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l. Introduction

The Hitchcock-Koopmans (HK) transportation problem
in linear pr&gnamming t4], [5] aﬁd the Cqurnot-Enke~Sémue!sen
(KES) pricing problem in spatiéi price equifibrium [2], [3],
[6] are two classic analyses in the theory of transportation
costs. In this paper | generalize the HK analysis to take
account of variable suppl ies and'demandé for a product at
the diverse geographically separated locations. The solu-
tion to the new problem is an optimizing problem of a Form
of g}eat similarity to the Samuelson optimization probfem
for spatial price equilibrium, Primal and dual formulations
are compared., | then show that the generalized HK problem
is a special case of the pricing problem in spatial equi-
librium and that there exists a principle unifying the
analysis of spatial price equilibriumbyoptinizing techniques
and there is a single optimizing problem that can sclve a
pricing ﬁwob{em in spatial equilibrium that incorporates the

HK problem, the generalized HK problem and the KES preblem.

2. The Generalized Transportation Probliem

The Hitchcock-Koopmans problem can be described as
follows. There are m supply points gecgraphically separated
from each other each with a fixed positive endowment of a
commedity. There are n demand points geographically separa-

ted from each other and from the supply points and these
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demand points have fixed positive demands for the commodity
at the supply points. The sum of supply endowments is as
least as great as the sﬁm of the demand requirements., There
exist fixed transportation costs for moving & unit of the
commod ity between any pair of points, one of supply and one
of demand. The problem is to transport the supply endow-
ments to the demand requirements so as to minimize total
transportation costs. That is determine x;. for all i and

J
J so as to

mo o _n
H H H \ - - " a .
minimize = jiﬁ tiniJ (1)
_m )
sub ject to: >_ xii 2 5 i J=l,ees,n
. i=1 N
and
' n
£ i= F
2%%_xgd £ 0’} i=f, L (2)
J= .
xij 2 0 for all i and j.

where
tij is the cost of transporting a unit of the commodity
from supply point i to demand point j.
Xi3 is the flow of the commodity from i to j.
is the fixed demand for the commodity at point j.
is the Tixed supply of the commodity at point i.
The dual to problem (1},(2) is to determine supply point

¥
prices pj J=l,... ,n 80 as to
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n_ m .
masimize pjé‘- - = p; o (3)
= J ‘:I ’
: J i
sub ject to: |
|= "'m -
iPi S i T W
PITHE = J=1 n
- ’ﬂ’!,
p; 2 0 and pi 20 for all i and j.

The equifibrium conditions indicating that the problems have
been solved are of course

) - i=l,00q,m
Ef QJ'?; tij then Xgé = .
J“i'ccn’n

i
<

n
and if :Z? X7 8} then P (j=t,ee.,n)

=

le 1 ]

and if = x; ;< ¢ then B =0 (i=t,111,m)
and the economic interpretation of these conditions is now
well known.

We generalize the HK probiem by assuméngrthat there
is a supply function at cach supply point i, in which the
amount supplied is a function of p; fob, that is quantity
éuppiied x; = gi(p;) i=l,i{..,m; and there is a demand
function at each demand point j, in which the amount demanded
is a Ffunction of P j cif, that is quantity demanded Xij =
Bj(pj)t The demand and supply curves are assumed to have
the usuai-s!opes as indicated in Figure |. VWe assume unit.

transport costs between i and j are again given. This new

probiem is to determine flows between points
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i=l,ccn,m
that obtain in spatial price equilibrium,

Xij ).
J=l,eee,n
This problem differs from the KES one in that we have only
one schedule, either demand or.supp!y at every point whereas
the KES problem has both demand and supply schedules at
éveby point.
We can see straightaway that if there is only one

supply point i and one demand point j the equilibrium will

be as indicated in Figure |.
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In Figure |, amount i witl flow from i to j. The equi-
librium price at | will be P and at i will be p;, Also
pj'ﬁgiz £ We observe further that in the absence of
transportation costs the equilibrium price would be pe and
equilibrium F!cw.x?j. It would appear then that demanders
always act to drive the‘price down or to maximize theirpr
consumers’ surplus apee and suppfiers act to drive the
price up ér to maximize their producers’ surplus bpee sub-
Ject to the fiow never exceeding X?Jg Qith transportation
costs, it appears that consumers and producers continue to
maximize their respective surpluses but are constrained
from reaching pe by the total transport cost bill pjcdpg.
Formally the equilibrium illustrated in Figure | is the
solution to the folliowing problem: |

