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Abstract

This article argues that conventional approaches to the treatment of seasonality in
econometric investigation are often inappropriate. A more appropriate technique is to
allow all regression coefficients to vary with the season, but to constrain them to do
so in a smooth fashion. A Bayesian method of estimating smoothly varying seasonal
coefficients is developed, based on Shiller’s (1973) approach to estimating distributed
lags. In a sampling experiment, this technique outperforms ordinary least squares by a
substantial margin. An application of this technique to the estimation of the demand
for soft drinks is also presented.
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1. Introduction

Many economic time series display regular seasonal fluctuations. If the seasonal fluc-
tuations in the independent variables fully accounted for the seasonal fluctuations in
the dependent variables, no problem would exist for econometricians. Indeed, by im-
parting additional variation to the independent variables, seasonal fluctuations would
increase the precision of coefficient estimates. It is often the case, however, that when
seasonally varying dependent variables are regressed on seasonally varying independent
variables, the resulting residuals have a seasonal pattern. Faced with this situation, the
practicing econometrician typically does one of two things: Either he inserts dummy
variables to capture the effects of seasonality, or he employs seasonally adjusted data
(usually provided by official sources). In this article, a third approach is advocated.
We propose to allow all of the parameters of the model to vary from season to season,
but to constrain them to do so in a smooth fashion.

The rationale for this approach is developed in this section. An estimation procedure
which implements the approach is presented in Section 2. The results of some sampling
experiments which investigate the performance of this procedure are given in Section 3.
Finally, in Section 4, the technique is applied to the estimation of the demand for soft
drinks in Canada.

The economic model which explains an economic time series x(t) may be written as

x(t) = f
(
z(t), u(t), θ

)
, (1.1)

where z(t) is a vector of other economic time series, which may include lagged values,
including lagged values of x(t) itself, u(t) is a vector of random errors, and θ is a
vector of parameters. In some cases, it may be possible to rewrite (1.1) as

x(t) = g
(
z(t), u(t),θ1

)
+ S(t,θ2). (1.2)

That is, it may be possible to break x(t) into two parts, one of which (S) varies
systematically with the season but does not depend on z(t), and the other of which (g)
does not show any systematic seasonal variation. Of course, x(t) may be the logarithm
of a series, so that (1.2) would actually be a multiplicative relationship. If the model
can be written in this way, we say that it displays separable seasonality; if not, we say
that it displays inseparable seasonality. If deseasonalization of the time series x(t) is
to be practical, the model underlying x must display separable seasonality. Otherwise,
one could not hope to estimate θ2 independently of θ1, and hence a deseasonalized
series could not be arrived at without first estimating (1.1).

Many techniques for deseasonalization have been proposed; see, among others, Lovell
(1963), Jorgenson (1964), Shiskin, Young, and Musgrave (1967), and Sims (1974).
It should be noted that inserting seasonal dummies into a regression on raw data
is equivalent to using one of these standard deseasonalization techniques; see Lovell
(1963). All such techniques attempt to estimate the seasonal component without
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estimating, or even knowing the form of, equation (1.1). Thus they all assume that
seasonality is separable.

Economic theory, however, provides no support for this assumption. The one unifying
principle of neoclassical theory is that market behavior should be derived from under-
lying tastes and technology by assuming that agents maximize some quantity such as
utility or profits. Thus seasonal variation in market variables should be derived from
seasonal influences on tastes and technology. It is easy to construct simple models
of this type, and we have investigated a number of them. In every case where the
utility, cost, or production functions were realistic, the demand or supply functions
derived from them displayed inseparable seasonality. Thus we believe that inseparable
seasonality is the rule rather than the exception for economic time series.

In principle, the econometrician should use economic theory to specify the functional
forms of the relationships he or she estimates, including the ways in which seasonal
factors enter into them. In practice, however, partly because most theory applies to in-
dividual agents while most time series data apply to broad aggregates, microeconomic
theory provides little guidance about functional forms. The econometrician typically
falls back on some variant of the general linear model to serve as an approximation of
the true functional form which is complicated and unknown. If seasonality is not sepa-
rable, this approximation should be different in every season, so that every parameter
is allowed to vary from season to season. Thus an appropriate model to estimate is

yt =
λ∑

i=1

DitXtβi + εt, (1.3)

where yt is a dependent variable and Xt is a vector of independent variables at time t,
Dit is a scalar equal to unity if t is in the ith season and equal to zero otherwise, βi is
a vector of coefficients for season i, and the number of seasons is λ.

