 1.029 3.15 0.054 (0.0029) 0.013 (0.0016)

HC2 1.021 3.16 0.052 (0.0027) 0.013 (0.0016)

HC3 1.008 3.16 0.050 (0.0028) 0.011 (0.0016)

β1 50 1.000 OLS 1.316∗ 3.19 0.138∗ (0.0045) 0.051∗ (0.0032)

3.03 HC1 1.280∗ 3.74∗ 0.117∗ (0.0054) 0.053∗ (0.0041)

HC2 1.210∗ 3.96∗ 0.100∗ (0.0053) 0.043∗ (0.0039)

HC3 1.113∗ 4.27∗ 0.081∗ (0.0051) 0.030∗ (0.0035)

β1 100 1.013 OLS 1.301∗ 3.08 0.130∗ (0.0038) 0.047∗ (0.0024)

3.01 HC1 1.152∗ 3.33∗ 0.088∗ (0.0047) 0.029∗ (0.0031)

HC2 1.116∗ 3.38∗ 0.075∗ (0.0045) 0.025∗ (0.0030)

HC3 1.068∗ 3.43∗ 0.065∗ (0.0042) 0.022∗ (0.0029)

β1 200 1.001 OLS 1.271∗ 3.13 0.126∗ (0.0028) 0.044∗ (0.0023)

3.07 HC1 1.077∗ 3.33∗ 0.071∗ (0.0038) 0.019∗ (0.0024)

HC2 1.059∗ 3.34∗ 0.066∗ (0.0040) 0.016 (0.0023)

HC3 1.035 3.36∗ 0.062∗ (0.0038) 0.014 (0.0022)

β2 50 0.976 OLS 1.152∗ 3.09 0.091∗ (0.0036) 0.034∗ (0.0028)

3.03 HC1 1.078∗ 3.23 0.078∗ (0.0040) 0.023∗ (0.0027)

HC2 1.054∗ 3.23 0.071∗ (0.0039) 0.022∗ (0.0028)

HC3 1.004 3.24 0.058 (0.0038) 0.015 (0.0025)

β2 100 1.030 OLS 1.184∗ 2.90 0.089∗ (0.0038) 0.027∗ (0.0022)

2.91 HC1 1.080∗ 2.93 0.068∗ (0.0038) 0.016 (0.0023)

HC2 1.067∗ 2.94 0.064∗ (0.0036) 0.016 (0.0023)

HC3 1.043∗ 2.95 0.057 (0.0034) 0.014 (0.0022)

β2 200 1.007 OLS 1.147∗ 2.96 0.087∗ (0.0029) 0.023∗ (0.0018)

2.94 HC1 1.032 3.06 0.063∗ (0.0032) 0.011 (0.0016)

HC2 1.026 3.06 0.059∗ (0.0030) 0.010 (0.0016)

HC3 1.014 3.06 0.058∗ (0.0029) 0.010 (0.0016)
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Table 3. Case 5: Random Coefficient Model, Weights = (3,1)

Coef. n C.V. Stat. S.D. Kurt. 5% 1%

β0 50 1.002 OLS 1.325∗ 2.70∗ 0.142∗ (0.0050) 0.046∗ (0.0036)

3.00 HC1 1.236∗ 2.61∗ 0.109∗ (0.0060) 0.024∗ (0.0034)

HC2 1.149∗ 2.69∗ 0.078∗ (0.0057) 0.018∗ (0.0029)

HC3 1.038 2.83 0.053 (0.0049) 0.012 (0.0024)

β0 100 1.002 OLS 1.307∗ 2.93 0.133∗ (0.0042) 0.043∗ (0.0026)

3.16 HC1 1.143∗ 2.96 0.087∗ (0.0048) 0.017 (0.0027)

HC2 1.096∗ 2.99 0.070∗ (0.0046) 0.015 (0.0026)

HC3 1.037 3.04 0.058 (0.0044) 0.011 (0.0023)

β0 200 0.963 OLS 1.252∗ 2.92 0.137∗ (0.0035) 0.045∗ (0.0022)

3.04 HC1 1.043∗ 2.99 0.059 (0.0041) 0.019∗ (0.0027)

HC2 1.019 3.01 0.054 (0.0040) 0.017∗ (0.0025)

