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Abstract

We study a cluster-robust variance estimator (CRVE) for regression models with clustering
in two dimensions that was proposed in Cameron, Gelbach, and Miller (2011). We prove that
this CRVE is consistent and yields valid inferences under precisely stated assumptions about
moments and cluster sizes. We then propose several wild bootstrap procedures and prove that
they are asymptotically valid. Simulations suggest that bootstrap inference tends to be much
more accurate than inference based on the t distribution, especially when there are few clusters
in at least one dimension. An empirical example confirms that bootstrap inferences can differ
substantially from conventional ones.

Keywords: CRVE, grouped data, clustered data, cluster-robust variance estimator, multiway
clustering, robust inference, wild bootstrap, wild cluster bootstrap.

JEL Codes: C15, C21, C23.

1 Introduction
The disturbances (error terms) in regression models often appear to be correlated within clusters.
It is generally assumed that there is clustering in just one dimension, such as by jurisdiction or by
classroom. In such cases, it is now standard to use a cluster-robust variance estimator, or CRVE,
perhaps combined with the wild cluster bootstrap. There is a large and rapidly growing literature
on this topic; see the excellent survey of Cameron and Miller (2015). More recent papers include
Imbens and Kolesár (2016), Ibragimov and Müller (2016), MacKinnon and Webb (2017), Carter,
Schnepel, and Steigerwald (2017), Pustejovsky and Tipton (2017), and Djogbenou, MacKinnon,
and Nielsen (2017).

Although methods for one-way clustering are sufficient in many cases, it is often plausible
that clustering should occur in two or more dimensions. For example, for panel data there may
well be correlations both within jurisdictions across time periods and within time periods across
∗We are grateful to Russell Davidson and seminar participants at the 2017 CEA Annual Meeting for comments. We

thank Scott McNeil and Christopher Cheng for research assistance. MacKinnon and Webb thank the Social Sciences
and Humanities Research Council of Canada (SSHRC) for financial support. Nielsen thanks the Canada Research
Chairs program, the SSHRC, and the Center for Research in Econometric Analysis of Time Series (CREATES,
funded by the Danish National Research Foundation, DNRF78) for financial support. Some of the computations were
performed at the Centre for Advanced Computing at Queen’s University. Computer code for performing the bootstrap
procedures proposed here may be found at http://qed.econ.queensu.ca/pub/faculty/mackinnon/two-way-boot/.
†Corresponding author. Address: Department of Economics, 94 University Avenue, Queen’s University, Kingston,

Ontario K7L 3N6, Canada. Email: jgm@econ.queensu.ca. Tel. 613-533-2293. Fax 613-533-6668.

1

http://qed.econ.queensu.ca/pub/faculty/mackinnon/two-way-boot/


jurisdictions. Cameron, Gelbach, and Miller (2011) (CGM hereafter) proposes a method to calculate
standard errors that are robust to multiway clustering, and this method has been widely used in
empirical work. However, CGM does not state the conditions under which their “multiway CRVE”
is asymptotically valid or provide a formal proof. Moreover, simulations in CGM suggest that using
multiway cluster-robust standard errors does not always work well, especially when the number of
clusters in either dimension is small.

In this paper, we obtain two important results. Firstly, we prove that the multiway CRVE
is asymptotically valid for the case of two-dimensional clustering under precisely stated condi-
tions. Variations of this CRVE can handle clustering in more than two dimensions, and it is clear
that our proofs could be extended to handle such cases. However, we do not attempt to analyze
higher-dimensional clustering, because the notation would be extremely tedious. To our knowledge,
empirical work that uses the multiway CRVE very rarely goes beyond the two-dimensional case.

Secondly, we propose eight bootstrap methods and prove that all of them are asymptotically
valid for the case of two-dimensional clustering. Two methods simply combine the multiway CRVE
with the ordinary wild bootstrap, using either restricted or unrestricted estimates, and the other
six combine it with variants of the wild cluster bootstrap. To our knowledge, these are the first
bootstrap methods for this problem. Menzel (2017) develops a bootstrap procedure for multiway
clustering, but that procedure is for comparisons of means and not for inference on regression
coefficients. In every case that we have investigated, the proposed bootstrap methods (at least, the
ones based on restricted estimates) yield much better inferences in finite samples than comparing
t-statistics based on the multiway CRVE to the t distribution with degrees of freedom that depend
on the numbers of clusters in each dimension.

In Section 2, we discuss the linear regression model with disturbances that are clustered in two
dimensions and the two-way CRVE proposed in CGM. Then, in Section 3, we prove that inference
based on the latter is asymptotically valid under a suitable set of assumptions. In Section 4, we
discuss the wild bootstrap methods that we propose and prove that they too are asymptotically
valid. In Section 5, we present the results from a number of simulation experiments which suggest
that wild bootstrap inference is much more reliable than asymptotic inference, except perhaps in
certain extreme cases. In Section 6, we illustrate our results by using an empirical example from
Nunn and Wantchekon (2011) where it is possible to cluster both by ethnicity and at different
geographic levels. Section 7 concludes. Mathematical proofs of our main results are presented in
the appendix.