The model (1.3) is simply a generalization of the traditional dummy variable procedure
in which all parameters, not merely the intercept, are allowed to vary seasonally. Hence
it can approximate a true functional form in which seasonality is inseparable. Ordinary
least squares estimation of (1.3) is equivalent to simply fitting a separate relationship
for every season, and thus it is likely to lead to rather imprecise estimates unless the
sample size is large. One would, therefore, like to impose some additional restrictions
on the model. In many situations, it may be reasonable to impose the restriction that
the values of each parameter in adjacent seasons will not differ greatly. We refer to
this as the assumption of smooth seasonality. It is often a useful assumption, and in
the next section we present a technique for its econometric implementation. First,
however, we examine the smooth seasonality hypothesis more closely.

Three objections may be raised to the assumption that parameters vary smoothly
from season to season. First, such an assumption is simply inappropriate in some
situations. For example, the demand for Easter eggs varies seasonally, but the variation
is probably not very smooth, and, moreover, it will be different in different years. In
such situations, the smooth seasonality assumption should not be employed.
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Second, the smooth seasonality hypothesis puts no restrictions on relationships among
the coefficients on different variables. Unfortunately, such restrictions are not, in
general, justified. Consider the utility function

U(x1, sx2), (1.4)

where x1 and x2 are the quantities of goods 1 and 2, and s is a parameter which
varies smoothly with the season. If the functional form of U were unknown, one
would often estimate log-linear relationships between quantities demanded, prices,
and income, in which the parameters of interest are price and income elasticities. It
can straightforwardly be shown that when demand functions are derived from (1.4),
the effect of a change in s on the income elasticity of the demand for each good is
quite different from the effect of such a change on the price elasticities. Thus the
relationships among coefficients on different variables can be expected to vary with
the season.

A final objection is that phenomena which are usually called seasonal are often directly
linked to one or more dimensions of the weather, such as temperature or rainfall.
Thus one should incorporate weather directly into the model to explain seasonality.
Such a proposal is attractive in principle, but it may be very hard to implement.
Weather has many dimensions and often varies enormously across regions for which
statistical data are available. Thus it is doubtful that seasonality could be adequately
explained by only a few weather variables. Even if it could be, it seems likely that the
parameters of the model would depend on the weather variable(s) in a complicated and
nonlinear way, so that specifying the model might be very difficult. Moreover, some
seasonal phenomena may depend not so much on actual weather as on the weather
that usually occurs in those seasons, so that use of weather data may introduce an
errors-in-variables problem. The hypothesis of smoothly varying seasonal parameters
may be regarded as a way of approximating the effects of average weather on the
model’s parameters. In Section 4, where we present an example of our smoothness
technique, we also examine methods for the explicit use of weather data.

2. Seasonally Varying Parameters and Smoothness Priors

The problem of estimating parameters which vary with the season is not unlike the
problem of estimating a distributed lag model. In both cases, the main difficulty is
the large number of parameters that could potentially be estimated, and the obvious
solution is to constrain the estimates in some way, The most elegant and flexible
technique for constraining the coefficients of a distributed lag is the Bayesian technique
recently proposed by Shiller (1973). In this section, his technique is adapted to the
case of seasonally varying parameters; where possible, Shiller’s notation is used.

A natural constraint to impose is that the coefficients of a given variable should vary
smoothly across the seasons. Depending on what is meant by “smoothly,” this re-
quirement could imply that the first, second, or higher differences should be small.
The technique proposed here could be used to impose any of these constraints. To
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conserve space, only first degree smoothness priors (which impose constraints on the
second differences) are considered here.

For simplicity, consider the case with only one independent variable. Suppose that

yt =
λ∑

i=1

βiDitxt + εt, (2.1)

where xt and yt are scalar time series at time t, Dit = 1 if t is in the ith season, and
Dit = 0 otherwise. For a first degree smoothness prior, second differences between the
seasonally varying coefficients are assumed to be small. That is

(βi − βi−1)− (βi−1 − βi−2) = βi − 2βi−1 + βi−2 (2.2)

is assumed to be small for all periods i. Note that the periodicity of the seasons implies
that the first coefficient is linked to the last as well as to the second; thus βi−1 = βλ

if i = 1, and so on.

The second differences of the vector β may be written as

u = R1β, (2.3)

where R1 is a λ × λ matrix which generates (2.2). For example, when λ = 4 (i.e.,
when the data are quarterly),

R1 =




1 −2 1 0
0 1 −2 1
1 0 1 −2
−2 1 0 1


. (2.4)

In Shiller’s development, the prior information that the second differences are small is
represented by assuming that the second differences are normally and independently
distributed with mean zero and variance ζ2. Hence u comes from a spherical normal
distribution with covariance matrix ζ2I. In the case of seasonally varying coefficients,
however, this simple formulation is inadmissible, because the second differences are
linearly dependent. This fact is easily verified by noting that the first λ − 1 rows of
R1 sum to minus the λth row.