HC3 0.991 3.02 0.048 (0.0038) 0.013 (0.0022)

β1 50 0.997 OLS 2.205∗ 2.57∗ 0.398∗ (0.0056) 0.272∗ (0.0054)

3.07 HC1 1.483∗ 2.78 0.172∗ (0.0080) 0.068∗ (0.0055)

HC2 1.338∗ 2.98 0.122∗ (0.0072) 0.047∗ (0.0047)

HC3 1.177∗ 3.28∗ 0.082∗ (0.0061) 0.031∗(0.0039)

β1 100 0.996 OLS 2.211∗ 2.74 0.391∗ (0.0045) 0.253∗ (0.0041)

2.97 HC1 1.291∗ 3.16 0.120∗ (0.0064) 0.049∗ (0.0046)

HC2 1.220∗ 3.24 0.094∗ (0.0059) 0.038∗ (0.0042)

HC3 1.139∗ 3.34∗ 0.076∗ (0.0056) 0.030∗ (0.0038)

β1 200 0.976 OLS 2.158∗ 2.85 0.377∗ (0.0039) 0.249∗ (0.0042)

2.96 HC1 1.136∗ 3.16 0.093∗ (0.0054) 0.025∗ (0.0033)

HC2 1.101∗ 3.19 0.085∗ (0.0053) 0.024∗ (0.0032)

HC3 1.062∗ 3.22 0.076∗ (0.0052) 0.020∗ (0.0030)

β2 50 1.002 OLS 1.186∗ 2.80 0.098∗ (0.0044) 0.023∗ (0.0030)

2.98 HC1 1.173∗ 2.72∗ 0.094∗ (0.0054) 0.018∗ (0.0029)

HC2 1.105∗ 2.75 0.070∗ (0.0051) 0.013 (0.0025)

HC3 1.011 2.84 0.050 (0.0047) 0.009 (0.0021)

β2 100 1.004 OLS 1.165∗ 2.92 0.091∗ (0.0037) 0.024∗ (0.0026)

3.07 HC1 1.108∗ 2.91 0.077∗ (0.0043) 0.018∗ (0.0027)

HC2 1.070∗ 2.92 0.065∗ (0.0041) 0.014 (0.0025)

HC3 1.021 2.95 0.052 (0.0040) 0.009 (0.0021)

β2 200 0.969 OLS 1.117∗ 2.94 0.086∗ (0.0033) 0.024∗ (0.0022)

3.01 HC1 1.026 3.00 0.061∗ (0.0040) 0.014 (0.0023)

HC2 1.007 3.01 0.056 (0.0040) 0.014 (0.0021)

HC3 0.982 3.02 0.053 (0.0039) 0.013 (0.0020)
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Table 4. Case 6: Random Coefficient Model, Weights = (1,3)

Coef. n C.V. Stat. S.D. Kurt. 5% 1%

β0 50 0.986 OLS 1.068∗ 3.13 0.074∗ (0.0033) 0.016∗ (0.0016)

3.08 HC1 1.092∗ 3.23 0.077∗ (0.0040) 0.021∗ (0.0024)

HC2 1.062∗ 3.27 0.074∗ (0.0040) 0.018∗ (0.0022)

HC3 1.005 3.34∗ 0.057 (0.0039) 0.011 (0.0019)

β0 100 1.002 OLS 1.067∗ 3.03 0.062∗ (0.0029) 0.016∗ (0.0015)

3.01 HC1 1.060∗ 3.08 0.064∗ (0.0035) 0.016∗ (0.0019)

HC2 1.043∗ 3.09 0.059∗ (0.0034) 0.016∗ (0.0019)

HC3 1.015 3.09 0.052 (0.0034) 0.012 (0.0019)

β0 200 1.007 OLS 1.063∗ 3.01 0.064∗ (0.0023) 0.015∗ (0.0016)

2.98 HC1 1.033 3.05 0.060∗ (0.0027) 0.015∗ (0.0019)

HC2 1.024 3.05 0.054 (0.0027) 0.015 (0.0019)

HC3 1.010 3.06 0.050 (0.0027) 0.014 (0.0018)

β1 50 1.013 OLS 1.269∗ 3.17 0.114∗ (0.0039) 0.042∗ (0.0026)