2 The Model
Consider a linear regression model with two-way clustered disturbances written as

y = Xβ + u, E(uu>) = Ω, (1)

where y and u are N × 1 vectors of observations and disturbances, X is an N × k matrix of
covariates, β is a k × 1 parameter vector, and the N × N variance matrix Ω has a particular
structure based on two dimensions of clustering. The numbers of clusters in the two dimensions
are G and H, respectively. We can rewrite (1) as

ygh = Xghβ + ugh, g = 1, . . . , G, h = 1, . . . ,H, (2)

where the vectors ygh and ugh and the matrix Xgh contain, respectively, the rows of y, u, and
X that correspond to both the g th cluster in the first clustering dimension and the hth cluster in
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the second clustering dimension. The GH clusters into which the data are divided in equation (2)
represent the intersection of the two clustering dimensions.

We need notation for the number of observations in each cluster for each dimension. It would
be natural to use N1

g for the g th cluster in the first dimension and N2
h for the hth cluster in the

second dimension. However, to avoid excessively ugly algebra, we omit the superscripts. Thus we
simply use Ng to denote the number of observations in cluster g for the first dimension and Nh to
denote the number of observations in cluster h for the second dimension, as well as Ngh to denote
the number of observations in the intersection of cluster g in the first dimension and cluster h in
the second dimension. In the theoretical context, there should be no ambiguity.

Similarly, we use yg, Xg, and ug to denote vectors that contain the rows of y, X, and u for the
g th cluster in the first dimension, and yh, Xh, and uh to denote the corresponding rows for the hth

cluster in the second dimension. Note that, in terms of the notation of equation (2), the vector yg
contains the subvectors yg1 through ygH . The variance matrices for ug, uh and ugh are denoted

Ωg = E(ugu>g |X),Ωh = E(uhu>h |X), and Ωgh = E(ughu>gh |X), (3)

respectively.
Since there are Ng observations in a typical cluster for the first dimension, Nh observations

in a typical cluster for the second dimension, and Ngh observations in a typical cluster for the
intersection, the number of observations in the entire sample is

N =
G∑
g=1

Ng =
H∑
h=1

Nh =
G∑
g=1

H∑
h=1

Ngh.

We assume that Ng ≥ 1 and Nh ≥ 1, but Ngh might well equal 0 for some values of g and h.
Conditional on X, the disturbances have mean zero and variance matrix Ω = E(uu> |X) with

the structure
E(ug′h′u>gh |X) = 0 if g′ 6= g, h′ 6= h (4)

and arbitrary covariances if either g = g′ or h = h′. When Nh = 1 for all h, the model (1) reduces
to the conventional one-way clustering model. When, in addition, Ng = 1 for all g, it reduces to
the well-known linear regression model with heteroskedasticity of unknown form. Hence, as special
cases, our results cover these models as well.

As usual, the OLS estimator of β is

β̂ = (X>X)−1X>y. (5)

We let QN = N−1X>X and ΓN = N−2X>ΩX. With the structure in (4), we can write

ΓN = N−2
G∑
g=1

X>g ΩgXg +N−2
H∑
h=1

X>h ΩhXh −N−2
G∑
g=1

H∑
h=1

X>ghΩghXgh. (6)

The variance matrix of β̂, conditional on X, is given by

VN = Q−1
N ΓNQ−1

N . (7)

We then define the cluster-robust estimator of VN , i.e. the multiway CRVE, as

V̂ = Q−1
N Γ̂Q−1

N . (8)

Based on (6), the middle matrix here is defined as

Γ̂ = N−2
G∑
g=1

X>g ûgû
>
gXg +N−2

H∑
h=1

X>h ûhû
>
hXh −N−2

G∑
g=1

H∑
h=1

X>ghûghû
>
ghXgh; (9)
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see CGM. Here ûg, ûh, and ûgh denote various subvectors of the vector of OLS residuals. In
practice, the factors of N−2 in the three terms in (9) are almost always omitted, and QN is
replaced by X>X. This leaves the value of V̂ unchanged. However, the three terms in (9) are
usually multiplied by

G(N − 1)
(G− 1)(N − k) ,

H(N − 1)
(H − 1)(N − k) , and GH(N − 1)

(GH − 1)(N − k) , (10)

respectively, by analogy with the scalar factor that is conventionally employed with the one-way
CRVE. We make use of the factors in (10) in our simulations, but for purposes of asymptotic theory
we omit them without loss of generality.

