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1. INTRODUCTION

Hotelling's 1929 article concerning the behavior of duopolists in
a spatial setting has had a lasting influence in economics and political
science. With a simple model he was able to elucide why "our cities become
uneconomically large and business districts within them too concentrated”;
and why "Methodist and Presbyterian churches are too much alike; cider is
too homogeneous" [8 ; p. 484]. In American politics, he showed “whyeach
party strives to make its platform as much Tike the other's as possible"
-[8; p. 482],

Hotelling was aware that the zero elasticity of demand ascribed
to consumers, though it contributed to the simplicity of his formal model,
made his predictions rather extreme. "The elasticity of demand of particu-
Tar groups does mitigate the tendency to excessive similarity of competing
commodities, but not enough” [ 8; p. 484]. Smithies [16] proved this resﬁit
in a subsequent paper although the mathematical details were not published.

Devletoglou [3] demonstrated the same result in a quite different model.

In this paper we develop the constant non-zero elasticity of demand
case which Hotelling referred to.1 Hotelling's zero elasticity model emerges
as a special case. The analytical details of Smithies linear demand function

are also presented. We show that the final equilibrium position can lie

* This paper was prepared while the senior author (J.M.H.) was in residence

at the Institute for Economic Research at Queen‘s University in the
summer of 1970. We are indebted to that Institute and also to the Interim
Research Committee at Queen's University for financial support.




beyond the bounds which Hotelling mooted and Smithies asserted. A new model
is not required to show polarization as an equilibrium condition. Compara-
tive static exercises concerning the effects of different elasticities of
demand‘and different rates of transportation cost on the final equilibrium
position are reported. These issues were commented on by Hotelling and
Smithies. The second major part of this paper deals with competitive
reactions between duopolists and the convergence to a stable equilibrium
for both rivals. The conclusion we reach is that what Samuelson has termed,
in the context of location,"the random walk of history" [15; p. 126 ] is

- beautifully illustrated by the spatial duopoly model; the final equilibrium
is shown to depend on initial prices and locations. Hotelling's theorem on
clustering is shown to require restrictive assumptions on the process of
competitive reaction to equilibrium. Finally the limitations of the Hotelling-
Smithies model in explaining the behavior of political parties are analyzed.
A combination of mathematical analysis and numerical simu]ationé were the

principal techniques used to examine the above issues,

2. THE MOBEL: AND EQUILIBRIUM

Our economy consists of a market along a line of length £ with
two sellers. This 1line might be a beach or a transcontinental railroad.
Families dwell in this market forming a regular pattern or in the constant
density D per unit distance. In Figure 1 we have the market with two
rivals located. Competitor 1 is u, units from the left end and competitor

2 1is u, units from the same end, The total Tength is £, a fixed value.
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Each family has a demand function per unit time which will in general be

~a function of delivered price.

xe = flp + tu) (1)

where Xe is quantity demanded per unit time by a family, p is the price
at the factory f.o.b., t is the constant transport cost per unit distance

and u is the distance from the factory or firm.

We consider the case of two firms supplying the market at some
cost. In general the total cost for each firm per unit time will be assumed

to be linear in quantity produced,

where A, s the fixed cost per unit time, k; 1is the marginal cost per

unit time and Y3 is the quantity produced per unit time,

An equilibrium with two sellers is depicted in Figure 2,
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In Figure 2 are two sellers in equilibrium when the elasticity of demand
is non-zero, Note £ - u, = u; and u, - %L =% - u,. The price (cif)

is the same at the center of the market and p, = p,. The regions u, and

1
£-u, will be referred to as the hinterlands of sellers 1 and 2 respec-

tively, and the regions %€ - u; and u, - %€ will be referred to as the
local markets of sellers 1 and 2 respectively. For the sake of variety,
sellers will also be referred to as firms, plants, competitors, duopolists,

and parties.

In this section we will investigate the nature of the equilibrium
for the_two sellers. The process of competitive reaction is analyzed in
Section 3. We will appeal to only two types of behavior by sellers. For
the most part, we assume atomistic competition, that is each seller reacts
by changing his Tocation and price (f.o.b.) in order to maximize his profits
~given the price (f.o.b.) and location of his rival. The other assumption
made is that a central authority locates the sellers in order to maximize

their combined profits or in order to make zero profits.

Demand has a constant elasticity.

Each individual demand function will be of the form
Xg = a(p + tu-)A a<0 (3)

We first assume that each competitor competes with his rival in an area
consisting of exactly half the market. One seller remains in his half and
the other in his half. Competition will still take place resulting in an
equilibrium for each rival indicating its equilibrium location in half the
market and its price given the location and price of his rival. The reason

for analyzing this case is only to illustrate the analytics of an equilibrium,




We do not assume that competition actually takes place in this way. In

the general problem each competitor competes in the whole market with his

rival. Our economic analysis and numerical simulations are based on this latter
model but fewer analytical mathematical details can be presented for this

case owing to the complexity of the vdrious mathematical conditions required

to be satisfied in the model, Competition in half the market has the same
qualitative aspects.as atomistic competition to be discussed below in the

whole market. In equilibrium where each duopolist faces the same cost

and demand conditions each seller's delivered price will be the same at

the mid point of the market. A plant's total sales will be obtained by

integrating family sales over half the market.

_ u L4 A
y D{a s Yp, + tlu,-u))du + a s (p, + t{u-u,)) du }
1 d 1 1 u, P 1

D.a.t atl At +
GHY (o, + tu)™™ o (b, + £0se - u )M - 2p M

for » # -1 (4)

where p, 1is selier 1's price f.o.b., and u, is seller 1's position in

1
half (the left half) the market of length £.

Seller 1's profit will be
I, = Py '_(AI k)

(p1 - k;) D.a.t

he + +
= —T—p, + tu)” by (p, + t{st - u N)* !