Since the second differences of β are linearly dependent, the prior information that
they are small presumably cannot be represented by the assumption that they are
normally and independently distributed (but see the following discussion). Instead,
we specify that they are normally distributed with a variance-covariance matrix which
is consistent with their being linearly dependent. The simplest formulation for the
variance-covariance matrix of u which takes into account the particular form of this
linear dependence is

ζ2Ω = ζ2




1 ω ω · · · ω ω
ω 1 ω · · · ω ω
...

...
...

...
...

ω ω ω · · · ω ω
ω ω ω · · · ω 1




, (2.5)
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where ω = −1/(λ−1), and Ω is λ×λ. Since |Ω| = 0, u has a degenerate distribution.
Therefore, from now on, we deal with the distribution of u∗, which is equal to u with
the last element deleted. Define R∗

1 as a (λ− 1)× λ matrix consisting of R1 with the
last row deleted. Then

u∗ = R∗
1β, (2.6)

and u∗ is normally distributed with covariance matrix ζ2Ω∗, where Ω∗ is derived by
deleting the last row and last column of Ω. Finally, define

R̃1 = Ω∗−1/2R∗
1 (2.7)

and
ũ = R̃1β. (2.8)

The vector ũ has a spherical normal distribution with covariance matrix ζ2Iλ−1.

In order to impose a prior on ũ, it is necessary to know Ω∗−1/2 From the form of
Ω, it is obvious that this must be a matrix with α1 on the principal diagonal and α2

everywhere else. Solving for α1 and α2 is straightforward. There are two solutions,
one of which is

α1 =
λ + λ1/2 − 2

(λ− 1)1/2λ1/2
, α2 =

λ1/2 − 1
(λ− 1)1/2λ1/2

. (2.9)

This solution may be derived from a formula provided by Nerlove (1971).

The matrix R̃1 plays exactly the same role as Shiller’s R1. Thus combining the prior
on u with a normal likelihood function for the εt, which are assumed to be n.i.d. with
variance σ2, yields a posterior distribution which is normal. The smoothness estimator
of β is given by

β̂ = (X̃>X̃)−1X̃>ỹ, (2.10)

where

X̃ ≡
[

D1x D2x · · ·Dλx

kR̃1

]
, (2.11)

ỹ ≡
[

y

0

]
, (2.12)

and
k ≡ σ/ζ. (2.13)

Obtaining β̂ is considerably easier if one replaces kR̃1 in (2.11) by

(
λ− 1

λ

)1/2

kR1 (2.14)
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and lengthens the vector of zeros in ỹ accordingly. It is proved in Appendix 1 that β̂ is
unaffected by this substitution.1 It is easy to obtain β̂ using an ordinary least-squares
regression package; it is merely necessary to add λ zeros to the vector y, and the λ
rows of R1, multiplied by (

(λ− 1)/λ
)1/2

k,

to the X matrix. This procedure can thus be interpreted in the context of mixed
estimation, in a manner analogous to Taylor’s (1974) interpretation of Shiller’s proce-
dure. If k is large, the dummy observations will carry a lot of weight, and as a result
the estimated second differences will be small. The choice of k will be discussed in
Section 3.

The procedure outlined above can be extended directly to the case where there is
more than one independent variable. A different prior must be specified for each set of
seasonally varying coefficients, and hence a different k must be used for each. If there
are T observations and n variables, all with seasonally varying coefficients, then X̃
will have nλ columns and T + nλ rows, with λ rows of dummy observations for each
of the n variables.

3. Sampling Experiments

Several sampling experiments were performed to investigate the performance of the
smooth seasonality technique. The main objectives of these experiments were to see
how the smoothness technique compares with ordinary least squares, and to find out
how the choice of k affects the estimates.

The model examined is

yt =
12∑

i=1

aiDit +
12∑

i=1

biDitxt + ut, (3.1)

where Dit is a dummy variable that equals one when t equals i plus an integer multiple
of 12, and that equals zero elsewhere. The error term ut is normally distributed with
mean zero and variance σ2. The independent variable xt is generated by

xt =
12∑

i=1

ciDit(Art) + et, (3.2)

where et has mean zero and variance σ2
e . Thus xt trends upward but also varies

seasonally (due to the ci) and randomly.

1 We are grateful to an anonymous referee for pointing this out to us. It may also
be noted that our procedure is equivalent to using an Aitken estimator on the com-
plete stacked regression, with the Moore-Penrose generalized inverse of the variance-
covariance matrix Ω.
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In the sampling experiments reported here, the following parameter values were used:

c1 = c2 = c3 = 0.9,

c4 = c5 = c6 = c10 = c11 = c12 = 1.0,

c7 = c8 = c9 = 1.1,

A = 10, r = 1.005, σe = 1,

a1 = 8, a2 = 8, a3 = 9, a4 = 10a5 = 10, a6 = 11,

a7 = 12, a8 = 12, a9 = 11, a10 = 10, a11 = 10, al2 = 9,

b1 = 1.173205, b2 = 1.1, b3 = 1.0, b4 = 0.9, b5 = 0.826795, b6 = 0.8,

b7 = 0.826795, b8 = 0.9, b9 = 1.0, b10 = 1.1, b11 = 1.173205, b12 = 1.2

(3.3)

Note that the bi follow a sinusoidal pattern. They were in fact generated by the
equation

bi = 1.0 + 0.2 cos(πi/6).