3.10 HC1 1.319∗ 3.78∗ 0.129∗ (0.0058) 0.052∗ (0.0041)

HC2 1.242∗ 3.96∗ 0.110∗ (0.0056) 0.040∗ (0.0038)

HC3 1.137∗ 4.21∗ 0.084∗ (0.0053) 0.030∗ (0.0035)

β1 100 1.007 OLS 1.249∗ 2.93 0.114∗ (0.0030) 0.037∗ (0.0024)

2.84 HC1 1.180∗ 3.46∗ 0.096∗ (0.0045) 0.026∗ (0.0030)

HC2 1.140∗ 3.56∗ 0.087∗ (0.0045) 0.023∗ (0.0029)

HC3 1.089∗ 3.67∗ 0.063∗ (0.0042) 0.019∗ (0.0027)

β1 200 1.034 OLS 1.266∗ 2.75 0.114∗ (0.0026) 0.034∗ (0.0025)

2.74 HC1 1.122∗ 2.99 0.072∗ (0.0043) 0.020∗ (0.0022)

HC2 1.100∗ 3.01 0.067∗ (0.0041) 0.017∗ (0.0021)

HC3 1.073∗ 3.03 0.062∗ (0.0042) 0.015 (0.0020)

β2 50 0.984 OLS 1.143∗ 3.04 0.094∗ (0.0033) 0.025∗ (0.0023)

2.95 HC1 1.088∗ 3.25 0.073∗ (0.0043) 0.023∗ (0.0027)

HC2 1.063∗ 3.28 0.069∗ (0.0043) 0.021∗ (0.0026)

HC3 1.013 3.33∗ 0.059 (0.0040) 0.014 (0.0022)

β2 100 0.989 OLS 1.132∗ 3.04 0.085∗ (0.0031) 0.024∗ (0.0019)

3.06 HC1 1.044∗ 3.13 0.058 (0.0036) 0.017∗ (0.0021)

HC2 1.031 3.13 0.054 (0.0037) 0.016∗ (0.0020)

HC3 1.007 3.13 0.050 (0.0034) 0.015∗ (0.0019)

β2 200 1.001 OLS 1.137∗ 3.01 0.086∗ (0.0028) 0.024∗ (0.0016)

2.96 HC1 1.027 3.04 0.054 (0.0030) 0.012 (0.0018)

HC2 1.020 3.04 0.051 (0.0029) 0.012 (0.0018)

HC3 1.008 3.04 0.050 (0.0029) 0.011 (0.0017)
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Table 5. Performance of Edgeworth Critical Values

Coef. n Test Case 2 – 5% Case 2 – 1% Case 4 – 5% Case 4 – 1%

β0 50 HC 0.079∗ (0.0018) 0.023∗ (0.0012) 0.101∗ (0.0021) 0.034∗ (0.0015)

HC3 0.052 (0.0016) 0.014∗ (0.0010) 0.060∗ (0.0020) 0.017∗ (0.0012)

Edge-E 0.059∗ (0.0017) 0.019∗ (0.0011) 0.069∗ (0.0021) 0.022∗ (0.0013)

Edge-T 0.050 (0.0015) 0.010 (0.0008) 0.040∗ (0.0015) 0.005∗ (0.0007)

β0 100 HC 0.065∗ (0.0014) 0.015∗ (0.0009) 0.081∗ (0.0018) 0.022∗ (0.0011)

HC3 0.052 (0.0014) 0.011 (0.0007) 0.059∗ (0.0017) 0.014∗ (0.0010)

Edge-E 0.054∗ (0.0014) 0.012∗ (0.0008) 0.060∗ (0.0018) 0.015∗ (0.0010)

Edge-T 0.051 (0.0014) 0.008 (0.0007) 0.047 (0.0015) 0.008∗ (0.0007)

β0 200 HC 0.057∗ (0.0012) 0.012∗ (0.0007) 0.064∗ (0.0015) 0.017∗ (0.0009)

HC3 0.051 (0.0012) 0.011 (0.0007) 0.053 (0.0015) 0.013∗ (0.0009)

Edge-E 0.052 (0.0012) 0.012∗ (0.0007) 0.051 (0.0015) 0.014∗ (0.0009)

Edge-T 0.050 (0.0012) 0.010 (0.0006) 0.049 (0.0014) 0.009 (0.0007)