- o™y - Ay
for A+ -1 (5)

Selier 2's quantity sold can be determined by integrating over its half

of the market in a similar way and its profit function obtained.
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Gy e, ¥ +1 .
.yz = _D}Lilt {(Pz + t(u2 - 1/2,(;1)_)7t 1 + (p2 + t(e - uz)_)k _ ZP'Z'A ]_}
for a2 #-1 (6)
(pz-kz) D.a.tr + .
nd T = e ey, +0) Lo (p, + tle - u,)) !
atl
- 2p2 } - A,
for A #-1 (7)
The condition for equal prices at the mid-point is:
p]. + t(l’aﬂ - ul) = p2 + t(uz - 128)
or P, = P, * t(u1 tu, - 2) (8)

Substitute for p, in (5) from p, in (8) and we can express seller 1's
profit as a function of his'position in the market and seller 2's price

and position.

(p, + t{u, +u, -£} - k;) D.a.t a1
M, = T {{p, + t(2u; + u, - 2))
atl 1

If we place firm 1 at a point in the markei symmetrib to firm 2's position,
that is u; =& - u, (and P, = p,) then the profits of the two firms are
of course equal. However, it is of interest to examine the condition in
which each firm maximizes its profits by varying its position subject to
the condition that the competitor's price and position are fixed. In the
following section it will be demonstrated that, following a convergent
process of competitive readjustment, in equilibrium, each firm is maximizing
its profits subject to the condition that the other competitor's price and

position are fixed and that each firm is symmetrically stationed about the

mid-point of the market. Consider now that final equilibrium position.

(9)




We require first the position u, such that profits I, are maximized,

EE; ='d’.gives
du1

. . A
(p2 + t(u1 +u, - £) - k) f2t(x+1)(p, + t(2u; + u, - 2))

1
given P, and u, fixed. Hence at any time solving

A+l
- 2t(M1)(p, + tluy + u, - L)) + t(p, + t(2u, + u, - £))

atl A+l
t(p, + tlu, - %))  -2(p, + t{uy +u, -2)) ¥ = 0 (10)

This implicit equation (10) contains a solution U, which indicates that
at one point in the process of competitive reaction, seller 1's profits
are maximized given the price and position of seller 2. Note that

u; +u, - £ 1is never negative. Otherwise it would imply that p, was
negative by equation (8). For A < -1, then the value in the first curly
bracket is positive and the second negative. Also P, is always greater
than k; = k,. For -1 <2x <0 the values in the fifst curly bracket

will be negative and in the second curly bracket positive. Thus we have

weak evidence that equation (10) does have the desired non-negative solution.
The second order condition indicating a maximum is

d2n

— " 20at3{(a(p, + t(u; + u, - £) - k;)[2(p, + t(2u, + u, - £))*"!
u
1

- (py * tluy +u, - )M+ 20(p, + t(2u, +ou - £))

- (py + tluy +u, - )M < 0
This required negative sign will hold if

(1-a)(p, - t(£ - u,))

0<-u1<
(20 - 1)t

A< 0. 0f course P, > k. = k,.
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Now t(£ - u,) is cost of transporting the good to the right-hand end of
the market from the position of 2. p, must exceed this cost in order for
u, to be positive. Thus we have a constraint condition relating one
competitor's Tocation to the price and location of his rival. A similar
result could be determined for competitor 2, and in the equilibrium defined
by its exhibiting the property that neither firm wishes to change its price

or position, symmetry in positions and equality in prices obtains or

u, = £ - u,. In this situation:
e 2t(p. - k) (1) (p, + tle - u,))* - (xt1)p,?
Eﬁ;' - P, = K)4lx Py - u, )" - Gtl)p, "}
+t(p, + e - M4 (p, + tlu, - w0 o 2p My 20 (1)

Note that the equilibrium position for firm 1 is a function of
the position and price for firm 2 and that there is a whole family of
(u,

prices) for the two competitors are not unique. We will demonstrate below

s pz) which could be exhibited. Thus the equilibrium positions {and

that the final equilibrium positions are, given the mode of competition,
are functions of the initial, and in general arbitrary, positibn and price
of the first entrant to the market. Not only does the final equilibrium
depend on initial values but a process of atomistic competition will be
shown to cause the equilibrium to obtain.

In the process of competition, each firm takes the whole market
as its potential sales domain rather than simply half the market as we
assumed above. Half the market will be shown to be an equilibrium condition
signalling the end of competition. Let us assume one competitor fixed at
u, and that another enters and locates at u; where his profits are

maximized given the other locator. They will divide the market at Uy s
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not necessarily %¢ as before. Thus firm 1's profits I, will be obtained
in an expression like (5) above, but where y, 1s determined by integrating
sales over the market from 0 to u, rather than from 0 to %C. For

firm 2, y, 1is determined by integrating from Uy to £.

At the market division point Uy » the delivered price from the

two competitors must be equal. That is:
U o= A (p, -, + tlu, +uy))
k 7t \Po = Py 1T Uy

Given the position of firm 2, uz' and the price (f.o.b.) for firm 2, Py

firm 1's profits are functions of u; and p, in the following expression,

' A+l
{(p. + tu )A+1 + (P1* P, +t{u, - ul)) _ 2p»A+1} oA
1 1 ( 5 | 1 1

) (py - k;).D.a
T = =D

(12)

I, can be determined similarly.

Consider now how the nature of the equilibrium is affected by varying

certain parameters in the model.

Case 1 (Hotelling, 1929): Make costs zero, that is A, =k, = 0. Set the

elasticity equal to 0, that is A = 0. Make D =a = 1. Then

Hl = '.t—" {pl + tul + ( ? ) = zp'_{}
P, P, =P
A e e R (13)

This is Hotelling's profit function which was to be maximized with respect
to p, and u, given p, and u,. By inspection, we see that I, can

be maximized by making u. Targe or having firm 1 cluster close to firm 2

1
and vice versa for firm 2. Hence the celebrated clustering theorem.
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Note also that the model is open-ended - with respect to prices.
“.... since demand is inelastic, we may imagine the two alleged competitors
to be amicably exploiting the consumers without limit by raising their

prices"., Hotelling [8 ; p. 475]. We shall return to this point in Section 3.