XiJ

o S{uldu - %

Cxe s _
maximize J; ' D(u)du - S (5)

ig%ig
with respect to Xige D(u) is the functicn indicating price
as a function of quantity or the inverted demand function.
S(u) is the function indicating supply price as a Tunction
of quantity. The generalized HK problem where there are
m> | supp!ieps»and n>1 demanders can be formulated as an
extention of the above single supplier, single demander
case, We simply maximize the sum of all consumers’ and
preduce#s’ surpluses at all geographic points and ﬁet out
the totai'tranSportﬁtion cost bill. Thus the generalized

‘-
1=}, 4w, m

"HK problem is to determine the Xij
j:!rosn'n
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which maximize

m_ n_
/52: X: ‘21.x5°
n f i=1 " m [ j=t 'Y
=} D.(uj)du. - 2 Si(ui)dui
=1 J Joi=l
o o
(6)
m n
vhere xij 20 for all i and J.

The equilibrium conditiens indicating-that a maximum
has been attained are the same as in the simple HK transpor-
tation problem and in the KES probienm. N

if Dj(u) - S;(u?)e::tu (7)

st
A

theﬂ xij =

where the stars indicate the values of the varisbles when a
maximum has been attained. DJ(uj) = pj and Si(u?) = p?r.
This condition indicates that if the difference between the
price at a supply point and the price at a demand point is
less than the transport cost for shipping‘a unit of the
commodity between those points, then ne shipment will take
place,

In Figure 2, we have an illustration of the equilibrium

situation for demanders at point j receiving shipments from

supply points 3,6, and 7.
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In Figure 2, the lined areas indicated total transportation

J
analogous diagram could be drawn for equilibrium at a

] ? ? 7
costs., Alsc pj-p7 = ty., pj-p3 = t3j and p-Pg = téj‘ An

supply point when numerous demand points are being supplied
from that particular point.

Note that if supplies and demands are reduced to
fixed positive numbers rather than schedules for all points
Vthén we are back in the HK world and the expressions with
integrals in (6) indicating areas under demand and supply
curves pespectively become zero. We then have a problem of
minimizing transportation costs alone and the supply and
demand inequality constraints must be peintroduced in order
to have a well-defined optimizing problem. The implicit

constraints to (6) are that the solution must satisfy

m. o
i‘;‘: X§'j=D\j(uJ) (J:’:"eaa,n)

or that the sum of all flows from the m supply points must

equal the demand at point j for all j, and
n e ;
‘.il‘ xi‘} =Si(ui) (!-‘:ifaaarm)
J:’:.

or-that the sum of all Flows received at all demand points
J from point i must exactly equal the supply at i for all i,
IQ the HK problem Tlows to a demand point | can exceed the
Fixed dém&nd at | and Tlows from supply peint | can be !esé
then the fixed supply at i. In addition, the solution to

the generalized HK problem nust satisfy




or total demands must equai teotal supplies., It is well
known that the HK transport cost problem has a solution if
and only if |

= §-= ¢ .

