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Abstract

Inference for estimates of treatment effects with clustered data requires great care
when treatment is assigned at the group level. This is true for both pure treatment
models and difference-in-differences regressions. Even when the number of clusters
is quite large, cluster-robust standard errors can be much too small if the number
of treated (or control) clusters is small. Standard errors also tend to be too small
when cluster sizes vary a lot, resulting in too many false positives. Bootstrap methods
generally perform better than t tests, but they can also yield very misleading inferences
in some cases.
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1 Introduction
There is a large and rapidly growing literature on inference with clustered data, that is,
data where the disturbances (error terms) are correlated within clusters. The clusters might
be associated with, for example, jurisdictions, schools, hospitals, industries, or time peri-
ods. Cameron and Miller (2015) provides a very good survey. However, the literature is
growing rapidly. More recent papers include Imbens and Kolesár (2016), MacKinnon and
Webb (2017), Carter, Schnepel, and Steigerwald (2017), Pustejovsky and Tipton (2017),
Djogbenou, MacKinnon, and Nielsen (2018), MacKinnon, Nielsen, and Webb (2017), and
Esarey and Menger (2017). Most of these papers are written by and for economists, but the
Esarey-Menger paper is specifically aimed at researchers in political science.

Since the theoretical justification for cluster-robust standard errors is asymptotic, it is
evident that we need sufficiently large samples if we are to make valid inferences. It has
long been recognized that what matters is not the number of observations but rather the
number of clusters. Based on the limited simulation evidence available at the time it was
written, Angrist and Pischke (2008, Chapter 8) suggested, not entirely seriously, that it is
safe to use cluster-robust standard errors whenever there are at least 42 clusters. But the
evidence on which they based this suggestion was for the best-case scenario of equal-size
clusters and continuous regressors.

More recent work suggests that, by itself, the number of clusters does not tell us whether
inference is likely to be reliable. MacKinnon and Webb (2017) shows by simulation that
using cluster-robust t statistics can be quite unreliable when there are either 50 or 100
clusters that are proportional to the sizes of U.S. states (with each state appearing twice
in the latter case). In general, it seems to be the case that, as cluster sizes become more
unequal, inference becomes less reliable.

Perhaps more surprisingly, MacKinnon and Webb (2017) also shows that, when the
regressor of interest is a treatment dummy, cluster-robust standard errors can be very much
too small whenever the number of treated clusters is small. This result is obtained by theory
and confirmed by simulation. It holds even when the total number of clusters is very large.
Previous simulation evidence on this point may be found in Bell and McCaffrey (2002) and
Conley and Taber (2011). Since many applied studies in economics and political science
involve either pure treatment models or difference-in-differences (DiD) models, this finding
has serious implications for applied work in both fields.

Bootstrap methods typically perform better than t tests, but they can also yield very
misleading inferences in some cases. In particular, what would otherwise be the best variant
of the wild bootstrap can underreject extremely severely when the number of treated clusters
is very small. Other bootstrap methods can overreject extremely severely in that case.

In Section 2, we briefly review the key ideas of cluster-robust covariance matrices and
standard errors. In Section 3, we then explain why inference based on these standard
errors can fail when there are few treated clusters. In Section 4, we discuss bootstrap
methods for cluster-robust inference. In Section 5, we report (graphically) the results of
several simulation experiments which illustrate just how severely both conventional and
bootstrap methods can overreject or underreject when there are few treated clusters. In
Section 6, the implications of these results are illustrated using an empirical example from
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Burden, Canon, Mayer, and Moynihan (2017). Finally, Section 7 concludes and provides
some recommendations for empirical work.

2 Cluster-Robust Standard Errors
We are concerned with the linear regression model

y = Xβ + u, E(uu′) = Ω, (1)

where y and u are N × 1 vectors of observations and disturbances, X is an N × k matrix
of covariates, β is a k × 1 parameter vector, and the N ×N covariance matrix Ω is

Ω =


Ω1 O . . . O
O Ω2 . . . O
... ... ...

O O . . . ΩG

. (2)

There are G clusters, indexed by g, with Ng observations in the gth cluster. For notational
convenience, the observations are assumed to be ordered by cluster, although this is not
necessary in practice. The Ng × Ng matrix Ωg is positive definite. It is the covariance
matrix for the observations belonging to the gth cluster. Thus Ω is block-diagonal, with G
diagonal blocks that correspond to the G clusters.