Case 2CE (Constant Elasticity) Two Plant Monopoly. We presuppose a solution

in which each plant is symmetrically located about the mid-point of the
market, Total profits are

I = 1, + 1,

: +
AL (p, * tluy * uy - £) - kI, * t(2uy +u, - £

+ (p, + t{u, - )L 2(p, + t{u, +u, - K))A+1] *(p, - k)

x*1 yiel A+1

Llp, + tlu, +5))7 " + (p, + t(L - u,) -2p," 71} - (A + A)  (14)

The necessary condition for total profits in (14) to have a maximum is that

ol _ oM _ M _ M _
3u, au,, M, 3p,

Rather than compute these derivatives, we might observe simply that profits
are unbounded above with respect to prices and that a two-plant monopolist
will simply raise prices indefinitely. in this model. This is similar to the
phenomenon that Hotelling observed for his case with price competition., This
unboundedness is true for all positions including the quartiles which we shali
see satisfy a maximum profit position for the two plant monopoly in the

Smithies model below.

Case 3CE Equilibria with Different Elasticities of Demand. This case was

investigated by means of numerical simulations. The conclusions which emerge
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are that given the same parameters and same initial conditions for the first
competitor, higher elasticities result in final equilibria farther from the
center of the market than with lower elasticities. An equilibrium for a
firm occurs when there is no tendency to change price or 1ocatiqn'given the
price and location of the other competitor. These results were suggested by
Hotelling [8 ; p. 484]. The foilowing numerical illustration in Table 1
depicts one set of equilibria varying with the values of the elasticity of
demand.
Table 1
EFFECTS OF VARYING VALUE OF ELASTICITY OF DEMAND

a=1, k1 =k, =0, £=1.0, initial conditions wu, = 0.5, p, = 0.5

Values of Variables in Equilibrium

A t u P1 T Uy P2 1

1 2

2.0 1.5 0.4480 0.0020 1.3417 0.5520 0.0020 1.3417
4.0 0.1440 0.0360 0.4791 0.8560 0.0360 0.4791
4.5 0.2000 0.0500 0.4248 0.8000 0.0500 0.4258

-0.01| 1.5 0.4500 0.8810 0.4398 0.5500 0.8810 0.4398
4.0 0.4907 2.1970 1.0861 0.5093 2.1970 1.0861
4.5 0.4500 2.6330 1.3001 0.5500 2.6330 1.3001

One feature of the results in Table 10 is that one pair of equilibria
for the two competitors obtains beyond the quartiles. Hotelling did not
anticipate this. He stated that higher elasticities would cause competitors
to be separated "but he (B) will not go as far from A as the public welfare

would require". Hotelling [8 ; pp. 117-118].
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Case 4CE Equilibria with Different Rates of the Costs of Transportation.

Examples were computed to investigate this situation. The same initial
conditions and parameter values were set. A process of competitive adjust-
ment was run and equilibria were obtained as transportation costs were varied.
No pattern of location equilibria changes emerged in response to transpor-

tation cost changes. The example is presented in Table 2 below.

Table 2
EFFECTS OF VARYING VALUE OF TRANSPORT COSTS

a=1,k = k, =0, » = -0.5, initial values u, = 0.65, p, = 0.5
Values of Variables in Equilibrium

t Uy P, I, u, P, I,
0.5 | 0.4500 | 0.4650 0.3103 0.5500 0.4650 0.3103
1.0 | 0.4500 | 0.4300 0.2747 0.5500 0.4300 0.2747
1.5 | 0.4680 | 0.6170 0.3233 0.5320 0.6170 0.3233
2.0 | 0.4783 | 0.8108 0.3671 0.5217 0.8108 0.3671
2.5 | 0.4500 | 1.0259 0.4216 0.5500 1.0259 0.4216
3.0 | 0.4500 | 1.2356 0.4629 0.5500 1,2356 0.4629
3.5 | 0.4673 | 1.5861 0.5173 0.5327 1.5461 0.5173
4.0 | 0.4673 | 1.6955 0.5385 0.5327 1.6955 0.5385
45| 0.4673 | 1.8450 0.5590 0.5327 1.8450 0.5590
5.0 | 0.4500 | 2.1000 0.6051 0.5500 | 2.1000 0.6151

Note the regular increase in prices and profits for each firm when transpor-

tation costs rise above 1.0.
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Smithies' Approach: Linear Demand Functions

Smithies conjectured that the clustering so prominent in the Hotelling
model was a result of the peculiar demand assumptions - namely the zero
elasticity of demand for each consumer. Hotelling in fact stated this point
of view in his concluding comments to his original presentation.2

Smithies redeveloped the Hotelling model with demand functions linear
in delivered price. Elasticity will vary along such a demand curve but will
always be non-zero. Hotelling chided in his concluding comments that mathe-
matical complexities increase with a non-zero elasticity of demand.3

Smithies undaunted let

X = b+ alp + tu) a<0

be his demand function. All variables have been defined above, Let u, be

k
the point where firm 1's market ends. Then his total demand will be

u
y, = 9[5 "Talp, + tlu; - w) + bldu + 5 “[a + t(u - ) + b]du] (15)

We shall first consider competition in half the market as we did with the

constant elasticity of demand case. Uy = L,

, s
v, = ofttatp, +tu) ¢ b)u] -2ty ] ' [ratey - tuy) + 3]
1
at 20
+ 3 ]ul}

= {(apl + b) 'g—- i;& (ul - %) + atu%} (16)

and
v, = 0w, +0) % -2 (3, - 3 4 atug} (17)
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At the mid-point of the market, the delivered prices of the two competitors

must be equal. That is once again

b+l -u) = p, + tlu, - %)
or

p, = p, *tlu, +u, -2) (18)

We also, following Smithies, explicitly introduce costs into the model in
the simpie form

Ci = kiyi + Ai i=1, 2.