β0 400 HC 0.053∗ (0.0010) 0.011 (0.0006) 0.058∗ (0.0013) 0.012 (0.0017)

HC3 0.048 (0.0009) 0.010 (0.0005) 0.054∗ (0.0013) 0.011 (0.0007)

Edge-E 0.048 (0.0009) 0.010 (0.0005) 0.054∗ (0.0013) 0.011 (0.0007)

Edge-T 0.048 (0.0009) 0.009 (0.0005) 0.052 (0.0012) 0.010 (0.0006)

β1 50 HC 0.122∗ (0.0024) 0.051∗ (0.0017) 0.175∗ (0.0032) 0.078∗ (0.0025)

HC3 0.080∗ (0.0022) 0.027∗ (0.0014) 0.092∗ (0.0027) 0.038∗ (0.0019)

Edge-E 0.116∗ (0.0027) 0.089∗ (0.0026) 0.123∗ (0.0032) 0.090∗ (0.0028)

Edge-T 0.043∗ (0.0017) 0.005∗ (0.0006) 0.031∗ (0.0017) 0.003∗ (0.0005)

β1 100 HC 0.087∗ (0.0020) 0.029∗ (0.0013) 0.116∗ (0.0026) 0.048∗ (0.0019)

HC3 0.062∗ (0.0018) 0.018∗ (0.0011) 0.082∗ (0.0024) 0.030∗ (0.0016)

Edge-E 0.068∗ (0.0020) 0.029∗ (0.0015) 0.076∗ (0.0024) 0.033∗ (0.0017)

Edge-T 0.044∗ (0.0016) 0.009 (0.0008) 0.045∗ (0.0018) 0.006∗ (0.0007)

β1 200 HC 0.070∗ (0.0016) 0.021∗ (0.0010) 0.085∗ (0.0022) 0.029∗ (0.0014)

HC3 0.056∗ (0.0015) 0.014∗ (0.0009) 0.067∗ (0.0020) 0.021∗ (0.0013)

Edge-E 0.055∗ (0.0016) 0.017∗ (0.0011) 0.061∗ (0.0019) 0.019∗ (0.0012)

Edge-T 0.047 (0.0013) 0.008∗ (0.0006) 0.047 (0.0017) 0.008∗ (0.0008)

β1 400 HC 0.060∗ (0.0013) 0.015∗ (0.0009) 0.070∗ (0.0018) 0.019∗ (0.0011)

HC3 0.053 (0.0013) 0.014∗ (0.0008) 0.060∗ (0.0017) 0.014∗ (0.0009)

Edge-E 0.052 (0.0013) 0.014∗ (0.0009) 0.055∗ (0.0017) 0.015∗ (0.0009)

Edge-T 0.049 (0.0013) 0.010 (0.0007) 0.048 (0.0016) 0.010 (0.0008)

β2 50 HC 0.080∗ (0.0018) 0.026∗ (0.0013) 0.091∗ (0.0019) 0.030∗ (0.0013)

HC3 0.055∗ (0.0017) 0.015∗ (0.0010) 0.058∗ (0.0018) 0.016∗ (0.0011)

Edge-E 0.058∗ (0.0017) 0.020∗ (0.0012) 0.067∗ (0.0019) 0.021∗ (0.0012)

Edge-T 0.051 (0.0016) 0.011 (0.0009) 0.048 (0.0016) 0.009 (0.0008)

β2 100 HC 0.064∗ (0.0015) 0.016∗ (0.0009) 0.073∗ (0.0017) 0.020∗ (0.0010)

HC3 0.053 (0.0014) 0.012 (0.0008) 0.056∗ (0.0016) 0.014∗ (0.0009)

Edge-E 0.053 (0.0014) 0.013∗ (0.0008) 0.057∗ (0.0016) 0.015∗ (0.0010)

Edge-T 0.051 (0.0014) 0.009 (0.0007) 0.051 (0.0015) 0.009 (0.0007)

β2 200 HC 0.060∗ (0.0014) 0.013∗ (0.0006) 0.061∗ (0.0014) 0.013∗ (0.0007)

HC3 0.053 (0.0013) 0.010 (0.0006) 0.053∗ (0.0013) 0.011 (0.0007)