The true covariance matrix of the OLS estimator β̂ for the model (1) is

Var(β̂) = (X ′X)−1X ′ΩX(X ′X)−1 = (X ′X)−1

 G∑
g=1
X ′gΩgXg

(X ′X)−1, (3)

where Xg denotes the Ng rows of X that belong to the gth cluster. The most widely-used
cluster-robust variance estimator, or CRVE, is

V̂ar(β̂) = G(N − 1)
(G− 1)(N − k)(X ′X)−1

 G∑
g=1
X ′gûgû

′
gXg

(X ′X)−1. (4)

The first factor here is asymptotically negligible, but it always makes the CRVE larger
when G and N are finite.1 Covariance matrix estimators like equation (4) are often referred
to as “sandwich estimators” because there are two identical pieces of “bread” on the outside
and a “filling” in the middle. The filling in the sandwich on the right-hand side of equation
(4) is evidently intended to estimate the corresponding factor in equation (3). In both cases,
the filling involves a sum of G k× k matrices. In the case of (4), each of these matrices has
rank one. Therefore, the matrix (4) can have rank at most G.

The CRVE (4) is often called CV1, because it is the analog of the heteroskedasticity-
robust covariance matrix estimator HC1; see MacKinnon (2013). A more complicated
CRVE, often called CV2, which is the analog of the HC2 estimator studied in MacKinnon
and White (1985), was proposed in Bell and McCaffrey (2002) and has recently been advo-
cated by Imbens and Kolesár (2016); see also Pustejovsky and Tipton (2017). CV2 generally

1This particular factor is used by Stata and seems to have been introduced by them.
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has better finite-sample properties than CV1. It does not solve the problems associated with
few treated clusters, but it can make them less severe. Unfortunately, CV2 is considerably
more expensive to compute than CV1 when the clusters are large.2 Although we do not
discuss CV2 further, it should certainly be considered for samples of moderate size.

The most common way to make inferences about any element of β, say βk, is to divide
the OLS estimate β̂k by the square root of the kth diagonal element of the CRVE (4) and
compare the resulting t statistic to the t(G − 1) distribution. This procedure, which can
be much more conservative than using the standard normal distribution when G is small,
was suggested in Bester, Conley, and Hansen (2011). There are also several (moderately
complicated) procedures for calculating the degrees of freedom based onX and the assumed
cluster structure; see Bell and McCaffrey (2002), Imbens and Kolesár (2016), Young (2016),
and Carter, Schnepel, and Steigerwald (2017). These typically yield non-integer degrees of
freedom that are even smaller than G− 1.

3 Inference with Few Treated Clusters
The fundamental problem with CRVE-based inference when there are few treated clusters
is that, in such cases, the residuals typically provide very poor estimates of the disturbances
for the treated clusters. Following MacKinnon and Webb (2017, Section 6), we consider the
pure treatment model

ygi = β1 + β2dgi + ugi, i = 1 . . . , Ng, g = 1, . . . , G, (5)
where dgi equals 1 for the first G1 clusters and 0 for the remaining G0 = G − G1 clusters.
In this model, every observation in the gth cluster is either treated (dgi = 1) or not treated
(dgi = 0). The analysis would be more complicated if we included additional regressors,
or allowed only some observations within treated clusters to be treated, but it would not
change in any fundamental way.

From expression (4), it is not hard to show that, if we omit the initial scalar factor, the
CRVE for β̂2, the OLS estimator of β2 in equation (5), is equal to∑G

g=1(dg − d̄ιg)′ûgû
′
g(dg − d̄ιg)(

(d− d̄ι)′(d− d̄ι)
)2 . (6)

Here d denotes the vector with typical element dgi, dg is the subvector corresponding to
cluster g, d̄ is the mean of the dgi (that is, the proportion of the observations that are
treated), and ι and ιg are vectors of 1s, of lengths N and Ng, respectively. The numerator
of (6) is essentially the filling in the CRVE sandwich, and the denominator is the square of
the bread. Only the numerator depends on the residuals.

Expression (6) would provide a good estimate of Var(β̂2) if its numerator provided a
good estimate of the filling in the sandwich (3) specialized to the case of β2 in the treatment
model (5). In scalar notation, this numerator can be written as

(1− d̄)2
G1∑
g=1

(Ng∑
i=1

ûgi

)2

+ d̄ 2
G∑

g=G1+1

(Ng∑
i=1

ûgi

)2

. (7)

2In fact, with current computer hardware and software, it seems to become difficult to compute CV2
once any of the Ng exceeds 5000 or so; see MacKinnon and Webb (2018b).
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Expression (7) is supposed to estimate the quantity

(1− d̄)2
G1∑
g=1

Ng∑
i=1

Ng∑
j=1

ωg
ij + d̄ 2

G∑
g=G1+1

Ng∑
i=1

Ng∑
j=1

ωg
ij , (8)

where ωg
ij is the ijth element of Ωg. But it does a terrible job of doing so when the number

of treated clusters is small.
The problem is that the residuals must sum to zero over all the treated observations.

Consider first the extreme case in which only the observations in cluster 1 are treated. In
that case, ∑N1

i=1 û1i = 0. This implies that the first term in expression (7) equals 0. The
corresponding term on the right-hand side of equation (8) is certainly not 0. In fact, unless
the proportion of treated observations is very large (which seems improbable when only one
cluster is treated), the first term on the right-hand side of equation (8) will typically be
larger than the second term, because (1− d̄)2 will typically be much larger than d̄ 2.