Now 1N, (p; = kydy; - Ay

(py - kl) D{(ap1 + b)%— . ate u, - %) + atu%i - A

L}

and substituting for p, from (18)

M= Dip, + tluy *+u, - £) - k) {5 (alp, + tlu, + u, - £)) +b)
S8 oD v atudy - A (19)
and 1, = D(p, - k,) {5{ap, + b) - &3y, - 2 + arul} - 4, (20)
Now setting dn gives

1

dw, -
D{t[%{a(p2 + t(u1 *u, - £)) +b) - Egg{ul - %J + atu?]
atf atl

+ (p2 + t(ul + u, - L) - kl)[—z—‘ - —2—"+ 2atu1]} =0 (21)

Since D #0, t 40 , then this condition becomes
q- = 2auy(p, + tlu, +u, - 2) - k) + %{a(p2 +t( u; +u, - £}) +b)

- E—ztg-(u1 - %) + atuf = 0 (22)
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Now
d?m, _
—— = D{2at2u_ + 2at2?u_ + 2at(p. + t{u. +u, - £) - k_}}
U2 1 1 2 1 2 1
1 .
= 2atD{p, + t(3u +u, - £) - k) (23)
d2n £-u
and  _ 1 if p. > k and u, > =3 2
2 27 M1

Recall a < 0, A similar result can be determined for 2.

Case 1L (Tinear) Hotelling 1929: We examine firm 1's profit function when

it Tocates with the market division point at some arbitrary spot Uy - That
is integrate equation (15) and substitute Y, in the profit function.

Py - Py + X -
M= (p, - k) D{ oF [a(3p, + p, + tu,) + 4b] +

Uy 5atu1
E—-[a(Bp1 - P, - tu2) + 2b + 5 14- A (24)

To obtain Hotelling's case, set costs at zero A, =k, =0,and D=1,

and elasticity of demand at zero a = 0, b = 1. Equation (24) becomes

p, =P, T tu U
Hl = PI{ 2 St 2 (4) + T (2)}

PP, - P
= z}_{z T LI (u2 + ul)} (25)

and equation (25) is again Hotelling's profit function which we discussed

above as (ase 1CE.

Case 2L: Two Plant Monopoly: We consider now that the plants will split

the market at the mid-point. The monopolist seeks to maximize total profits




- 18 -

n= m +1I,. N, and I, are expressed in equations (19) and (20) respec-

tively. We require the solution to the equilibrium conditions g%—-= g%—-=
1 2
g%—- = 0 1in order to find the quality of the model when maximum profits
2

are being obtained for the two plant nnnopoTy. Of course the second order
conditions must be satisfied in order to assure that we have in fact what

is a maximum rather than a minimum,

ol _ £ atl £
apy, - D (7 [alpy *+ tluy +u, - £)) +b] - 5= (u; - )
+ atul2 + E%{p1 + t(uI tu, - L) - k1) + %{apz + b)
- Egé(Suz - 5%3 + atu,? + E%{pz - k)
- ' atl 32
= D {at(p, + t(u, + u, - £)) + bt - atk, - —7—{3u2 tu -5
+ atu,? + atu,? + atp,} = 0 (26)
' . _ _ 2 _ R
We observe that if k1 = k2 , then Uy =7, u, = T and
P = Py = k(k, - E%— - g& is a solution of (24) and (26). Rival 2's
profits will also be maximized, i.e. g%-= 0.
2

In other words, as Smithies asserted, location of plants at the
quartiles yields a profit maximizing solution for the two-plant monopolist.
This is also the total transportation cost minimizing solution for the

economy and thus is a social optimum in this limited sense.

Case 3L: Government Monopoly: If production and distribution were controlled

by a government functioning in the interests of the public, we might suppose

that the plants would be located at the quartiles in order to minimize trans-
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portation costs of distributing the product and zero profits would be set
to obtain. It is of interest to determine how the government monopoly price

compares with the two plant monopolist's (private monopolist) price. To
‘ 1

investigate this question, we substitute the quartile positions u, = E£
and wu, = %ﬂ in (19) and (20), set the sum m =&, + I, equal to zero

and solve for p,. It is easy to see that T, I, and both have to be

zero, so we can solve for p, after setting 1, =0 alone. (19} becomes

aﬂpz £Zb at Al
]'[1 = (pz - kl){ 2 + 2—— + T€.£2}_ .D._. = 0
' k.te
_ tL . b 1 2h _
Moo= opr o+ {-k ¥ St t -k - g—-gp = O (27)

Note that the coefficient of p, 1in (27) is -2p where p is the two

plant monopolist's f.o.b. price. Thus the government monopoly price p, is

=
]
1l
>
+

-Cc- (28)
(- &y -5~ a)

It

where ¢

In (28) (p% - c) will be positive since ¢ is always negative,.
| For |c| #0, p, will be negative since we assume only the negative sign
before the square root in (28) to be operative in order to obtain economically
meaningful solutions. Thus for |c| #0, p, < p. Similarly for Py-
Hence the government price will always be lower than the private monopoly

price.

Case 4L, Equi1ibf1um with Different Rates of Transportation Cost: For this

Tinear demand case we obtain results similar to those for the constant
elasticity of demand. The final equilibrium for the two firms displays a

higher final price and profit as transportation costs rise. This result is




- 20 -

not surprising since at each adjustment in. competition profit maximization
always obtains at a higher price f.o.b. with higher transportation costs
than with lower, The cumulative effect of these results yields the higher
final equilibrium price with the higher transportation costs. Smithies noted
this [16; p. 497]. We also observe that as transportation costs rise there
-is a tendency at first for the equilibrium location values to approach the
socially desirable values (the quartiles). However as transportation costs
continue to rise, fhere is a tendency for competitors to move from near the
quartiles toward the center, These observations are illustrated with the

numerical examples reported in Table 3.