The pattern of the ai, though regular, is somewhat less smooth.

The correct values of ka and kb are σ/ζa and σ/ζb, respectively. But although σ is
known, ζa and ζb, the standard deviations of the priors on the second differences of
the ai and the bi, are not. Since the assumed ai and bi were not actually generated
as realizations of multivariate normal distributions on their second differences, their
standard deviations are not good estimators of ζa and ζb. Shiller suggests that, for
the distributed lag case, ζ should be derived by assuming that the lag has a vee shape
and the sum of coefficients expected by the investigator. An analogous procedure for
the seasonal case is to assume that the seasonal coefficients follow a vee wave, with
the true (or expected) amplitude, rising linearly for half the year and falling linearly
for the other half. One could also assume that the coefficients lie on a square wave
with given amplitude, so that they are equal to their largest value for half the year
and to their smallest for the other half. Given some such set of assumed βi, one may
compute the value of ζ using

ζ2 =
β>R∗

1
>Ω∗−1R∗

1β

λ− 1
, (3.4)

or, equivalently from Appendix 1,

ζ2 = β>R1
>R1β/λ. (3.5)

Expression (3.4) has the form of a maximum likelihood estimate of ζ2, and (3.5) is
simply the mean of the squared second differences of the elements of β.

If the ai follow a vee wave with their actual amplitude, the resulting value of ζa

is 0.544331, and if they follow a square wave, the resulting value of ζa is 2.309401;
similar assumptions on the bi, which have one-tenth the amplitude, yield values of ζb

one-tenth as large. These values of ζa and ζb were used in the sampling experiments.
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The square wave assumption yields relatively small values of k, and the vee wave
assumption yields relatively large values of k, so the two estimators will be referred to
as the small-k and large-k estimators, respectively.

The results from two sampling experiments are presented in Tables 1 and 2. In both
cases, the model was given by (3.1), (3.2), and (3.3), the number of observations was
120 (corresponding to ten years of monthly data), and the number of replications
was 100. These simulations were written in FORTRAN on a Burroughs B6700, using
48-bit floating point arithmetic. The error terms were generated by a routine which
approximates a normally distributed random variate by the sum of twelve pseudo-
random uniform variates. In the two experiments reported on here, the standard
deviation of the error term in (3.1), σ, is 0.5 and 1.0, respectively. Different values of
σ were investigated because, as σ increases, the weight accorded the prior information
also increases.

Root mean square errors (RMSE) are presented in columns one to three of Tables 1
and 2. Note that ā refers to the average of the ai, so that the entries in columns 1
to 3 beside ā refer to the RMSE of the average, while the entries beside “avg.” refer
to the average of the RMSEs over the 12 periods. It is evident from Table 1 that the
smoothness estimators have substantially lower RMSEs than ordinary least-squares
(OLS) estimators; the only coefficients for which the difference is not substantial are ā
and b̄. The large-k RMSEs are somewhat smaller than the small-k RMSEs; however,
the former are much more variable than the latter. The results in Table 2 confirm
those in Table 1, the main difference being that all RMSEs are substantially larger,
and the relative performance of OLS is worse.

Mean biases are presented in columns four through six of Tables 1 and 2. An aster-
isk indicates that bias was significant at the 5 percent level, according to a simple
nonparametric test on the number of replications for which the estimate exceeded the
true value; critical points were 39 and 61 replications, using the normal approxima-
tion to the binomial. The small-k estimates exhibit some bias, but it is not large and
mainly affects a few coefficients. The large-k estimates, on the other hand, exhibit
very substantial bias, especially for σ = 1.0. The estimates apparently tend to reduce
the amplitude of the true seasonal coefficients; large coefficients are underestimated,
and small ones are overestimated.

Experiments for larger values of σ, not reported here, confirm the results suggested by
comparing Tables 1 and 2: As the standard error of the regression increases, the RMSEs
of the smoothness estimates increase. When σ is very large, the large-k estimates
exhibit almost no seasonal variation at all, and the small-k estimates are substantially
biased.