J=1 di=l ‘
or that the total éf fixed supplies must at lfeast equal the
total of fixed demands,

The similarity of the Formal enunciation of the
generalized HK problem in (6} to the formal statement of
Samuelson’s épproach te solving the_KES problem is striking.
fn Samueiécn’s treatment, the functions under the integrals
in (6) would‘be excess demand Tunctions in the receiving
regions or points and sending regions respectively., The upper
limits of integration would have a negative sign. Samuecison’s
maximand has “social surpluses” beneath the integrals whereaé

we have the sums of consumers’ and producers’ surpluses,

3. Duality and an Optimality Peinciole

For the two point case, the dual® to (5) is simply
to determine twe non-negative prices, one at the supply point
and one at the demand point which minimize the area ced in
Figure | subject to the condition that the difference be-~
tween the price at the demand point and that at the supply
point is less +than or equal to the unit transportation
costs between the two points. We are minimizing the sum of

all consumers’ and/or producers’ surpluses foregone. For the
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mahy supply point, many deﬁand point problem, we can formally
present the dual to (6) or the dual to the generalized HK
problem as: determine non-negative prices p; (i=l,..;,m)

and Pj (j=l,.e6,n) so as to

e
_153'; pj
Nt A a [
minimize 2. Si(w)dw + > Dj(w)dw (8)
i=l{, : Jg=1 e
Bi pJ
...—mm - (n_:‘ F A~ F
- = pPlp;) - = p;Spy)
J= J i=1
sub jact to:
’ ""“!,ao-;m'
Pi=P;Tti; 20 &- (9)

) j=if.e,,gj
s
If we replace Si(w) by EDf(w), excess demand at i, and
I 2\ : .
Dj(w) by EDJ(N), excess demand at | then we have the dual
to Samuelson’s optimizing problem developed to solve the
KES problem.

For a two-region example, we can illustrate Samuel-~
son’s problem and its dual in Samuelson’s excess demand

diagram, Figure 3 below,
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Samue lson’s problem was to maximize the area abed minus the
arca bcgf: where begf is the total cost of transport and
t;2:bc is the cost of transport per unit flow. The dual to
Samuelson’s problem is to minimize area bec subject to :the
condition‘that»disﬁance be(=fg) must be at least equal to
distance tig. Recall equations (8) and (9). The, at first
biush, remarkable similarity between the form of the genepr-
alized HK problem and Samuelson’s approach to the KES
problem is brought out by compaéing the structure of the
equilibrium Tor the KES problem iflustrated in Figure 3
with that for the geﬁera!ized HK problem iflustrated in
Figure I, |

There exists a unifying principle underlying the
solution to the KES problem and the generalized HK problem.
We can illustrate this principle by returning to the diagram
with supply and demand curves underlying Samuelson’s excess
demand schedule diagram above. In Figure 4 below Qe have a
back~to-back twe-region supply and demand model with trans-

portation costs included.




Figure 4
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[f there were no interregional flows, the price and quantity
in region | would be at t and in region 2 at w. [|f there

were interregional flows but no transportation costs the

equilibrium price, p®, would be the same in each region

lying between those associated with t and w and being fixed
where flows from region | equalled flows received in region
2.  |If transportation costs were fixed at £t then the
equifibrium_pbice would be at pgy in region two and at p} in
region . pz«p; would equal tsz and xy9 would equai =X

Consider the Ffollowing twe problems., First, maximize
area dct plus area wef s&bject to the condition that ef
equals de, The resulting equilibrium will be the solution
to the problem of determining interregional flows and prices
when there are no transportation costs., The same equi-
fibrium would be obtained if we minimized area abcd plus
efgh subject to the condition that the price was the same in
both regions. |In other words the equilibrium is achieved
by maximizing the rent in both regions which is gained from
permitting interregional transfers subject to flows from
one pegion equalling flows peceived by the other in a two
region world., The same equilibrium is achieved by minimizing
the deviations of rents from their equilibrium values,

The second problem which is the KES problem as de-
veioéed by Samuelson is: Maximize areas ctd plus wef minus
total transportation costs subject to the cendition that

flows from region | equal flows received in region 2. This
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“is also a rent maximization problem as was the maximization
problem illustrated in Figure I. An equilibrium will also
‘be obtained for the problem ilfustrated in Figure 4 if we
minimize area abcd plus efgh subject to the condition that
the price in region 2 minus that in region | will equal
transportation costs t!2° Recall that the minimization
problem associated with Figure | and the generalized HK
probliem was one of minimizing rent Fgﬁegone owing to the
existence of transportation costs. The minimization problem
for the KES problem is also the minimizing of rent Foregéne
owing to the existence of transportation costs, that is
rent foregone from that which would accrue to beth regions
if there were transfers at zero transportation costs, The
maximization approaches for the generalized HK problem and
the KES problem are the universal ones of maximizing rent
or the sum of producers’ and consumers’ surpluses in one