When two or more clusters are treated, the residuals for each treated cluster will not sum
to zero, but they must sum to zero over all the treated clusters. Thus the sum of squared
summations in the first term of (7) will always underestimate the corresponding triple sum-
mation in (8). As MacKinnon and Webb (2017, Appendix A.3) shows, the underestimation
should go away quite rapidly as G1 increases. However, it is difficult to say just how large G1
needs to be, even for the very simple model (5), because how well (7) estimates (8) depends
on the sizes of the treated and untreated clusters and on the Ωg matrices. For more general
models, it will also depend on the Xg matrices.

When the number of treated clusters is very small, it is quite possible for the CRVE
(6) to underestimate the true variance of β̂2 by a factor of 25 or more, which implies that
cluster-robust t statistics may be too large by a factor of five or more. This inevitably leads
to confidence intervals that are much too narrow and tests that overreject very severely.

4 Bootstrap Methods
One widely-used way to obtain more reliable inferences than simply comparing a cluster-
robust t statistic with the t(G− 1) distribution is to use a bootstrap test. Several different
bootstrap tests are available, and they can produce very different results. As we will see
in Section 5, bootstrap tests often yield considerably more reliable inferences than cluster-
robust t tests, but they do not always work well. For a general introduction to bootstrap
hypothesis testing, see Davidson and MacKinnon (2006).

When we perform a bootstrap test, we have to generate a large number of bootstrap
samples. The alternative bootstrap methods that we consider differ only in how these boot-
strap samples are generated. One particularly important issue concerns whether or not the
bootstrap data-generating process, or DGP, imposes the null hypothesis. For concreteness,
suppose we wish to test the hypothesis that βk, the last element of β, is zero. Then the
bootstrap DGP could use either β̂, the unrestricted vector of OLS estimates, or β̃, the vector
with 0 as the last element and all other elements equal to the restricted OLS estimates.

For example, in the case of the pure treatment model (5), if the null hypothesis is that
β2 = 0, then β̃1 = ȳ, the sample mean, and β̃2 = 0. The estimate of β1 under the null is
just the sample mean in this simple case because, when β2 = 0, equation (5) only contains
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a constant term. More generally, we would need to re-estimate the model subject to the
restriction that βk = 0.

It is good to choose B, the number of bootstrap samples, so that α(B + 1) is an integer
when α is the level of the test. Thus good values of B include 999 and 9999. However, if
bootstrapping is very expensive, it may be possible to get away with a much smaller value
of B by using a sequential procedure; see Davidson and MacKinnon (2000).

Assuming that B is fixed, the algorithm for computing a bootstrap P value for the
hypothesis that βk = 0 works as follows:

1. Estimate model (1) by OLS regression of y on X to obtain β̂ and V̂ar(β̂). Use these
quantities to compute the cluster-robust t statistic tk = β̂k/s.e.(β̂k), where s.e.(β̂k)
denotes the square root of the kth diagonal element of V̂ar(β̂).

2. Generate bootstrap samples y∗b for b = 1, . . . , B, and re-estimate the model (1) to
obtain β̂∗b and V̂ar(β̂∗b). The bootstrap samples may be generated in several different
ways; see below.

3. For each bootstrap sample, compute the bootstrap t statistic, t∗bk , as either

t∗bkr = β̂∗bk

s.e.(β̂∗bk )
or t∗bku = β̂∗bk − β̂k

s.e.(β̂∗bk )
.

If the bootstrap data generating process (DGP) imposes the null hypothesis, use t∗bkr

(the restricted version). If the bootstrap DGP does not impose the null hypothesis,
use t∗bku (the unrestricted version).

4. Compute either the symmetric bootstrap P value

P̂ ∗S = 1
B

B∑
b=1

I
(
|t∗bk | > |tk|

)
(9)

or the equal-tail bootstrap P value

P̂ ∗ET = 1
B

min
(

B∑
b=1

I(t∗bk < tk),
B∑

b=1
I(t∗bk ≥ tk)

)
, (10)

where I(·) denotes the indicator function, which equals 1 when its argument is true
and 0 otherwise.

For many pure treatment and DiD models, we would expect tk to be approximately
symmetric around zero under the null hypothesis, so that equations (9) and (10) should
yield very similar P values. Of course, this would generally not be true for dynamic models
or models estimated by instrumental variables, since in both cases β̂k might well be biased.
In such cases, it would make sense to use P̂ ∗ET rather than P̂ ∗S .

