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Abstract

Because of the presence of Jacobian terms, determinants which arose as a result of
a transformation of variables, many common likelihood functions have singularities.
This fact has several implications for maximum likelihood estimation. The most in-
teresting of these is that singularities often correspond with economically meaningful
restrictions, and they can be used to impose the latter. Several applications of this
principle are presented. They suggest that maximum likelihood should be preferred
to other estimation schemes not only because of its optimal large-sample statistical
properties, but also because of its ability to incorporate certain a priori restrictions
from economic theory.
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1. Introduction
A likelihood function is simply the joint density of a set of sample observations, con-
sidered as a function of the parameters of the density. Suppose that u = [u1, . . . , uk]>

is a vector of k random variables with joint density f(u), and y = [y1, . . . , yk]> is a
monotonic function of u, with joint density g(y). It is well known (Wilks, 1962, pp.
57–59) that

g(y) = f
(
u(y)

)∥∥∥∥
∂ui(y)

∂yj

∥∥∥∥, (1)

where the second term on the right-hand side is the absolute value of the Jacobian of
the transformation. As a consequence of (1), many of the likelihood functions which are
commonly encountered in econometrics include Jacobian terms, determinants which
arose as a result of a transformation of variables. In many cases, these Jacobian terms
can take on a value of zero for certain parameter values. Thus, when the likelihood
function is graphed in parameter space, it will also take on a value of zero at certain
points, which may be referred to as singularities, since the loglikelihood function tends
to minus infinity as the parameter values approaches those points. The fact that
many common loglikelihood functions have singularities has several implications for
maximum likelihood estimation, which do not appear to be widely recognized. The
purpose of this note is to draw attention to those implications.

It is obvious that the loglikelihood function can never achieve a maximum at a singular-
ity, or in a sufficiently small neighborhood of one. This means that certain parameter
values may be ruled out a priori when maximum likelihood estimation is employed.
Moreover, a set of singularities may divide the parameter space into two or more re-
gions, so that the loglikelihood function can be expected to have more than one local
maximum. This may create difficulties of the obvious kind, but it may also be useful
if the singularities correspond to economically meaningful restrictions. In the latter
case, it may be possible to use the singularities in the loglikelihood function to bound
the estimates within a region where those restrictions hold. Thus maximum likelihood
estimation may be attractive not only because of its optimal large-sample statistical
properties, but also because of its ability, in certain important cases, to incorporate a
priori restrictions from economic theory.

In order to substantiate the above points, we shall consider three particular cases where
singularities caused by the presence of Jacobian terms have interesting implications
for maximum likelihood estimation. We shall first look at regression models with
non-spherical disturbances, then at systems of linear equations, in particular models
of demand and supply in a single market, and finally at systems of equations with
truncated dependent variables.

2. Regression with Non-Spherical Disturbances
Consider the single-equation linear regression model,

y = Xβ + u, u ∼ N(0, σ2V ), (2)
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where V is a positive definite matrix which is a function of one or more unknown
parameters. The loglikelihood function for this model, concentrated with respect to
σ2, is

`(β,V ) = Const.− 1−
2

log |V | − n−
2

log
(
(y −Xβ)>V −1(y −Xβ)

)
. (3)

Maximizing (3) conditional on V yields the familiar GLS estimates, which are maxi-
mum likelihood if V is known. But, in practice, V is almost never known. Econome-
tricians then often employ pseudo-GLS procedures of various types. Such procedures
are not maximum likelihood because they fail to take into account the Jacobian term,
− 1

2 log |V |. This omission can be very serious, as the following two examples show.

First of all, suppose that the error terms follow a stationary first-order autoregressive
error process

ut = ρut−1 + εt, εt ∼ N(0, σ2), |ρ| < 1. (4)

The concentrated loglikelihood function for this model is

`(β, ρ) = Const. + 1−
2

log |l − ρ2| − n−
2

log
(
(y −Xβ)>QQ>(y −Xβ)

)
, (5)

where

Q ≡




(1− ρ2)1/2 0 0 · · · 0 0 0
−ρ 1 0 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 0 −ρ 1


. (6)

The first term in (5) is the logarithm of the absolute value of the determinant of
Q, which is the Jacobian of the transformation. It is clear that as |ρ| approaches
unity, this term tends to zero, so that there are singularities at ρ = −1 and ρ = 1.
The loglikelihood function must therefore have at least one maximum in the interval
−1 < ρ < 1, which is of course the stationarity region for the AR(1) process.