Edge-E 0.053 (0.0013) 0.011 (0.0006) 0.053 (0.0013) 0.012∗ (0.0007)

Edge-T 0.050 (0.0013) 0.009 (0.0006) 0.050 (0.0013) 0.010 (0.0007)

β2 400 HC 0.053∗ (0.0010) 0.012 (0.0006) 0.055∗ (0.0011) 0.012 (0.0007)

HC3 0.049 (0.0010) 0.011 (0.0006) 0.050 (0.0011) 0.011 (0.0007)

Edge-E 0.050 (0.0010) 0.011 (0.0006) 0.050 (0.0011) 0.011 (0.0006)

Edge-T 0.049 (0.0010) 0.010 (0.0006) 0.048 (0.0011) 0.010 (0.0016)
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Table 6. Tests for Heteroskedasticity: Performance under the Null

n Test 5% RP 1% RP 5% CV 1% CV

50 HT 0.042∗ (0.0022) 0.012 (0.0012) 10.65 (10.48–10.94) 15.53 (14.86–16.19)

LM1 0.030∗ (0.0019) 0.009 (0.0010) 4.99 (4.86–5.17) 8.76 (8.06–9.45)

LM2 0.047 (0.0024) 0.006∗ (0.0008) 3.74 (3.61–3.90) 5.91 (5.62–6.12)

100 HT 0.045 (0.0023) 0.014∗ (0.0013) 10.86 (10.51–11.09) 16.08 (15.50–16.91)

LM1 0.038∗ (0.0021) 0.012 (0.0012) 5.46 (5.21–5.61) 9.79 (9.20–10.95)

LM2 0.052 (0.0025) 0.008 (0.0010) 3.90 (3.74–4.05) 6.25 (6.05–6.63)

200 HT 0.046 (0.0023) 0.011 (0.0012) 10.88 (10.64–11.13) 15.47 (14.96–16.04)

LM1 0.042∗ (0.0023) 0.012 (0.0013) 5.66 (5.45–5.86) 9.79 (9.22–10.40)

LM2 0.051 (0.0025) 0.010 (0.0011) 3.86 (3.67–4.03) 6.75 (6.35–7.10)

Notes:

The statistics HT, LM1, and LM2 should be asymptotically distributed as
chi-squared with 5, 2, and 1 degrees of freedom, respectively.

An asterisk indicates that a quantity is significantly different at the 1% level from
what it should be if the statistic had its asymptotic distribution.
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Table 7. Tests for Heteroskedasticity
Case 2: Structural Change in Variance, a=2

n Test 5% Asy. 1% Asy. 5% Est. 1% Est.

50 HT 0.161 (0.0082) 0.063 (0.0054) 0.176 (0.0085) 0.053 (0.0050)

LM1 0.173 (0.0084) 0.065 (0.0055) 0.225 (0.0093) 0.077 (0.0059)

LM2 0.790 (0.0091) 0.415 (0.0110) 0.802 (0.0089) 0.513 (0.0112)

F1 0.720 (0.0100) 0.464 (0.0112)

F2 0.205 (0.0090) 0.077 (0.0060)

F3 0.184 (0.0087) 0.070 (0.0057)

100 HT 0.281 (0.0101) 0.141 (0.0078) 0.291 (0.0102) 0.113 (0.0071)

LM1 0.332 (0.0105) 0.163 (0.0082) 0.366 (0.0108) 0.144 (0.0079)

LM2 0.993 (0.0019) 0.947 (0.0050) 0.993 (0.0019) 0.958 (0.0045)

F1 0.975 (0.0035) 0.900 (0.0067)

F2 0.303 (0.0103) 0.140 (0.0078)

F3 0.333 (0.0105) 0.163 (0.0083)

200 HT 0.531 (0.0112) 0.322 (0.0104) 0.544 (0.0111) 0.306 (0.0103)

LM1 0.594 (0.0110) 0.387 (0.0109) 0.621 (0.0108) 0.353 (0.0107)

LM2 1.000 (0.0000) 1.000 (0.0000) 1.000 (0.0000) 1.000 (0.0000)

F1 1.000 (0.0000) 0.998 (0.0010)

F2 0.490 (0.0112) 0.293 (0.0102)

F3 0.564 (0.0111) 0.358 (0.0107)

Notes:

Rejection frequencies in the left side of the table are based on asymptotic critical
values. Rejection frequencies in the right side of the table are based on critical
values estimated under the null.