Table 3
EFFECTS OF VARYING VALUE OF TRANSPORT COSTS
a=-0,1, b=1.0, k1 = k2 = 0, initial values u, = 0.5100, p, = 0.500

Values of Variables in Equilibrium

t ﬁl Py I U, P2 I
0.5 0.4900 0.5000 0.2345 0.5100 0.5000 0.2345
1.0 | 0.4900 0.5000 0.2315 0.5100 0.5000 0.2315
1.5 | 0.4900 0.5000 0.2285 0.5100 6.5000 0.2285
2.0  0.4637 1.0582 0.4502 0.5363 1.0582 0.4502
2.5 | 0.4639 1.1986 . 0.4950 0.5361 1.1986 0.4950
3.0 0.4565-. 1.5202 0.5966 0.5435 1.5202 0.5966
3.5 | 0.4565 1.6902 0.6401 | 0.5435 1.6902 0.6401
4,0 | 0.4565 1.8602 0.6789 0.5435 1.8602 0.6789
4.5 | 0.4570 2.0327 0.7134 0.5430 2.0327 0.7134
5.0 | 0.4580 2.2091 0.7437 0.5420 2.2091 0.7437




- 21 -

3. COMPETITIVE REACTIONS AND EQUILIBRIUM

The process of competition among two sellers in space has received

4

considerable attention but the contributions still lack a synthesis.” Two

reasons why this might be are that the problem of analyzing the reactions
in a general case are mathematically difficu]t5 and secondly that Hotelling
and perhaps also Smithies appeared to have laid bare the technical aspects
of the problem. The persistence with which economists returned to Hotelling's
reaction scheme seems to be évidence that the Hotelling-Smithies competitive
reaction model was not simply a special case of Cournot-Bertrand-Stackeiberg
analysis of duopoly or that if it was, it required subtle analysis to clarify
it. |

We will examine the approach to equilibrium in the various models
under the assumption that each competitor takes the position and price of
his rival as fixed. We assume that each competitor treats both his position
and priceas-apolicy instrument which can be adjusted to maximize his profits
~given the price and position of his competitor. We assume zero costs of
relocation and price adjustment. We assume shortsightedness on the part of
each competitor or that profits are maximized in the present period given
the price and position of his rival in only the previous period, Demand

and cost functionsare identical for each competitor.

Proposition 1: [Hotelling Clustering (stable)]. Given atomistic competition

according to the above rules and demand functions with zero elasticity, an
equilibrium will establish where competitors 1 and 2 are back-to-back in the
center of the market and maintain stabie prices and positions only if

a) each competitor agrees not to shift his position and price at

any time in such a way that the difference in prices (f.o.b.) exceeds the
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cost of transportation from 1 to 2. Hotelling [8 ; footnote 8]. We shall
refer to this latter condition as the Hotelling Stability Condition (HSC).
b) Price increases by either competitor are not permitted after

each competitor is located back-to-back in the center of the market.

We can distinguish two plausible approaches to equilibrium depending
on the initial conditions. First there could be a single seller located
in the center of the market se]?ing at an arbitrary price. An entrant would
locate next door and sell at the same price and each competitor would serve
half the market. Any shift in price down is constrained by the HSC and the
requirement of profit maximization. Any shift in price upwards is ruled

out by condition b).5

Neither condition a} nor b) both necessary for the stability of
an equilibrium in the center of the market have plausible behavioral foun-
dations, at least under a regime of atomistic competition. They both can
be justified in terms of some collusion axiom and it is no doubt for this
reason that Hotelling frequently refers to various collusive measures that
might arise in reality. In the absence of condition a), one competitor would
find that by lowering his price beyond the point where the difference in
prices (f.o.b.) equals the cost of transportation from 1 to 2, he could
capture the entire market and increase his profits. The other competitor
would follow suit and so on until price just equalled average cost and zero
profits were being made by both competitors. Hotelling recognized this con-
tingency and introduced condition a) to rule out its occurrence, Smithies
[16; p. 496] was also well aware of this possible instability. Chamberlin
[1; pp. 226-29] made if the chief subject of his critical review of Hotelling.
Fellner [5 ; p. 88] overlooked this point.7
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Rather than assuming one seller is located in the center of the
market when a rival enters we can assume otherwise. The entrant, 2, will
locate near 1 and on the side closest the center. His price will be below
1's but not Tow enough to violate the HSC. 2's sales and profits will
exceed 1's, causing 1 to leapfrog over 2 and establish a new position on
the side of 2 closest the center of the market. 1's price will be slightly
below that for 2 but not low enough to violate the HSC, Eventually both
sellers will end up back to back in the center of the market selling at the
same price to half the market each. Observe that though the final Tocations
are the same for the competitors as in the case when 1 was assumed to be
first located in the centre of the market, the final prices will necessarily
be different., We reach the important conclusion that the final equilibrium
values of the prices depend on the initial vaiues of the price and location

of the single first seller,

Proposition 2: Symmetric Equilibrium . Given atomistic competition accord-

ing to the above rules, and demand functions with non-zero elasticity, an
equilibrium will be established where competitors 1 and 2 are separated by

a positive distance. The prices (f.o.b.) will be the same in equilibrium
and each competitor will be located an equal distance from the center of the

market on opposite sides of the center.

This proposition was stated by Hotelling [8 ; p. 484] and by
Smithies [16; p. 493-4], though neither demonstrated either numerically or
analytically that it was true. Smithies in fact asserted a property of the
competitive reaction to equilibrium which we have found to be false. Smithies

asserted that “"the equilibrium position is independent of the starting points"
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[16; p. 493] whereas this result has never obtained in any of our numerical
simulation nor is it a property of the Hotelling zero elasticity of demand

case analyzed immediately above.

The analytical expressions denoting the mathematical qualities of
each step in a path of competitive reaction are obtained for the case of a
constant elasticity of demand by solving the equations'for (pi, “1) and
(p,, u,) resulting from setting the derivatives of (5) and (7) with respect
to P> U

and P,s U equal to zero when the market is divided at some

1 2

point Uy 3 and for the case of linear demand by solving the equations for
(pl, ul) and (pz, “2) resulting from setting the derivatives of (24) and
its companion for firm 2 with respect to p,, u; and p,, u, equal to

zero when the market is divided at some point Uy -

We chose to investigate the process of competition by numerically
simulating the process with the aid of the mathematical expressions describing
the process. We ran over one hundred simulations some of which were reported
in Section 2. In all cases we obtained an equilibrium for each duopolist
exhibiting the same price (f.o.b.) for each and a Tocation for each sym-
metric about the mid point of the market as in Figure 2. Costs were always
taken to be zero. The results will be unaffected by this assumption. In
Figure 3, one can observe the convergence to equilibrium as both competitors

react step-wise to the other's previous position and price.8
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Each schedule in either of quadrants II or IV indicates the maxi-
mum attainable profits for competitor 1 or 2 respectively. For example in
quadrant IV schedule i shows the maximum profit attainable by competitor 2
as he varies his position (and price) when competitor 1's position and price
are fixed. Competitor 2 really only varies his position because his price