It should be remembered that, in all these experiments, k was set equal to σ/zeta,
so that the weights on the dummy observations increased linearly with σ. It would
appear to be the case that, in order to avoid excessive bias, k should vary less than
proportionately with σ.
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4. An Application

To illustrate how the smooth seasonality technique performs in practice, it was applied
to the estimation of the demand for soft drinks in Canada, using monthly data. The
model estimated is

Ct =
12∑

i=1

Dit(a1iSt + a2iSDPt + a3iFPt + a4iEXt + a5iYt) + ut, (4.1)

where Ct is the log of per capita soft drink consumption, St = 1, SDPt is the log of the
price of soft drinks relative to a nonfood price index, FPt is the log of the price of food
relative to the nonfood price index, EXt is the log of per capita real expenditure, and
Yt is a variable representing the relative proportion of young people in the population.
The index i is one in January. Monthly data for 1959:1 to 1974:6 are employed, so that
there are 186 observations. Since all variables are measured in natural logarithms, the
coefficients are elasticities. Precise definitions of all variables are given in Appendix 2.
This model is presented here as an illustration of technique, not as a definitive analysis
of soft drink demand.

The values of k1 through k5 for this example were chosen as follows. First, OLS was
applied to equation (4.1). The ζj were then computed from (3.5) on the assumption
that the j th coefficients had mean equal to the mean of the OLS coefficients and
followed a square wave which varied from +100 percent to −100 percent of that mean.
The quantity kj was then computed as σ̂/ζj , where σ̂ is the estimated standard error
from the OLS regression. This procedure yielded the following values for the kj :

k1 = 0.0111, k2 = 0.0822, k3 = 0.2466, k4 = 0.0123, k5 = 0.1206.

For purposes of comparison, two more restrictive models were also estimated. One,
which will be referred to as “Lovell”, because it uses the dummy-intercept treatment
of seasonality dealt with by Lovell (1963), constrains aji to equal aj for all variables
except the intercept. The second, which will be referred to as “Unified”, constrains
aji to equal aj for all variables, and thus takes no account of seasonality at all.

The results of smoothness estimation of (4.1) with the kj given above, of OLS es-
timation of (4.1), and of the Lovell and Unified models, are presented in Table 3.
Numbers in parentheses are t statistics. The Unified model is clearly inappropriate.
Its estimates are wildly different from those of the other three models, its R2 is very
low, and an F test of Unified against OLS rejects the former at all normal significance
levels. The Lovell model is not as clearly inappropriate; OLS fits significantly better
than it does at the ten percent level, but not at the five percent level. This does
suggest, however, that it would be dangerous to accept the Lovell model as a complete
treatment of seasonality in soft drink demand. There is no evidence of twelfth-order
autocorrelation for either the Lovell or Smoothness models, according to a regression of
the residuals on those lagged twelve months. In contrast, Unified displays evidence of
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severe twelfth-order autocorrelation (significant at more than the .01 level), suggesting
that this test on the residuals is a useful diagnostic.

In terms of the estimates of average coefficients, there is little to choose between the
Smoothness, OLS, and Lovell approaches. However, the Lovell approach necessar-
ily gives no information about the seasonal pattern of the coefficients, and the OLS
estimates jump around so much that they also provide no useful information. The
Smoothness estimates, on the other hand, generally vary from month to month in a
simple, regular fashion. Thus, if the investigator has any interest in the seasonal pat-
tern of the coefficients, either because it is interesting in itself or because it may provide
evidence of misspecification (if, for example, the peaks are in the wrong season), the
smoothness technique would appear to be well worth employing.

One way to test the appropriateness of the smoothness restrictions is to use Theil’s
test for the compatibility of prior and sample information (Theil 1971, pp. 350–351).
Under the null hypothesis, the test statistic is distributed as a chi-squared random
variable with 55 degrees of freedom. The value of the statistic for the prior we used
is 197.9, which is more than twice the 0.005 tail value. Thus the sample information
appears to be inconsistent with the smoothness prior. It should be noted, however,
that if the kj are reduced by a factor of two, the resulting priors, which seemed to us
too weak, do pass the Theil test at the .05 level.

As discussed in Section 2, an alternative to the seasonally varying parameters model
is the explicit introduction of weather into the regression. The dimension of weather
most relevant to soft drink demand is temperature. Accordingly, we introduced a
temperature variable, Wt, which is a weighted average of daily maximum temperatures
in Canada’s three largest metropolitan areas, in or near which most Canadians live;
see Appendix 2.

Initially, we simply added Wt to the specification, either additively or multiplicatively.
The results were disappointing. Neither Wt nor Wt times each of the five other vari-
ables added significantly to the explanatory power of OLS applied to (4.1). Although
they did add significantly to the power of the Unified model, the resulting equations
were not very impressive.

We then experimented with a spline approach (Poirier, 1975) to allow for nonlinear
effects. We felt that 35◦ F might represent a temperature below which changes in
temperature would have no effect on the demand for soft drinks, while 70◦ F might
represent a temperature beyond which changes in temperature would greatly affect
demand. Accordingly, we defined

W1 =
{

W − 35 if W ≥ 35
0 otherwise

and
W2 =

{
W − 70 if W ≥ 70
0 otherwise.