or morermankets at one *i:imee The Eimét of the rent
maximization for the generalized HK and KES problems ob-
tains where there are no transportation costs or no impedi-
ments to Figw of éﬂy kind. In other werds the solutions to
the generalized HK and KES problems are special cases of
equilibria in any»markefc It will be.clear, now, that the
sum of areas dct plus wfe in Figure 4 are equal to areas
abf plus cgd in Figure 3 and that area ebc in Figure 3 is
equal to the éum of the areas of rent deviations abcd and

efgh from the rents at the zero transport cost equilibrium
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in Figure 4.

We have noted that the primal problems for approaching
the generalized HK and the KES are both problems of maximizing
economic rent. The dual probtems'are minimizing the rent
foregone because'cf the presence of transportation costs,
rent foregone from that which would obtain in equilibrium if
transportation costs were zero. In view of the nature of
the minimum problem, we can deduce the general optimality

principle for spatial economic system. If transportation

costs are introduced into a system of markets in a spatial

economic equilibrium, the system will reach a_new equilibrium

such that the economic loss_resufting from the introduction

of the cost of transportation is minimized.

4. Spatial Price Equilibrium Synthesized

A general spatial equilibrium problem for one
commodity has efements of the HK problem, the generalized
HK probliem and the KES problem. Consider a two region
éxamgie incorporating a generalized HK problem and a KES
problem. |

Assume that we have two regions or points ; region
i has a demand and supply schedute for a commod ity and
region 2 has only a demand scheduie. We may associate
region | with the KES problem and region 2 with the gener-
afized HK problem. We assume of course that transport costs
per unit flow of the commodity are known and Fixed at t|,.

1 £ the three schedufes are such that there is a flow from




- I8 -
region | to regioen 2 then an equi!ibrium will obtain as in

FigureVS below.
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Figure 5
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In the KES problem there are economic Torces causing the
arca of triangie abec to be maximized in region | in the
right;hand part of Figure 5 and in region 2 the generalized
HK preobiem indicates that the area of triangle def will be
maximized. In equilibriam pzwp;=t§2 and xyp=xg9y or flows
from region | equal flows to region 2. Thus an optimizing
problem which consists of maximizing area abc plus area def,
that is a combination of a KES problem and a generalized HK
problem, will cause a spatial price and flow equilibrium
to obtain.

et us now assume that the demand is fixed in region
2 or of zerc elasticity, that is DZ is a vertical line in
the feft-~hand side of Figure 4. This is the HK assumption.
then there

21
¥ 4
exist prices P and Py such that py-pj=t;y and Xy9=Xgy

i f DZ intersects the horizontal x axis at x

The maximization of the area of triangle abc yields the
equilibrium, If DZ cuts to the right of x2£ then the equi-
Pibrium will tend to settle where Flows From region | equal
flows to region 2 and the p;-pz+tgz = 0 constraint in the
dual wil! be violated. Thus no shipment will actually take
place., IT DZ cuts the x axis to the left of o1 then the
maximum flow from region | namely ab or xyg will not be
sufficient to satisfy the demand in region 2 and ene of the
HK constraints in the primal, (1){(2), is not satisfied and

there will be no solution to the problem. It is thus net

nensensical to consider a problem incorsorating elements of
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the HK problem and of the KES problem. All three problems
are ?Gwmatly and econeomically related,