will bé determined by his competitor's price and the point where the two

competitors choose to divide the market. Let competitor 2 test point s,

He then lets the frontier between his market and his competitor vary until

he finds the point for the frontier of maximum profit. This maximum profit
level will be at s'. Similarly all possible Tocations are tested and schedule
i is mapped out. Point x is the one of maximum profit for that step in the
competitive reaction. That position corresponds to competitor 1's-position y.
Thus we get point i'in quadrant I. Quadrant II contains maximum feasible
profit schedules for competitor 1. Quadrant III shows the level of profits
being made by competitors 1 and 2 at two consecutive reactions to one another's
price and location. In equilibrium neither competitor is induced to move by
the incentive of potentially higher profits since none can be attained.
Profits will be equal as is indicated by their final points being on the 450
Tine in quadrant III. Each competitor will be an equal distance from opposite
ends of the market as indicated by the final positions being on the 45% 1ine

in quadrant I,

The numerical example related to Figure 3 is presented below in

Table 4,
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Table 4

SIMULATION OF COMPETITIVE REACTIONS AND EQUILIBRIUM
(Linear Demand Functions)

£=1.0, b=1.0, k, =k, =0, t=1.5.

Step u P, i Step| u, P, i

Initial
values 0.6500 | 0.5000 ---
1 0.4036 | 0.7350 0.3263 2 |0.,5545 | 0.8128 | 0.3978
3 0.4492 | 0.8211 | 0.4052 | 4 | 0.5489 | 0.8203 | 0.4065

5 0.4511 | 0.8203 | 0.4055 6 | 0.5489 | 0.8203 | 0.4055

Note that the equilibrium positions for each competitor satisfy the condition
which Samueison9 required of a satisfactory model, that is:

Max 1 (u,, p,s U,, p,) =  Max 1 _(u,, py» U,, p.)
{ul’ pl} 1 1 1 2 2 {uz, pz} 2 1 1 2 2

where u; s position or Tocation and p; price (f.o.b.). A number of
other important remarks are as follows.

(a) The final prices and positions are dependent on the initial price
and position of the first competitor. For the linear demand function case,
we can assume that the first competitor would initially locate in the center
of the market and sell at a price which maximized his profits. Thus the
initial position would always be the same and the initial price would depend
on the parameters of the cost and demand functions. .However profits are
unbounded above for a single seller in the constant elasticity of demand case,
Hence the initial price and position are always arbitrary and thus the final
equilibrium positions for the duopolists cannot be predicted. The equilibria

will vary with the initial position and we observe in location what Samuelson




- 28 -

has aptly termed, "the random walk of history" [15; p. 126]. Table 5

contains numerical simuiations.
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Table

5

SIMULATION OF "RANDOM WALK"
(Linear Demand Functions)

. Initial Values | -Final Equilibrium Values
Y, P2 u; P1 Ty u, Py I
0.65 0.75 0.4738 | 0.8563 | 0.4230 | 0.5262 | 0.8563 | 0.4230
0.65 0.50 0.4511 | 0.8203 | 0.4055 | 0.5489 | 0.8203 | 0.4055
0.75 0.50 0.4512 | 0.8157 | 0.4033 0.5488. 0.8157 | 0.4033
0.80 0.50 0.4680 | 0.8420 | 0.4161 | 0.5320 | 0.8420 | 0.4161
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(b) The final equilibrium prices and locations display a stability not
inherent in the Hotelling zero-elasticity case. So long as there is some
elasticity of demand, it will require a larger price decrease from the
equilibrium price in order for a competitor to grab the whole market than

in the zero elasticity case where an epsilon (small} decrease would suffice.
The stability of the final equilibrium increases as the elasticity of demand
increases for the constant elasticity of demand case or as the transportation
costs increase for the linear demand case. In other words as long as there
is some elasticity to demand the final equilibrium is more stable than in
the Hotelling zero elasticity case. A non-zero elasticity of demand implies
that each duopo?ést has an additional market he can rely on to buy his
commodity that he did not have in the Hotelling case. A duopolist will

not only have his hinterland but also his local market between himself and
his competitor's local market, region u, - u; in Figure 2. These local
markets act as buffers between competitors; they were not present in the
Hotelling zero-elasticity of demand case. These local markets are larger

in equilibrium for higher elasticities of demand.

We might also remark that the process of competitive reaction dis-
played no instability characteristic of the zero elasticity case. We re-
quired for each step in the zero elasticity of demand case that at each step
in the reaction, no competitor Towered his price beyond the point where that
new price differed from the competitor's price by more than the cost of
transporting the commodity from location 1 to location 2. With a non-zero
elasticity of demand (including the linear demand case) we find that at each
step in the reaction, no competitor lowers his price and shifts his location

in such a way that he grabs the whole market. The Tocal markets act as a
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buffer even in disequilibrium,

(c) The final equilibrium prices and Tocations display a stability

which Samuelson has defined as stability of the second kind [13; p. 226]

or what is also known as stability in the sense of Lyapunov.9 This stability
implies that variables remain close to equilibrium without necessarily con-
verging to it when perturbed slightly. If the competitors react to reach

an equilibrium and then one shifts his position or price, a new equilibrium
for both will be established after a competitive adjustment process. This
adjustment will not be orderly if the price or location perturbation is

Targe enough to cause one competitor to grab the whole of the market. Orderly
means that the process of competitive reaction does not have to start again
with only one competitor in the market at the outset. A numerical simulation

is presented below in Table 6.
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Table 6
SIMULATION OF PERTURBED EQUILIBRIUM
£=1.0, b=1.0, k, = kz =0, t=1.0

{Linear Demand Functions)

Initial Values “ Final Equilibrium Values

Uy P2 || ! P1 0y ) P2 I,

0.65 0.75 0.4993 | 0.7674 | 0.,3798 | 0.5007 | 0.7674 | 0.3798

0.5007} 1.50 0.4993 | 1.5000 | 0.7369 | 0.5007 | 1.5000 | 0.7369
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We can relate the process of competitive reaction with non-zero
elasticity of demand to the classical duopoly reaction theor‘y.10 Hotelling

traversed this course in the first part of his article.ll

moo= f{u, py, u,,p,) and 1, = f(u, p, u,, p,)

as in equations (5) and (7).
At the point separating the two markets U s the delivered prices must be
equal or _

p, t tlu, -u) = p, + t{u, - u)
In order to get a classical reaction function, we must fix Uy at some
value, perhaps at the center of the market, %2, and eliminate p, from f .