The spline approach worked considerably better than using just a single weather vari-
able. Adding W1 and W2 to equation (4.1) reduced the SSR from 0.5411 to 0.5113, a
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reduction which is significant at the .05 level; the F statistic is 3.613, compared with
F.05(2, 124) = 3.069. Adding W1 and W2 times each of the other variables reduced
the SSR to 0.4580, a reduction which is also significant; the F statistic is 2.104, com-
pared with F.05(10, 116) = 1.913. Thus the weather variables do appear to add to the
specification.

The weather variables alone, however, do not perform nearly as well as OLS. The
model

Ct =
5∑

j=1

ajXjt + b1W1t + b2W2t + ut (4.2)

had an SSR of 1.7396. Adding the seasonal variables of (4.1) yielded an F statistic of
5.416, compared with F.05(55, 116) = 1.445. Thus the seasonally-varying parameters
add considerably to the specification based on the weather variables. Using seasonally-
varying coefficients alone seems preferable to using (4.2) or (4.3). It would appear
that, in this case, the explicit introduction of weather variables cannot replace the
seasonally-varying parameters model, but it may be a useful addition.

5. Conclusion

We have argued that the mechanical treatment of seasonality by the use of deseasonal-
ized data or seasonal dummies cannot, in general, be justified on the basis of economic
theory. Econometricians should, instead, attempt to build seasonality into their mod-
els. If that is not possible, they should at least allow seasonal influences to enter in
less restrictive ways than is customary. One way to do so is to allow all coefficients
to vary with the season, but OLS estimation of such models is likely to be difficult.
An alternative approach involving the use of smoothness priors is described here, and
sampling experiments show that it compares well with OLS. The smoothness approach
was then applied to estimating the demand for soft drinks, and it performed well com-
pared with the explicit use of weather variables. The smooth seasonality approach
thus appears to be practical and potentially useful.
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Appendix 1

This appendix shows that β̂ is unchanged if kR̃1 in (2.11) is replaced by

(
(λ− 1)/λ

)1/2
kR1,

and the number of zeros in Ỹ is correspondingly increased by one. The only part of
(2.10) which is affected by the substitution is X̃>X̃, which is originally equal to

X>X + k2R∗
1
>Ω∗−1R∗

1 (A.1)

and becomes
k2

(
(λ− 1)/λ

)
R1
>R1. (A.2)

The inverse of Ω∗ is a matrix with 2(λ− 1)/λ on the principal diagonal and (λ− 1)/λ
everywhere else. Thus the second term in (A.1) can be written as

k2
(
(λ− 1)/λ

)
R∗

1
>WR∗

1, (A.3)

where W is a matrix with 2 on the principal diagonal and 1 everywhere else.

Let M be a matrix consisting of an identity matrix of order λ− 1 plus an additional
row every element of which is −1. It is easily seen that

R1 = MR∗
1, (A.4)

since the identity matrix simply recreates R∗
1 and the final row of restores the last row

of R1, which is equal to minus the sum of the rows of R∗
1. Moreover, it may readily

be verified that M>M = W. Hence

R∗
1
>WR∗

1 = R∗
1
>M>MR∗

1 = R1
>R1. (A.5)

Thus the second term in (A.1) is equal to the second term in (A.2), which implies that
β̂ is unchanged.
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Appendix 2

All data presented are Canadian and, except for the weather variables, they were
accessed through the CANSIM data base. The data were published in Table 4 of the
original article. They may be accessed at the website of the second author.

CON: volume index of soft drink production, 1961 = 100, monthly, unadjusted.

POP: total noninstitutional population, monthly, unadjusted.

POP25: total noninstitutional population aged 25 and over, monthly, unadjusted.

SDPRICE: consumer price index for soft drinks, monthly, unadjusted.

FPRICE: consumer price index for food, monthly, unadjusted.

CPRICE: consumer price index for all items excluding food, monthly, unadjusted.

QEXP: total personal expenditure on nondurable goods in constant dollars, quarterly,
unadjusted.

EXP: monthly interpolation of QEXP. If the month is the middle month of a quarter,
EXP is equal to QEXP; otherwise, EXP is equal to two-thirds of QEXP plus one-
third of QEXP for the adjacent quarter.

C = log(CON/POP).

Y = log
(
(POP− POP25)/POP

)
.

SDP = log(SDPRICE/CPRICE).

FP = log(FPRICE/CPRICE).

EX = log(EXP/POP).

WM: average daily maximum temperature in degrees Fahrenheit, Montreal.

WT: average daily maximum temperature in degrees Fahrenheit, Toronto.

WV: average daily maximum temperature in degrees Fahrenheit, Vancouver.