A number of different bootstrap methods can be used to generate the bootstrap samples,
and, as we show in the next section, the finite-sample properties of these methods can differ
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enormously. The best-known method is probably the wild cluster bootstrap proposed in
Cameron, Gelbach, and Miller (2008). For the restricted version of this procedure, we first
re-estimate the model subject to the restriction(s) to be tested, so as to obtain restricted
estimates β̃. The bootstrap DGP is then

y∗bg = Xgβ̃ + v∗bg ũg, g = 1, . . . , G, (11)

where v∗bg is a random variate with mean 0 and variance 1. A good choice in most cases is
the Rademacher distribution, which takes the values 1 and −1 with equal probability; see
Davidson and Flachaire (2008). Notice that, for each bootstrap sample, there is only one
realization of this random variable for each cluster. In consequence, the bootstrap distur-
bances, v∗bg ũg, are independent across clusters but are supposed to mimic the covariance
matrices of the residuals within each cluster.3

Combining the bootstrap DGP (11) with the algorithm given above yields a restricted
wild cluster, or WCR, P value. If we replaced β̃ and ũg in (11) by β̂ and ûg, respectively,
we would obtain an unrestricted wild cluster, or WCU, P value. Note that, in the latter
case, we must use t∗bku rather than t∗bkr for the bootstrap test statistics. Otherwise, the test
would have no useful power. That is, the power of the test would be very similar to its size.

Recently, MacKinnon and Webb (2018b) suggested that it may be desirable to use the
ordinary wild bootstrap instead of the wild cluster bootstrap for the model (5) when the
number of treated clusters is small. The only difference between the restricted wild bootstrap
(WR) and the restricted wild cluster bootstrap (WCR) is that the random variate vb∗

g in
equation (11) is replaced by Ng random variates vb∗

gi , i = 1, . . . , Ng. Since this eliminates the
intra-cluster correlation that the wild cluster bootstrap is trying to capture, it may seem
inappropriate. However, MacKinnon and Webb (2018b) shows that it can work very well in
some cases, and Djogbenou, MacKinnon, and Nielsen (2018) proves that it is asymptotically
valid. Of course, there is also an unrestricted wild bootstrap procedure (WU) which differs
from WR in exactly the same way as WCU differs from WCR.

One important limitation of the wild and wild cluster bootstraps is that they can only
be used with regression models. The models do not have to be linear, like (1), but they
must have the form

ygi = f(Xgi,β) + ugi, (12)

where f(Xgi,β) is a possibly nonlinear regression function that depends on a parameter
vector β and a row vector of regressors Xgi.

A very different way to generate bootstrap samples is to use the pairs cluster bootstrap,
which was proposed (under a different name) in Bertrand, Duflo, and Mullainathan (2004).
The idea of the pairs cluster bootstrap is to resample the entire [y X] matrix by cluster.
Thus each bootstrap sample consists of G submatrices chosen at random, with replacement,
from the G submatrices [yg Xg] and stacked to form a matrix [y∗b X∗b].

The pairs cluster bootstrap has one major advantage. It can be used for any sort of model
in which the disturbances may be clustered, not just regression models. In particular, it can

3When the number of clusters is small, the fact that a Rademacher random variate can take on only two
values means that the number of possible bootstrap samples, which is 2G, is rather small. For G ≤ 12, it
may be better to use another discrete distribution which can take on six values; see Webb (2014).
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be used for binary response models such as the logit and probit models. However, it also has
two serious disadvantages. The first is that, unless Ng = N/G for all clusters, the bootstrap
samples will almost never be the same size as the original sample. Some bootstrap samples
will happen to contain a relatively large proportion of big clusters, and others will happen
to contain a relatively large proportion of small clusters. When the Ng vary a lot, so will
the sizes of the bootstrap samples. This will make it difficult for the distribution of the t∗bk

to mimic the distribution of tk.
The second disadvantage of the pairs cluster bootstrap applies specifically to models with

few treated clusters. We know from the results in MacKinnon and Webb (2017) (and will
also see in the next section) that the number of treated clusters, G1, has an enormous impact
on the rejection frequency of a cluster-robust t test. But G1 necessarily varies when we use
the pairs cluster bootstrap. Some bootstrap samples will contain more treated clusters than
the actual sample, and some will contain fewer. Indeed, when G1 is small, some bootstrap
samples may well contain no treated clusters at all. This will happen for about 36.8% of
them when G1 = 1.4 When it does happen, β̂∗b cannot be computed, and the bootstrap
sample has to be thrown out.

Another class of simulation-based procedures that has been proposed for making infer-
ences about treatment effects at the cluster level is randomization inference, or RI. It was
first suggested in this context by Conley and Taber (2011). Alternative RI procedures have
been investigated by Canay, Romano, and Shaikh (2017), Ferman and Pinto (2015), and
MacKinnon and Webb (2018a). To keep this paper focused and reasonable in length, we do
not consider any of these procedures in our simulations.