In competition, a firm selects Uy in order to maximize profits given the

price and location of his rival. We now determine

oIy
- gy (U, up,) = 0 (29)
3IL,

and W, gy(u,u,,p,) = 0 (30)
32T, 92T, »

where -and —, are negative,
Bu, 2 au,,

Now if pé is fixed initially we can solve (29) and (30) for the equilibrium
positions u, and u, as in the classical reaction function theory. However
this relationship between competition in a spatial duopoly model and a classi-
cal model is purely formal since at each reaction in the spatial model P,

and Uy change resuiting in two new reaction functions being defined. Thus
the classical duopoly model has a unique pair of reaction functions whereas

the spatial duopoly model with atomistic competition has implicit a fanﬁ?y
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of reaction functions recursively linked to each other.

4. SPACE AS A QUALITY DIMENSION

Hotelling's article on spatial duopoly is well known for its ability
to describe the behavior of two partiés vying for a nation's votes, and the
behavior of sellers of a slightly differentiable commodity vying for a market,
as well as for its analysis of the location decision. The analogy between
location in geographic space and Tocation in quality space is imperfect
especially when quality is the left to right political spectrum. Smithies
introduction of some elasticity of demand improves the ability of Hotelling's
model to explain the competition of political parties [8 ; p. 485]. Slight
changes in price (party policy) no longer result in mass swings of political
allegiance. Downs [4 ], Stokes [18] and Garvey [ 7] have elaborated on the

shortcomings of the spatial model when used in political theory.

The major drawback of the spatial model, aside from the need for
‘a non-zero elasticity of demand, is the fact that political parties vie for
a market or constituency per se rather than for profits. The competition
between political parties is a classic zero sum game and the rules of
political competiﬁion reflect this fact; competition between sellers for
profits is not a zero sum game. The warfare of political parties for a
constituency takes place in Western countries with the weapons of persuasion
as opposed to physical coercion and there are few rules of fair play. Either
party will strive to force his rival to occupy as small a share of the pol-
itical market as possible. The Lerner and Singer axioms of competitive
behavior are relevant in this context. If we associate degree of preference
with price, that is the Tower the price the more the preference, we see that

Hotelling's zero elasticity of demand formulation leaves his model open to
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the criticism of its extreme instability. A party can change its policy
(Tower its price f.o.b.) and capture the whole constituency. Even with a
non-zero elasticity of demand this same extreme instability could arise with
a sufficiently large change in price -- the 1964 presidential election? But
swings of voter support are not in the extreme form of zero-one. The non-
zero elasticity of demand case also denotes that people residing at the
extreme ends of the political spectrum have a lower preference for the polit-
ical parties than those near the center. Under normal circumstances, this
group should be a very small group, i.e. the price should become infinite
near the extremes but only near the extremes. Between the center of the
political spectrum and the extremes should be the party faithful who vote

for their party almost irrespective of the policies. This group should have
the zero elasticity of demand. Between the two groups of party faithful
should be the uncommitted or “swing" voters, This group is similar to the
one Devietoglou introduced in his analysis of duopoly in space [3]. There
should also be a relative price or preference level or set of policies which
would induce a faithful party X voteri to switch to party Y. The price party
Y must pay to win a party X follower should be an increasing function of the
distance the party X follower is from the center of the market, We shall
assume equal density of political "consumers" along the length of the market.
The principal innovation in this alternative spatial model of political party
behavior is the assumption the voters distinguish between parties at all times.
They have one preference function for Democrats and another for Republicans,

The model is illustrated in Figure 4.
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In Figure 4, the extremists are in both ends of the political spectrum
left to right. They cannot be persuaded to vote for any party under any
circumstances. Their elasticities of demand tend to infinity. In the next
regions rs and vw are the left wing and right wing party faithful.
Their elasticity of demand is zero indicated by the schedules being hori-
zontal to the horizontal axis. In the region sv are the uncommitted
voters. Points s and v can be shifted by a change in the level of

advertising on the part of the left wing and right wing parties respectively.

The major instrument open to a party is changing the relative
price of itself vis-a-vis the other party. That is by espousing policies
significantly different from its rival, it can markedly affect the relative
attractiveness or price of itself in the eyes of the opposition faithful,
A policy change shifts the relative price of the party in unknown directions.
Policy innovations tend to be risky devices for winning elections. Suggest-
ing a policy change as a shift in the party platform "to the right" or "to
the Teft" is not particularly meaningful. A shift in a party to the right
should mean that more voters on the right supported the party after the
change than before. In Figure-4, the broken line schedule below the right
wing party's schedule indicates a major change in the party platform or
policy. In this case a shift to the right results. Voters nv are added
to the right wing party's rolls of supporters. We can imagine a new group

of uncommitted existing around point n.

The important point to recognize is that the consequences of sig-
nificant policy departures from the line advocated by the rival are unpre-
dictable. For example in 1964, the Republicans attempted to bolster their
voting strength by advocating a very different party platform. Their

relative price became higher in the eyes of the Democratic Party faithful
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and the swing was to the Democrats. In this two party system, the safest
strategy is to copy the rivéi's platform and anticipate gaining on average
about the same support the rival gets. Election strategy is usually

focussed on wooing the uncommitted voters.

The relative price spreads viewed by "consumers" can vary depending
on elasticities of demand. For items 1like toothpaste or detergent, both
schedules may well be inelastic and a small change in price {policy) would
cause a mass swing in support. This appears to capture the quality of fads
and fashions. In this case advertising does indeed serve the purpose of
informing the consumers what are the differences in toothpaste ingredients

and such they should be aware of.
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FOOTNOTES

"If one tries a particular demand functions the mathematical complications
will now be considerable, but for the most general problems elasticity
must be assumed". Hotelling [8; p. 484]. We switch to analysis by
numerical simulations when the mathematical analysis gets excessively
complex.