Thus the Jacobian term ensures that there will always exist estimates of ρ, and, under
the usual conditions, of β as well, which maximize the likelihood function subject
to the condition that the error process be stationary. This is not the case for two-
step pseudo-GLS procedures, which may very well find estimates of ρ outside the
stationarity region, nor is it the case for pseudo-ML procedures, such as iterated
Cochrane-Orcutt, which drop the first observation and therefore incorrectly take the
Jacobian of the transformation to be identically one.1

As a second example, suppose that V is a diagonal matrix with unity in the first
n−m diagonal elements and ω2 in the remaining m diagonal elements. Thus the error
terms are assumed to be independent but to have been generated by two different

1 A simple technique for finding ML estimates for the linear regression model with AR(1)
errors has recently been suggested by Beach and MacKinnon (1978a). For discussion
of the AR(2) case, see Beach and MacKinnon (1978b).
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regimes, with variance σ2 for the first n−m observations and ω2σ2 for the remaining
m observations. For this model, the concentrated log-likelihood function reduces to

`(β, ω) = Const.− n−
2

log(SSR1 + SSR2/ω2), (7)

where SSR1 and SSR2 are the sums of squared residuals for the first n−m and last m
observations, respectively, both of which are assumed to be greater than the number
of elements in β.

It is hard to imagine a reasonable pseudo-GLS procedure for this model. The problem
is that one needs an estimate of ω2. If that estimate is based on OLS estimates over the
entire sample, one set of observations must have been given too much weight. If, on
the other hand, it is based on estimates for the two regimes separately, the constraint
that the β should be the same in both subsamples has been ignored. Finally, if one
tries to estimate ω2 by minimizing the generalized sum of squares, one will quickly
discover that the minimum occurs at ω2 = ∞, since in that case the residuals from
the last m observations will carry no weight.

Maximum likelihood estimation, on the other hand, is quite feasible. The estimate of
ω2 must be finite, provided that the number of observations in each regime is large
enough that neither SSR1 nor SSR2 can be made to equal zero by some choice of β.
The estimate of ω2 cannot be arbitrarily large, because that would make the Jacobian
term, −m log ω, tend to minus infinity. It also cannot be arbitrarily small, because as
ω2 tends to zero, SSR2/ω2 must become very large relative to SSR1, so that the last
term in (7) tends to −(n/2) log(SSR2/ω2), which can be rewritten as

−n−
2

log SSR2 + n log ω.

Clearly, n log ω dominates −m log ω, the Jacobian term in (7), so that as ω2 tends to
zero, the log-likelihood function will tend to minus infinity. Thus, in this example, the
Jacobian term makes maximum likelihood estimation feasible.

3. Systems of Linear Equations
We now turn to the familiar model of a system of simultaneous linear equations, which
can be written in matrix notation as

Y Γ + XB = U . (8)

The concentrated log likelihood function for this model is

`(Γ ,B) = Const. + n log ‖Γ ‖ − n−
2

log
∣∣(Y Γ + XB)>(Y Γ + XB)

∣∣. (9)

The middle term is the logarithm of the absolute value of the Jacobian of the transfor-
mation. It is clear that when Γ is singular the value of `(Γ , B) is minus infinity, so that
FIML estimates of Γ cannot be singular or nearly singular. This implies that FIML
may be severely biased if the true Γ is almost singular. On the other hand, ruling
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out singular estimates of Γ is surely desirable, since nature could not have generated
unique observations on Y if Γ were singular.

More importantly, the equation
|Γ | = 0 (10)

divides the parameter space into more than one region. If, as is normally the case,
each of the parameters in Γ which have to be estimated appear only once, then (10)
is linear in every parameter individually, so that the parameter space is divided into
exactly two parts, one in which |Γ | > 0 and one in which |Γ | < 0. The likelihood
function can be expected to have at least one local maximum in each of them, as
illustrated in Figure 1 for the case of only one parameter, θ.