W = 1−
3
WM + 1−

2
WT + 1−

6
WV.
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Table 1. First Experiment: σ = 0.5

RMSE Bias

Coef. OLS Small-k Large-k OLS Small-k Large-k

a1 0.9326 0.6411 0.6759 −0.1551 0.0398 0.5185∗

a2 1.1687 0.6637 0.6116 −0.1602 0.0160 0.4310∗

a3 0.8696 0.6244 0.4335 0.0545 −0.0646 −0.0691

a4 1.1716 0.7285 0.6318 −0.1051 −0.2572∗ −0.4533∗

a5 0.8122 0.6119 0.4317 −0.0370 0.0383 −0.0422

a6 1.1086 0.6855 0.5520 −0.2192 −0.1354 −0.3365∗

a7 0.8375 0.6520 0.8213 −0.1408 −0.2366∗ −0.7025∗

a8 0.8932 0.6970 0.7330 −0.0517 −0.1765 −0.5971∗

a9 0.9914 0.6445 0.3956 −0.1440 −0.0540 −0.0711

a10 0.9142 0.6326 0.4862 −0.0019 0.1334 0.3122∗

a11 0.8380 0.5489 0.3893 0.0238 −0.0861 −0.1043∗

a12 0.8303 0.5892 0.4432 0.1914 0.0709 0.1735∗

ā 0.3015 0.2922 0.2915 −0.0621 −0.0593 −0.0784

avg. 0.9473 0.6433 0.5504

b1 0.07545 0.05177 0.05191 0.01434∗ −0.00137 −0.03841∗

b2 0.09541 0.05449 0.04930 0.01271 −0.00155 −0.03318∗

b3 0.06941 0.05050 0.03590 −0.00597 0.00365 0.00328

b4 0.08513 0.05237 0.04298 0.00705 0.01773∗ 0.02791∗

b5 0.06233 0.04685 0.03339 0.00361 −0.00170 0.00918

b6 0.07783 0.04690 0.03725 0.01503 0.00909 0.02406∗

b7 0.05565 0.04365 0.05332 0.00889 0.01515∗ 0.04480∗

b8 0.05848 0.04566 0.04785 0.00495 0.01295 0.03879∗

b9 0.06743 0.04561 0.02962 0.00951 0.00369 0.00517

b10 0.06200 0.04247 0.03084 0.00110 −0.00790 −0.01639∗

b11 0.05599 0.03702 0.02559 −0.00051 0.00653 0.00361

b12 0.05685 0.04041 0.03215 −0.01498 −0.00674 −0.01441∗

avg. 0.06850 0.04648 0.03918
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Table 2. Second Experiment: σ = 1.0

RMSE Bias

Coef. OLS Small-k Large-k OLS Small-k Large-k

a1 1.6017 0.9848 1.2296 0.0959 0.2887 1.0634∗

a2 2.1140 1.0642 1.0884 −0.2663 0.2191∗ 0.8867∗

a3 1.8798 1.0819 0.6567 0.0890 −0.0565 0.1393∗

a4 1.9409 0.9474 0.8047 0.1671 −0.2639∗ −0.5174∗

a5 1.5108 0.9078 0.6719 0.0085 0.1083 −0.2819∗

a6 1.9447 1.0204 1.0177 −0.3095 −0.1110 −0.7945∗

a7 1.5287 1.0025 1.4186 −0.0663 −0.3127∗ −1.2691∗

a8 1.5233 0.9126 1.2388 0.0568 −0.2110 −1.0719∗

a8 2.2307 1.0511 0.6841 0.0448 0.1358 −0.2623∗

a9 1.7255 1.1010 0.7674 0.0960 0.3437∗ 0.4245∗

a10 1.9102 1.0111 0.6706 0.1146 −0.0854 0.1696

a11 1.8139 0.9894 0.8982 0.1027 0.0616 0.6310∗

a12 0.5102 0.5063 0.5074 0.0111 0.0097 −0.0735∗

avg. 1.8103 1.0062 0.9289

b1 0.13244 0.08351 0.09148 −0.00639 −0.02162∗ −0.07681∗

b2 0.17255 0.08866 0.08155 0.02045 −0.01866 −0.06554∗

b3 0.14595 0.08242 0.04850 −0.00845 0.00316 −0.01628∗

b4 0.13823 0.06696 0.05207 −0.01210 0.01781∗ 0.02538∗

b5 0.11459 0.07022 0.05589 −0.00398 −0.01007 0.03209∗

b6 0.13864 0.07124 0.07009 0.01657 0.00257 0.05518∗

b7 0.09613 0.06281 0.08630 0.00106 0.01698∗ 0.07609∗

b8 0.09499 0.05835 0.07455 −0.00608 0.01099 0.06246∗

b9 0.14290 0.06802 0.04626 −0.00360 −0.00948 0.01842∗

b10 0.11981 0.07612 0.04767 −0.00448 −0.02036 −0.01622∗

b11 0.12997 0.06993 0.04960 −0.00291 0.00929 −0.01932∗

b12 0.12692 0.06995 0.06681 −0.00632 −0.00357 −0.04705∗

b̄ 0.03535 0.03504 0.03449 −0.00136 −0.00191 0.00237

avg. 0.12943 0.07235 0.06423
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Table 3. Estimates of Soft Drink Demand