5 Simulation Experiments
In this section, we study the performance of cluster-robust t tests and five different bootstrap
tests using simulation experiments. We study both the pure treatment model (5) and a DiD
regression model. Our focus is on the number of treated clusters, G1, holding N and G
fixed. We report all our results graphically, with 5% rejection frequencies5 on the vertical
axis and G1 on the horizontal axis.

The first set of experiments is for the pure treatment model (5). The value of G is either
12 or 24, and we set N = 100G. We would have obtained extremely similar results for
most methods if N had been 5, 10, or even 100 times larger. The disturbances, ugi, are
normally distributed and generated by a random effects model with intra-cluster correlation
coefficient ρg = 0.05. We do not study the role of ρg in detail because previous research
(along with some experiments that we do not report) has shown that it typically has a
very modest effect for the WCR and WCU bootstraps. For obvious reasons, it does have a
somewhat larger effect for the WR and WU bootstraps, however.

4The probability that any given cluster will not appear in a particular bootstrap sample is
(
(G−1)/G

)G.
This converges to exp(−1) = 1/(2.71828) = 0.36788 as G→∞.

5A 5% rejection frequency is the proportion of the P values over the 400,000 replications that are below
0.05. If the null is true and the procedure works perfectly, then the 5% rejection frequency should be 0.05,
plus or minus a little bit of experimental error. When the true rejection frequency is 0.05, the standard
error of the estimate is 0.00034. Thus we would expect to see numbers between 0.04932 and 0.05068 about
95% of the time for procedures that work perfectly.
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Results in MacKinnon and Webb (2017) show that the amount of variation in cluster
sizes can be very important. In order to allow for possibly unbalanced cluster sizes, Ng is
determined by a parameter γ, as follows:

Ng =
[
N

exp(γg/G)∑G
j=1 exp(γj/G)

]
, g = 1, . . . , G− 1, (13)

where [·] denotes the integer part of its argument, and NG = N−∑G−1
j=1 Ng. Every Ng is equal

to N/G = 100 when γ = 0. As γ increases or decreases, cluster sizes become increasingly
unbalanced. For γ > 0, the Ng increase as g increases, and for γ < 0, they decrease.

All experiments have 400,000 replications. We use such a large number because rejection
frequencies often differ very little among alternative methods, and it would otherwise be
difficult to distinguish between systematic differences and experimental errors. All bootstrap
methods use B = 399.

Panels a) and b) of Figure 1 show results for experiments with G = 12. In panel a),
γ = 0, so that Ng = 100 for all g. In panel b), γ = 2, so that Ng increases from 34 to
217 as g increases from 1 to 12. The clusters are always treated in increasing order. Thus,
if G1 = 2 and γ > 0, only the smallest and second-smallest clusters are treated. This is
probably not very realistic, but it illustrates the importance of differing cluster sizes. In
practice, even if cluster sizes varied a lot, it would probably not often be the case that only
the very smallest (or very largest) clusters were treated. Thus the results in panel b) are
probably for an extreme case.

All the results in panel a) of Figure 1 are symmetric around G1 = 6. This reflects the
fact that, for constant cluster sizes, there is no real difference between G1 and G0. It is
evident that the cluster-robust t statistic always overrejects, and it does so very severely for
G1 ≤ 2 and G1 ≥ 10. The pairs cluster and WCU bootstraps also overreject very severely
for G1 = 1 and G1 = 11, but they improve more rapidly as G1 becomes less extreme, and
the latter actually performs very well for 4 ≤ G1 ≤ 8. In contrast, the pairs bootstrap
underrejects quite severely for those cases.

The WCR bootstrap underrejects extremely severely for G1 = 1 and G1 = 11 (the actual
rejection rates are about 1 in 10,000) and very severely for G1 = 2 and G1 = 10. However,
it works quite well for 3 ≤ G1 ≤ 9. The performance of the cluster-robust t statistic and the
WCR and WCU bootstraps here are precisely what the theoretical results in MacKinnon
and Webb (2017, Section 6) predict.

To our knowledge, the performance of the pairs cluster bootstrap for treatment models
has not been studied. However, it could have been predicted from the results of Davidson
and MacKinnon (1999). That paper studies the size distortion of parametric bootstrap tests,
and the value of G1 here plays essentially the same role as the parameters in that paper. The
paper shows that whether a bootstrap test overrejects or underrejects is determined by how
much the distributions of the bootstrap test statistics depend on the parameter estimates
and on how biased and noisy those estimates are.

In the case of Figure 1, many of the errors in rejection frequency for the pairs cluster
bootstrap arise from the fact that the bootstrap samples contain different groups. Imagine
a sample with four groups denoted A,B,C, and D, of which only A is treated, so that
G1 = 1. If we call the number of treated clusters in a bootstrap sample G∗1, then the
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bootstrap sample {A,B,A,C} would have G∗1 = 2, whereas the sample {B,D,B,C} would
have G∗1 = 0. When G∗1 = 0, we obviously cannot estimate the model, so any samples that
do not contain A would have to be discarded. Thus all the bootstrap samples that we can
actually use have G∗1 ≥ 1 (and also G∗0 ≤ 3). On average, the values of G∗1 must be greater
than G1 whenever G1 = 1.