The situation illustrated in Figure 1 clearly creates problems for numerical maximiza-
tion techniques. The global maximum is at θ1, but a maximization algorithm could
easily converge to θ2, either because it was started to the right of θ′ and was unable
to take steps large enough to enable it to cross the singularity, or because, although
started to the left of θ′, it took a large step across the singularity and was then unable
to go back. Unless there is reason to believe in advance that the global maximum is
to the left of θ′, and the algorithm is constrained to stay in that region, there is always
some danger that the algorithm may locate the “wrong” maximum.2

Multiple maxima created by singularities should not create as much trouble for the
investigator as other types of multiple maxima. We know that, under the appropriate
regularity conditions, one of the local maxima of the likelihood function yields con-
sistent parameter estimates, and we normally choose the highest one. This involves
finding all local maxima, which can be difficult and time-consuming. When multi-
ple maxima are due to singularities, there may be some a priori reason to prefer the
maximum which lies on one side of the singularity, regardless of whether or not it is
actually the highest one. Such a case is illustrated below, and another one is presented
in Section 3.

Finding a maximum conditional on, say, |Γ | > 0, is very easy. With most algorithms,
it is merely necessary to start in the appropriate region and assign an extremely bad
value to the objective function whenever the condition is violated. The algorithm will
then never jump across the singularity, and it must terminate in the interior of the
desired region because the singularity prevents it from terminating at the boundary.
Note that this technique could not be used for other types of restrictions, because
there would be nothing to prevent the algorithm from terminating at the boundary.

In order to find out more about the characteristics of the likelihood function (9), data
were generated from the following model:

y1 + γ1y2 = x1 + u1

γ2y1 + y2 = x2 + u2.
(11)

2 For a good discussion of numerical maximization techniques, see Bard (1974).
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The coefficients of the exogenous variables were fixed at unity and treated as known; x1

was a trend variable, and x2 was sinusoidal. The error terms were normally distributed
with variance unity and covariance zero. The values of γ1 and γ2 were chosen to be
0.9, so that |Γ | = 1− γ1γ2 is fairly close to singular.

Only one set of data, consisting of fifty observations, was generated from this model,
since the object was not to perform a sampling experiment, but rather to examine
the characteristics of the likelihood function. This function is graphed, for γ̂1 and γ̂2

between 0.7 and 1.5, in Figure 2. The global maximum, labelled M in the figure, is
at γ̂1 = 0.918 and γ̂2 = 0.878; at that point, `(γ̂1, γ̂2) = −273.49. The contour line
numbered “1” corresponds to ` = −445.02, the line numbered “10” corresponds to
` = −278.96, and the lines in between are equally spaced. No contours are shown for
values of ` less than −445.02, so that Figure 2 is slightly misleading; the blank space
between the two contours labelled “1” should actually contain an infinite number of
contour lines, since `(γ1, γ2) goes to minus infinity in that region.

The behavior of the likelihood function on the “wrong” side of the singularity is very
strange. There are apparently two local maxima in addition to the global maximum.
These are at γ1 = ∞, γ2 = 0.786, where ` = −338.22, and γ1 = 1.243, γ2 = ∞, where
` = −322.72. Why such absurd estimates should be associated with rather “qood”
values of the likelihood function is not at all clear.

Unless one has a priori information on the sign of |Γ |, one should clearly attempt
to find all local maxima on both sides of the singularity. In many cases, however,
such information may be available. Consider the simple case of a two-equation system
explaining demand and supply in a single market. The model may be written as

Qd
t = αPt + Xtβ + u1t (12)

Qs
t = γPt + Ztδ + u2t (13)

where Qd
t and Qs

t are quantity demanded and supplied in period t (it is assumed that
Qd

t = Qs
t ), Pt is the price, and Xt and Zt are vectors of exogenous variables with

enough exclusions to allow identification. In this case, the Jacobian of the transfor-
mation is ∣∣∣∣

1 −α
1 −γ

∣∣∣∣ = α− γ. (14)

The condition that this Jacobian be negative is simply the condition that the demand
curve should cut the supply curve from above. It would therefore be very reasonable
to impose that condition as an a priori restriction.

4. Equation Systems with Truncated Dependent Variables

Amemiya (1974) has recently introduced a simultaneous equations model with trun-
cated dependent variables, sometimes referred to as the simultaneous Tobit model. In
the two-equation case, the model may be written as
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γ11y1t + γ12y2t ≥ X1tβ1 + u1t (15)

γ21y1t + γ22y2t ≥ X2tβ2 + u2t (16)

y1t, y2t ≥ 0, (17)

where equations (15) and (16) hold as equalities if y1t and y2t are positive, respectively.
The error terms u1t and u2t are assumed to have a bivariate normal distribution with
means zero and covariance matrix V , which may be written as f(u1t, u2t;V ).