Variable Month Smoothness OLS Lovell Unified

S 1 −5.19 (7.64) −6.65 (5.34) −5.42 (15.64)

2 −4.69 (7.10) −3.45 (2.93) −5.30 (15.26)

3 −4.97 (7.73) −5.78 (4.96) −5.40 (15.53)

4 −4.81 (7.70) −4.44 (3.93) −5.22 (14.99)

5 −4.58 (7.46) −4.58 (4.18) −5.17 (14.87)

6 −4.70 (7.72) −3.97 (3.75) −4.98 (14.37)

7 −5.07 (7.82) −6.91 (5.95) −4.92 (14.29)

8 −5.10 (7.59) −4.12 (3.44) −4.95 (14.18)

9 −5.66 (8.24) −4.46 (3.51) −5.16 (14.54)

10 −6.16 (8.87) −8.72 (6.86) −5.42 (15.04)

11 −5.31 (7.62) −3.70 (2.80) −5.31 (14.94)

12 −5.16 (7.44) −4.66 (3.68) −5.25 (14,95)

avg. −5.12 −5.12 −5.21 −2.92 (3.99)

SDP 1 −0.65 (2.64) −0.72 (2.00)

2 −0.08 (0.32) 0.22 (0.58)

3 −0.45 (1.62) −0.52 (1.22)

4 −0.63 (2.18) −0.94 (2.10)

5 −0.63 (2.14) −0.30 (0.65)

6 −0.80 (2.69) −1.10 (2.37)

7 −1.01 (3.26) −0.66 (1.32)

8 −1.09 (3.50) −1.21 (2.43)

9 −1.16 (3.71) −1.48 (2.92)

10 −1.07 (3.50) −0.85 (1.80)

11 −0.62 (2.08) −0.53 (1.07)

12 −0.73 (2.83) −0.88 (2.39)

avg. −0.74 −0.69 −0.69 (5.31) −0.88 (2.58)

FP 1 0.24 (0.95) −0.14 (0.26)

2 0.14 (0.57) 0.27 (0.54)

3 0.08 (0.32) −0.05 (0.11)

4 0.06 (0.24) −0.11 (0.21)

5 0.08 (0.34) 0.49 (1.00)

6 0.09 (0.39) −0.17 (0.37)

7 0.19 (0.73) 0.21 (0.36)

8 0.29 (1.11) 0.54 (0.93)

9 0.36 (1.38) 0.39 (0.71)

10 0.40 (1.53) 0.26 (0.46)

11 0.37 (1.47) 0.25 (0.48)

12 0.34 (1.36) 0.89 (1.68)

avg. 0.22 0.23 0.17 (1.14) 1.01 (2.69)

Table continued on next page.
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Table 3 (continued). Estimates of Soft Drink Demand

Variable Month Smoothness OLS Lovell Unified

EX 1 3.46 (2.31) 6.63 (2.60)

2 3.28 (2.20) 0.21 (0.09)

3 4.26 (2.98) 5.80 (2.54)

4 4.84 (3.52) 5.00 (2.21)

5 3.35 (2.36) 2.07 (0.90)

6 4.58 (3.25) 4.25 (1.92)

7 4.91 (3.18) 7.94 (3.25)

8 4.96 (3.33) 3.01 (1.27)

9 6.33 (4.39) 4.72 (1.97)

10 6.54 (4.79) 10.69 (4.69)

11 4.49 (3.17) 1.52 (0.64)

12 4.12 (2.81) 3.15 (1.29)

avg. 4.59 4.59 4.76 (6.86) −0.10 (0.08)

Y 1 0.41 (1.25) −0.22 (0.36)

2 0.64 (2.00) 1.09 (1.90)

3 0.67 (2.10) 0.32 (0.55)

4 0.74 (2.36) 1.05 (1.83)

5 0.64 (2.10) 0.45 (0.81)

6 0.61 (1.99) 1.12 (2.05)

7 0.35 (1.11) −0.58 (1.00)

8 0.37 (1.13) 0.81 (1.34)

9 0.34 (1.00) 0.99 (1.54)

10 0.19 (0.57) −1.04 (1.63)

11 0.39 (1.13) 1.10 (1.63)

12 0.40 (1.20) 0.64 (1.05)

avg. 0.48 0.47 0.43 (2.45) 1.42 (3.51)

SSR 0.6422 0.5411 0.7833 5.8110

R2 (unadjusted) 0.9107 0.9248 0.8911 0.1921

DW Statistic 2.043 1.844 1.963 0.859

Note: The t statistics for the Smoothness estimates are conditional on the prior.
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