The same thing happens in our experiments. When G1 is very small or very large, many
of the bootstrap samples have values of G∗1 that are less extreme than G1 itself. This means
that the actual t statistic tk is being compared with a mixture of distributions, many of
which involve less extreme values of G∗1. In contrast, when G1 takes on values between 4
and 8, the bootstrap t statistics with which tk is being compared are often associated with
substantially more extreme values of G∗1. In the former case, we get severe overrejection,
and in the latter case quite severe underrejection.

The WR and WU bootstraps work extraordinarily well in panel a) of Figure 1. They
perform well even for extreme values of G1, and they differ noticeably from each other only
for G1 = 1 and G1 = 11. Note that they would have differed more for ρg > 0.05 and even
less for ρg < 0.05. This is precisely what the results of MacKinnon and Webb (2018b)
predict. Unfortunately, those results require that all clusters be the same size and have the
same patterns of intra-cluster correlation, which is the case in panel a) of the figure.

In panel b) of Figure 1, the variation in cluster sizes causes a number of asymmetries.
This is evident for all the methods, but particularly for WCR, WR, and WU. In the case
of WCR, there is now underrejection for G1 = 3 as well as G1 ≤ 2, and there is quite
substantial overrejection for G1 = 9 and G1 = 10. The two wild bootstrap methods, WR
and WU, both underreject for small values of G1 and overreject for large values, as predicted
in MacKinnon and Webb (2018b). However, they still perform better than WCR and WCU
for the two largest and three smallest values of G1.

Panels c) and d) of Figure 1 are similar to panels a) and b), respectively, except that
G = 24 and G1 runs from 1 to 23. Many of the results do not change much when we double
the number of clusters. However, it is noteworthy that rejection rates for the t statistic, the
WCU bootstrap, and the pairs cluster bootstrap are actually worse for G1 = 1 and G0 = 1
than they were before. On the other hand, all methods now work better for intermediate
values of G1, with WCR and WCU performing very well for 8 ≤ G1 ≤ 16.

The pairs cluster bootstrap underrejects for all but the three most extreme values of G1
and G0, but it does so much less severely than in the top two panels. The latter could have
been predicted from the analysis above. The range of values of G1 for which the rejection
rates of the t statistic do not change very much is now much wider. This means that these
rates do not vary as much across the G∗1 for the various bootstrap samples as they did when
G = 12, so that the differences between the actual G1 for tk and the various G∗1 for the
corresponding tb∗k do not matter as much.

Overall, when we compare the results in the bottom two panels with those in the top two,
it appears that increasing the number of clusters improves the performance of all methods,
but only if G1/G is not too large or small. This is precisely what would be expected from
the asymptotic theory in Djogbenou, MacKinnon, and Nielsen (2018), where regularity
conditions effectively require the number of treated clusters to rise with (but not necessarily
as fast as) the sample size.
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The second set of experiments is for a DiD regression model. The model that we estimate
can be written as

ygi =
T∑

t=1
δtD

t
gi + β2dgi + ugi, i = 1 . . . , Ng, g = 1, . . . , G. (14)

The constant term in (5) has been replaced by T dummy variables Dt
gi, each of which takes

the value 1 for observations associated with year t and 0 otherwise. The treatment variable
dgi now takes the value 1 only for treated clusters during the years in which they are treated.

In practice, investigators would often add G− 1 dummy variables for all but one of the
clusters to regression (14). We did not do so because it would have made the experiments
more expensive, and the cluster dummies would have simply offset the cluster-specific shocks
in the random effects specification of the ugi.6 We choose which clusters are to be treated
and then allow our program to decide at random when treatment is to commence. We set
T = 20 and allow treatment to start as early as year 6 and as late as year 16.

The big difference between the treatment model (5) and the DiD model (14) is that, for
the latter, there is no symmetry between G1 and G0. In fact, it is entirely possible to have
G1 = G, so that G0 = 0. In that case, identification comes from the fact that all of the
treated clusters contain some untreated observations. We therefore expect results for small
values of G1 to resemble the ones in Figure 1 but results for large values to be very different,
and that is indeed what we see in Figure 2.

The top two panels of Figure 2 are comparable to the same two panels of Figure 1. Notice
that G1 runs from 1 to 12 instead of from 1 to 11. In both cases, results for small values of
G1 are quite similar across the two figures. There is severe overrejection for the t statistic,
the WCU bootstrap, and the pairs bootstrap, together with severe underrejection for the
WCR bootstrap. However, the results for other values of G1 are not very similar across the
two figures. In panel a), all the wild bootstrap methods work fairly well for intermediate
and large values of G1, and even the pairs cluster bootstrap performs much better than
it did before. Perhaps surprisingly, the results for G1 = 12 are noticeably better than for
G1 = 11. This probably happens because G0 = 1 when G1 = 11, and having just one
non-treated cluster tends to cause problems. In contrast, when G1 = 12, there are no longer
any non-treated clusters, just 12 clusters with various proportions of treated observations.