A major problem with this model, as Amemiya points out, is that it may have either
no solutions or more than one solution; that is, for certain values of the parameters,
the independent variables, and the error terms, there may be no values for y1t and y2t,
or more than one set of values, which satisfy (15)–(17). In his Theorem 3, Amemiya
shows that the model will have a unique solution if and only if every principal minor
of Γ is positive; in the two-equation case here, Γ is the 2 × 2 matrix with elements
γij . Amemiya goes on to propose a consistent but inefficient estimator which is com-
putationally less burdensome than maximum likelihood. He fails to point out that,
if maximum likelihood is employed, the Jacobian terms in the loglikelihood function
can be used to impose the principal minors condition on the γij . This is a remarkable
property of the maximum likelihood estimator, and a remarkably useful one.

The likelihood function is quite complicated. First, divide the set of observations into
four subsets:

S1 = {t|y1t > 0, y2t > 0},
S2 = {t|y1t > 0, y2t = 0},
S3 = {t|y1t = 0, y2t > 0},
S4 = {t|y1t = 0, y2t = 0}

.

Then the likelihood function, of which we would actually maximize the logarithm, is
the product of four factors:

L = (γ11γ22 − γ12γ21)
∏

S1

f(γ11y1t + γ12y2t −X1tβ1, γ21y1t + γ22y2t −X2tβ2;V )

× γ11

∏

S2

∫ γ21y1t−X2tβ2

−∞
f(γ11y1t −X1tβ1, u2;V )du2

× γ22

∏

S3

∫ γ12y2t−X1tβ1

−∞
f(γ22y2t −X2tβ2, u1;V )du1 (18)

×
∏

S4

∫ −X2tβ2

−∞

∫ −X1tβ1

−∞
f(u1, u2; V )du1du2.

Here each factor corresponds to one of the subsets, and each of the products is taken
over all observations in the indicated subset.
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It may be observed that all of the principal minors of Γ appear in this likelihood
function. They are just the Jacobians of the various transformations, where different
yit are identically zero. There should really be absolute value signs around these
expressions, namely, (γ11γ22 − γ12γ21), γ11, and γ22, but they were omitted because
we will want to constrain the expressions to be positive anyway. These constraints can
easily be implemented in the manner proposed in the last section when the logarithm
of (18) is maximized with the aid of a numerical maximization routine. Some of the
constraints may be rendered redundant by normalization; for example, it would be
usual to normalize γ11 and γ22 to equal unity.

The ability to constrain ML estimates of the simultaneous Tobit model to satisfy the
conditions for existence and uniqueness is an important one. In a simulation study
of this model, Warner (1976) found that Amemiya’s consistent estimator produced
estimates which violated these conditions a substantial fraction of the time, while the
maximum likelihood estimates, even without being explicitly constrained to satisfy
them, always did so.

This property of maximum likelihood estimates extends to truncated dependent vari-
able models with n equations. If there are n equations, the number of factors in the
likelihood function is 2n, and 2n− 1 of these are multiplied by the 2n−1 principal mi-
nors of the Γ matrix. Estimation is of course likely to become impractical for large n,
however.

5. Conclusion
Econometricians should pay more attention to those properties of likelihood functions
associated with the presence of Jacobian terms. These terms can be bothersome,
because they can create singularities and hence multiple maxima. But singularities
created by Jacobian terms can also be useful, since they can be used to impose econom-
ically meaningful constraints without altering the properties of maximum likelihood
estimation. In the case of the AR(1) model, the singularity enforces the stationarity
constraint. In the case of the two-equation linear market model, the singularity en-
forces the constraint that the demand curve should cut the supply curve from above.
And in the case of the simultaneous Tobit model, a whole set of singularities enforce
the conditions for the existence and uniqueness of a solution to the estimated model.
Alternative estimation procedures, such as generalized least squares and Amemiya’s
consistent estimator for the generalized Tobit model, do not incorporate these con-
straints. This provides a powerful reason for preferring maximum likelihood to other
estimation techniques in these and similar situations.
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