Quantities in parentheses are estimated standard errors.
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Table 8. Tests for Heteroskedasticity
Case 4: Random Coefficient Model, Weights = (1,1)

n Test 5% Asy. 1% Asy. 5% Est. 1% Est.

50 HT 0.281 (0.0100) 0.152 (0.0080) 0.295 (0.0102) 0.145 (0.0079)

LM1 0.267 (0.0099) 0.170 (0.0084) 0.314 (0.0104) 0.185 (0.0087)

LM2 0.056 (0.0051) 0.009 (0.0021) 0.060 (0.0053) 0.015 (0.0027)

F1 0.100 (0.0067) 0.024 (0.0034)

F2 0.090 (0.0064) 0.027 (0.0036)

F3 0.081 (0.0061) 0.017 (0.0028)

100 HT 0.560 (0.0111) 0.419 (0.0110) 0.570 (0.0111) 0.385 (0.0109)

LM1 0.567 (0.0111) 0.446 (0.0111) 0.591 (0.0110) 0.424 (0.0111)

LM2 0.097 (0.0066) 0.015 (0.0027) 0.096 (0.0066) 0.022 (0.0032)

F1 0.202 (0.0090) 0.083 (0.0062)

F2 0.202 (0.0090) 0.076 (0.0059)

F3 0.104 (0.0068) 0.029 (0.0037)

200 HT 0.870 (0.0075) 0.760 (0.0096) 0.877 (0.0073) 0.748 (0.0097)

LM1 0.853 (0.0079) 0.767 (0.0095) 0.862 (0.0077) 0.749 (0.0097)

LM2 0.180 (0.0086) 0.039 (0.0043) 0.178 (0.0086) 0.035 (0.0041)

F1 0.369 (0.0108) 0.183 (0.0086)

F2 0.384 (0.0109) 0.202 (0.0090)

F3 0.141 (0.0078) 0.048 (0.0048)

Notes:

Rejection frequencies in the left side of the table are based on asymptotic critical
values. Rejection frequencies in the right side of the table are based on critical
values estimated under the null.

Quantities in parentheses are estimated standard errors.
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Table 9. Tests for Heteroskedasticity
Case 6: Random Coefficient Model, Weights = (1,3)

n Test 5% Asy. 1% Asy. 5% Est. 1% Est.

50 HT 0.284 (0.0101) 0.122 (0.0073) 0.310 (0.0103) 0.108 (0.0069)

LM1 0.370 (0.0108) 0.169 (0.0084) 0.451 (0.0111) 0.188 (0.0087)

LM2 0.131 (0.0075) 0.023 (0.0042) 0.138 (0.0077) 0.036 (0.0042)

F1 0.257 (0.0098) 0.095 (0.0065)

F2 0.118 (0.0072) 0.031 (0.0039)

F3 0.397 (0.0109) 0.189 (0.0087)

100 HT 0.589 (0.0110) 0.357 (0.0107) 0.600 (0.0110) 0.309 (0.0103)

LM1 0.699 (0.0103) 0.475 (0.0112) 0.726 (0.0100) 0.437 (0.0111)

LM2 0.260 (0.0098) 0.081 (0.0061) 0.255 (0.0097) 0.096 (0.0066)

F1 0.483 (0.0112) 0.263 (0.0098)

F2 0.185 (0.0087) 0.067 (0.0056)

F3 0.713 (0.0101) 0.482 (0.0112)

200 HT 0.915 (0.0063) 0.782 (0.0092) 0.918 (0.0061) 0.761 (0.0095)

LM1 0.946 (0.0051) 0.865 (0.0077) 0.954 (0.0047) 0.848 (0.0080)

LM2 0.519 (0.0112) 0.256 (0.0098) 0.516 (0.0112) 0.248 (0.0096)

F1 0.796 (0.0090) 0.597 (0.0110)

F2 0.318 (0.0104) 0.147 (0.0079)

F3 0.963 (0.0042) 0.880 (0.0073)

Notes:

Rejection frequencies in the left side of the table are based on asymptotic critical
values. Rejection frequencies in the right side of the table are based on critical
values estimated under the null.

Quantities in parentheses are estimated standard errors.

–22–