"With elastic demand the observations we have made on the solution will
still for the most part be qualitatively true; but the tendency for B

to establish his business excessively close to A will be less marked.
The increment in B's sales to his more remote customers when he moves
nearer them may be more than compensation to him for abandoning some of
his nearer business to A. In this case B will definitely and apart

from extraneous circumstances choose a location at some distance from

A. But he will not go as far from A as the public welfare would require.
The tempting intermediate market will still have an influence "
Hotelling [8; p. 484].

Recall footnote 1.

For example Losch [10; p.13-14 discussed the issue in the German edition
of his opus on location theory but the section was excised from later
editions including the well-known Wolgom-Stolper English translation.
Palander [12; pp. 370-94] devoted considerable attention to duopoly in
space and invoked a variety of axioms of competitive behavior, Strangely
though, he fails to acknowledge the existence of Hotelling's semial

1929 paper. Lerner and Singer [9] also analyzed duopoly in space

- selecting a variety of possible assumptions concerning competitive
reactions as the focus of their analysis. Samuelson makes the salient
point that the process of competitive reaction is of:special interest

to the theorist only if the assumptions concerning the competitive be-
havior of each duopolist are sufficiently general. The Cournot:quantity
adjustment reaction or Bertrand price adjustment reaction were suggested
as satisfactory assumptions. "From this viewpoint, the Hotelling
equilibrium point is the same in principle as the Cournot point, the
Bertrand point, or the modern-day Nash equilibrium point for a non-constant
sum game; namely each of two or more rivals is supposed to pick his Xy
strategy so as to end up with the system's achieving the following
simultaneous maximum relationships

_Max H1(X1’ Xé) and -Max Hz(xl, xz) (F1)
x;} {x,}
where the barred magnitudes are subjectively taken as unalterably given.

Unless we have the special Neumann case where 1. and I, add to
a constant (or can be made to do so by sca]e'changes} there need not be
a nice saddle point solution and all such proposed Nash solutions are
open to numerous economic objections." Samuelson [14; p. 1590]. We
shall indicate below that our numerical simulations demonstrate that
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(F1) is always satisfied for economically meaningful values of the
coefficients.

There are two recent contributions to the theoretical analysis of com-
petitive reactions which make use of game theoretic concepts and backward
induction, They are by Friedman [6] and Cyert and De Groot [2]. They

both consider a sequence of n periods over which two competitors react

to each other in a non-spatial setting. Each competitor is required to
design a sequence of outputs for the periods which maximizes profits

over the sequence, "It is therefore natural to search for two sequences
of reaction functions . . . with the following property:  the sequence

of outputs ., . . for firm 1 that will be generated by these reaction
functions will maximize Q (total profits for firm 1) against (firm 2's
reaction functions):and, simultaneously, the sequence outputs for firm 2
that will be generated by these reaction functions will maximize R (total
profits for firm 2} against (firm 1's reaction functions). Such reaction
functions can be said to be optimal against each other". Cyert and

De Groot [2; p. 414] (my inserts in brackets). These sequential models

of competitive reaction presuppose that a competitor knows that competition
will ensue for at least n periods. It is for this reason that they are
considered as non-myopic models as contrasted with the Cournot-Bertrand
models where each competitor maximizes profits in alternate periods given
the price and output of his rival. In the Cournot-Bertrand framework
competitors do not plan ahead to the equilibrium n periods hence. Non-
myopic models assume that competitive reaction is a multiperiod process

and that competitors realize when a reaction step is transitory and when

it is to be a final equilibrium position. This assumption requires
ascribing more information to competitors than Cournot-Bertrand envisaged.
In the Cournot-Bertrand framework duopoly equilibrium is approached
asymptotically in an infinite sequence of adjustments and the length

of the horizon in reality is immaterial. Myopia is really a consequence

of the horizon being of indeterminate length and should not be considered

a deficiency of the Cournot-Bertrand approach or of the analogous approach
taken in this section of the paper. In fact Cyert and De Groot [2; p. 416-
17] prove that the Cournot myopic strategy is optimal for their n-period model
under fairly general assumptions. However they suggest that it is unstable
because the horizon is of known and finite length. Cyert and De Groot
acknowledge that their analysis should be extended to the infinite horizon
case [2; p. 420]. Their approach would then of course be closely allied

to the myopic Cournot-Bertrand one. '

Recall the quotation from Hotelling at the end of Case 1CE in Section 2.

Fellner [5; p. 88] "Hotelling obtains what essentially are price reaction
functions. These intersect at a level securing profits for both firms.

The difference between Hotelling's problem and Bertrand's is that in
Hotelling's problem an infinitesimal price reduction does not give the
undercutting firm the whole market but results merely in a slight increase
of his market." Fellner was no doubt referring to Hotelling's Figure 2

and the related discussion, However Figure 2 is drawn under the assumption
that the positions of the two competitors are both fixed and at a positive
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distance from each other. The form of competition implicit in this part
of Hotelling is one where the costs of relocation are high enough to
preclude Tocation adjustment. Hotelling introduced this case to illu-
strate how orthodox Cournot-Bertrand duopoly theory was related to his
model. His point was: "If the purveyor of an article gradually increases
his price while his rivals keep their fixed, the diminution in volume of
his sales will in general take place continuously rather than in the
abrupt way which has facitly been assumed." Hotelling [8; p. 467]. The
point which Chamberlin rightly emphasized is that in the situation where
Tocation was a variable as well as price (f.o.b.) (we might call it
Hotelling (1929) II) then the discrete diminution in volume of sales in
response to a competitor's price reduction is the rule.

Some license was taken in drawing the schedules in Figure 3 in order to
make the process clear. A diagram based on the actual numerical simulation
reported below would have the final two profit points in each of quadrants
2 and 4 almost coincident with one another.

See Negishi [11; p. 461].

See Fellner [5; p. 71-91] for an exposition of classical reaction function
theory and Cyert and De Groot [2] and Friedman [6] for recent extensions.

Recall footnote 7.
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