Panel c) of Figure 2 deals with the case of G = 12 and γ = −2. The variation in cluster
sizes here is very similar to the variation in panel b), but now the largest clusters are treated
first. There are some very substantial differences between panels b) and c). In the latter,
WR and WU always overreject, especially for small values of G1, and WCR overrejects for
G1 ≥ 2. Perhaps surprisingly, the pairs bootstrap is actually the best method for G1 ≥ 5.

Finally, panel d) of Figure 2 deals with the case of G = 24 and γ = 0. All the bootstrap
methods work quite well for G1 ≥ 4, and WCR works extremely well for G1 ≥ 7. It
is difficult to see in the figure, but WCU and the two ordinary wild bootstrap methods

6This does not mean that adding group-specific fixed effects solves the problem of intracluster corre-
lation; it would merely do so for our specific DGP. In the “placebo law” experiments of Bertrand, Duflo,
and Mullainathan (2004) and MacKinnon and Webb (2017), which use real data from the Current Popula-
tion Survey, standard errors that are robust to heteroskedasticity but not to intracluster correlation yield
extremely severe errors of inference despite the presence of group-specific fixed effects.
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overreject slightly for the largest values of G1. The latter work quite well even for small
values of G1, but this undoubtedly reflects the rather simple experimental design.

We remark that all the results for DiD models would have been different if the “years” in
which treatment begins had been different. They might have been quite different if we had
conditioned on a particular set of years for treatment rather than choosing them at random.
With our procedure, results tend to average out across replications.

6 Empirical Example
In this section, we consider an empirical example from Burden, Canon, Mayer, and Moynihan
(2017). It uses county-level data to analyze the effects of certain state-level voting laws,
particularly early voting, on Democratic vote share. In a portion of the analysis, the authors
attempt to estimate the following non-panel DiD model to analyze the effect of early voting
laws:

demdiffcs = β0 + β1EVcs + β2 feloncs + β3 idcs +Xcsβ4 + εcs. (15)

Here demdiffcs represents the difference in Democratic vote share between the 2008 and
2012 elections, for county c in state s. β1 is the coefficient of interest. EV takes on the
values −1, 0, or 1, if a state either repealed, did not change, or adopted early voting laws,
respectively. Between 2008 and 2012, California and Maryland adopted, while New Jersey
repealed, their early voting laws. This specification assumes a symmetric treatment effect
for repealing or adopting; we will later re-estimate this model using asymmetric treatment
effects. Additionally, felon and id are binary variables representing changes in felon disen-
franchisement and ID requirement laws, andX represents various county-level demographic
covariates. All estimates are weighted by county population. The U.S. has a total of 3,144
counties and county equivalents. The dataset has N = 3, 112 usable observations collected
from every state including D.C. but excluding Alaska, so that G = 50. Cluster sizes range
from 1 county in D.C. to 254 counties in Texas.

We attempt to reproduce Column 4 from Table 7 of Burden et al. (2017), which con-
tains their difference-in-differences analysis comparing the 2008 and 2012 elections. While
attempting to reproduce the results, two problems were found in the replication files pro-
vided. Firstly, three control counties were mistakenly coded as treated: one in Alaska, one
in Colorado, and one in DC. Additionally, California, which adopted early voting, was mis-
takenly coded as a control. We estimate the model using the data as coded in the ‘miscoded’
column, and then re-estimate it using the proper coding in the ‘corrected’ column.

Secondly, standard errors were clustered by county Federal Information Processing Stan-
dards (fips). County fips codes are unique within but not across states. The prevailing com-
monality amongst these counties is their position alphabetically within state. Clustering by
fips assumes that there is potential correlation across the alphabetically first, second, third,
etc. clusters across states, but no correlation within states. It appears that the authors
intended to cluster at the individual county level; however, since observations are at the
county level, each cluster would only contain one observation in that case. Clustering by
county would then result in heteroskedasticity-robust rather than cluster-robust standard
errors. Since earlier results in Burden et al. (2017) were clustered by state, and laws change
at the state level, it seems sensible to cluster by state here as well.
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Table 1: Effects of Early Voting Laws on Democratic Vote Shares
Symmetric Effect Asymmetric Effect

Miscoded Corrected EV Adopted EV Repealed

β̂1 −1.458 −0.254 0.700 2.795

Robust 0.000 0.401 0.041 0.000
CRVE (Ctyfips) 0.000 0.325 0.055 0.000
CRVE (State) 0.088 0.722 0.144 0.000

WCU 0.500 0.799 0.208 0.000
WCR 0.740 0.880 0.300 0.423

Treated States - 3 2 1

Empirical example from Burden, Canon, Mayer, and Moynihan (2017).
Treated states in ‘Miscoded’ column omitted due to coding issues in treatment assignment.
All entries except the estimates of β1 are P values.
Estimates are weighted by county population.
WCU and WCR P values are clustered at the state level and based on 99,999 bootstraps.