Let us partition suppliers into three groups, k’
suppliers with fixed supplies, I’ with elastic supplies'but
where no demanders are present, énd h' with elastic supplies
where demanders also are present. k'¥i'+h'=n. We will
partition demanders simifarly into tﬁreé géoups, k demanders
with fixed demands, | with elastic demands but where no |
suppliers are present, and h with elastic demands where
suppliers also are present, kt+i+h=m. Note that h' and h
are disjeint sets since one group is located at péfnts

which are net suppliers and the other net demanders., A

spatial equilibrium will consist of nm non-negative Flows
X which
maximize
LI n
K =X
1 i=) 'J K =1 |
= DJ(UJ)dUJ - = $; (uj)du;
J=k+i i=kf+1
o : o
LN L
T Xi' iy
h (= A N
+ = ED,(y.)dyJ. - EDE(y!)dyl
J=lr Jod i= [+
o : o
s L
- e L X, LT,
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sub ject to:

< x> S Golyae )

>
=1 47
o
= Xij = (/T (i=l,000,k")
J=1

(where ED; is the price as a function of interregional flow
- »> ' .
x or excess demand) and nm non-negative prices p; (i=1,...,m),

P (j=!,e0e,n) which

minimize
4
e -
Lo [T IARA
> S;(widw + = D;(w)dw
=k’ +1 . j=k+t
3 P
! PN Y
-y 2. pPG;) - p;S{p;)
J=k+l ) i=k’ I
‘e .
! pl e h pi A
+ % EDi(z)dz + z EDJ(z)dz
is=|"+{ , : Jg=M+i | o

| e
AT, 8- 20 a
iJm; Jd J i=t

. i=l,0ce,m
PP = PRI
-gj Pittig = J=l,004,n

~ sub ject to:
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The equilibrium conditions defining an optimum for the HK
probiem and its dual reported following equations (3) and
(4) continue to apply to this more general problem. The
essentiaiiQ spatial price equilibﬁiqm condition is pj—p;<:

tij'lmpires x;j=0.

5. Conclusion

The maximization of economic rent and the minimiza-
tion economic rent foregone because of the existence of
transportation costs have been found to be two principles
which unify the theory of interregional tlows at non-zero
transportation costs., We have developed the analysis in
terms of one commodity and many spatially separated markets.
The probiem éf introducing many commodities to a KES one
commod ity model has been analyzed by Takayama and Judge
L8]. Ow discovery of the optimality principles underlying
spatial economic equilibrium could assist in reinterpreting
Takayama and Judges results and assist in generalizing their
mode! to incerporate elements of the HK and generalized HK
models. The development of numerical techniques for solving
complex spatial equilibrium models remains a difficult

probien,
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FOOTNOTES

Hitchcock [4] in fact defined the original HK programming problem
with equalities in all constraints.

The word dual is not used to denote what Wolfe has defined as the
dual in non-linear programming. See Balinski and Baumol [1]7 for

the Wolfe definition and its interpretation. Our notion of dual

is borrowed from Smith's analysis [7] of Samuelson's formulation

of the KES problem. It is simply another optimization problem,

in this case a minimization one where our primal was a maximization
one, whose equilibrium conditions define a spatial price equilib-
rium in the original sense of HK. Our primal and dual are of course
related by a saddle-point structure.

Smith [7] defined a problem which was to be dual to Samuelson's and
the economic rationale underlying the new problem was found to be
more plausible than that underlying Samuelson's "artificial" problem
of maximizing "net social surplus". Smith's problem was the mini-
mization of areas sdctu plus rwefgy subject to py - pp + typ 2 0.
The areas stu and rwv do not affect the solution in any way.

By minimizing area dct plus wef subject to pi - pp* t32 20
Smith is inverting Samuelson's problem since Samuelson was maximizing
the areas of these triangles subject to x;, = =X;,. The probiem
illustrated in Smith's Figure 2 has an interior of non-corner
sglution. For a minimum, we require that

Si - Di 0 -1
0 ~(5p-D) +1 | < 0
-1 + 1 0
or (§é - Di) - (5] - D) < 0. However the above exposition makes

)
clear that %mith intended to be maximizing rents. Hence (§§ - D))
- (8 - D') must be Tess than zero. Note Smith has a sign error in
his “term  2¢ following the Lagrangian (5). It should read

sz

el S - -
o, D, (p,) Sy(py) t Ay, w2y 2 0
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