Table 1 demonstrates the limitations of inference when few groups are treated. The
first two columns seek to estimate the model used in Burden et al. (2017). The other two
columns show this model without the symmetry assumption, where adopting states (CA,
MD) and repealing states (NJ) are considered separately. The top row of Table 1 reports
the estimate of β1 or its asymmetric equivalent.7

The second panel reports three asymptotic P values based on robust, CRVE-fips, and
CRVE-state standard errors. The bottom panel reports two bootstrap P values (WCR and
WCU), both of which are calculated using B = 99, 999 and are clustered by state.

In column 1, we replicate the analysis of Burden et al. (2017). The Robust and CRVE-
fips P values are highly significant. However, clustering by state greatly reduces the evidence
against the null, and the bootstrap P values are highly insignificant. In column 2, where
treatment status has been corrected, all of the P values are insignificant.

When we estimate the asymmetric effects, we can really see the problems of few treated
clusters, especially in evaluating the effects of a repeal of early voting where G1 = 1. Here
we observe that all of the asymptotic and WCU P values are highly significant, whereas the

7For the asymmetric equivalent, rather than β1 being the coefficient when EVcs is equal to −1 or +1, we
in effect estimate two coefficients. The first, βa

1 , is for states that adopted early voting, so that EVcs = −1,
and the second, βr

1 , is for states that repealed early voting, so that EVcs = 1. For the asymmetric estimates,
we have two binary variables, one for repeal, which is equal to 1 for New Jersey and equal to 0 for all other
states, and one for adopt, which is equal to 1 for California and Maryland and equal to 0 for all other states.
This explains why the coefficient is negative in the “corrected” column, even though both coefficients are
positive in the asymmetric estimates. New Jersey saw its Democratic vote share increase from 2008 to 2012,
despite eliminating early voting. The coding of EVcs = −1 essentially forces the coefficient to be negative
to pick up the large increase that occurred in New Jersey, despite the fact that Maryland and California
also had (difference-in-differences) increases after adopting early voting.
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WCR P value is highly insignificant. This is exactly what the theory predicts and what the
simulation results in Figure 2 show.

While the example above highlights the difficulties of statistical inference when there are
few treated groups, we do not regard these findings as challenging the conclusions in Burden
et al. (2017). In fact, when we evaluate the asymmetric estimates, we see that the states
which adopted early voting had a statistically insignificant increase in the Democratic vote
share, while the state that repealed early voting had a statistically ambiguous increase in
that share. Taken together, these results present evidence against the conventional wisdom
that early voting laws favor Democrats.

7 Conclusions
When a regression model is used to estimate treatment effects, cluster-robust standard
errors can be extremely misleading when cluster sizes vary a lot and/or when the number of
treated clusters (G1) is small. This is true for both pure treatment models and difference-in-
differences (DiD) models. One simple way to see whether there is a problem is to calculate
bootstrap P values using two variants of the wild cluster bootstrap. If the WCR (restricted)
and WCU (unrestricted) bootstraps yield very different inferences, then there is definitely
a problem. Normally, in such cases, WCU will reject and WCR will fail to reject. Other
methods may or may not yield reliable results.

Unfortunately, even when WCR and WCU roughly agree, there may be a problem;
consider the results for G1 = 10 in panel b) of Figure 1. However, based on the simulation
results here and in MacKinnon and Webb (2017, 2018b), agreement between WCR and
WCU seems to rule out really severe errors of inference. These are often associated with
very small values of G1, where WCR and WCU tend to disagree sharply.

It is also worth trying other bootstrap methods. When cluster sizes are similar, the
ordinary wild bootstrap can work surprisingly well, even when G1 is very small, but the
pairs cluster bootstrap typically overrejects in that case. The latter is rarely the procedure
of choice for regression models, but it can be useful for nonlinear models such as logit and
probit. However, it tends to overreject severely when G1 is small, and it can underreject
severely when the number of clusters, G, is small and G1/G is not close to 0 or 1.

There is an important difference between pure treatment models and DiD models. For
the former, small numbers of untreated clusters are just as bad as small numbers of treated
ones. For the latter, reasonably reliable results can be obtained even when all clusters are
treated, provided treatment starts at different times for different clusters.
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Figure 1: Rejection Frequencies for Pure Treatment Model
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Figure 2: Rejection Frequencies for Difference-in-Differences Model
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