One important practical issue is that the matrix Γ̂ defined in (9) is not necessarily positive
definite in finite samples, which implies that the diagonal elements of V̂ may not all be positive.
In fact, since the ranks of the three matrices in (9) cannot exceed G, H, and GH, respectively, it
seems likely that V̂ will not be positive definite whenever the model contains significantly more
than min(G,H) regressors. However, even when the number of regressors is small relative to G
and H, there may very well be samples for which V̂ is not positive definite; see Section 5. For the
models estimated in the empirical example of Section 6, V̂ is in fact not positive definite.

In order to deal with this problem, CGM suggests calculating the eigenvalues of V̂ , say λ1, . . . , λk.
When any of them is not positive, they then suggest that V̂ be replaced by the eigendecomposition
V̂ + = UΛ+U>, where U is the k × k matrix of eigenvectors and Λ+ is a diagonal matrix with
typical diagonal element max(λj , 0). The matrix V̂ + is guaranteed only to be positive semidefi-
nite, and it could have diagonal elements that equal 0. If the coefficients that correspond to those
diagonal elements are of interest, then it is impossible to use V̂ + for inference about them.

Even for the one-way CRVE, it is common to encounter singular variance matrices when there
are fixed effects. This problem can be dealt with in various ways, most easily by projecting the
regressand and all the regressors off the fixed effects before running the regression; see Pustejovsky
and Tipton (2017). That trick could also be used with the two-way CRVE.

3 Asymptotic Theory
In this section, we derive the asymptotic limit theory for t-statistics based on the two-way CRVE
V̂ . We let β0 denote the true value of β and restrict our attention to the cluster-robust t-statistic

ta = a>(β̂ − β0)√
a>V̂ a

(11)

for testing the null hypothesis H0: a>β = a>β0 against either a one-sided or two-sided alternative
hypothesis. We impose the normalization that a>a = 1 to rule out degenerate cases, but it is much
stronger than is actually needed.

In order to obtain our results, we need the following conditions, where, for any matrix M,
‖M‖ =

(
Tr(M>M)

)1/2 denotes the Euclidean (Frobenius) norm.

Assumption 1. The disturbances are such that ugh is independent of ug′h′ if g 6= g′, h 6= h′ and
satisfy E(ugh|X) = 0 and (3) with Ωg, Ωh, and Ωgh positive definite. In addition, for some λ > 0,

sup
1≤i≤Ngh, 1≤g≤G, 1≤h≤H

E
(
|ugh,i|2+λ |X

)
<∞,

where ugh,i denotes the ith element of ugh.
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Assumption 2. The regressor matrix X satisfies QN
P−→ Q, where Q is finite and positive

definite, and
sup

1≤i≤Ngh, 1≤g≤G, 1≤h≤H
E‖Xgh,i‖2+λ <∞,

where λ is the same as in Assumption 1 and Xgh,i denotes the ith row of Xgh.

Assumption 3. For λ defined in Assumption 1,

sup1≤g≤GN
2+2/λ
g

N
+

sup1≤h≤H N
2+2/λ
h

N
→ 0.

Assumption 1 imposes the conditions that the disturbance vectors ugh are independent across
clusters with zero conditional means and constant, but possibly heterogeneous, conditional variance
matrices. Conditions like Assumption 2 are standard in the asymptotic theory for linear regressions.

Assumption 3 restricts the extent of cluster size heterogeneity that is allowed in order to obtain
asymptotic normality. Although the number of observations in each cluster can grow as the total
number of observations, N, grows, the relative expansion rate of the clusters is controlled by the
conditions in Assumption 3. More specifically, the cluster sizes in both dimensions can be either
fixed constants or they can diverge. For example, we might have Ng = cgN

αg , Nh = chN
αh , or

Ngh = cghN
αgh , but αg, αh, and αgh cannot be too large, and no cluster can be proportional to

the entire sample.
In any case, the condition implies that the numbers of clusters in both dimensions, i.e. G and

H, must diverge when N diverges. It is also clear that when more moments are assumed to exist
in Assumption 1, i.e. when λ is higher, Assumption 3 is weaker. If, for example, four moments
are assumed to exist (λ = 2) as in Djogbenou, MacKinnon, and Nielsen (2017), then the second
condition of Assumption 3 is supgN3

g /N + suphN3
h/N → 0, which is only slightly stronger than

what is required in the one-way clustering setup in Djogbenou et al. (2017).
More generally, the conditions in Assumption 3 ensure that the information in the sample

remains sufficiently spread out across clusters asymptotically, which is a critical requirement for
the application of a central limit theorem. Therefore, the condition restricts the sizes of the largest
clusters in each dimension, supgNg and suphNh.

A substantial complication in the asymptotic theory for model (1) is that the stochastic order
of magnitude of β̂ in (5) depends in a complex way on the intra-cluster correlation structure,
the regressors, the relative cluster sizes, and interactions among these; see Carter, Schnepel, and
Steigerwald (2017) and Djogbenou, MacKinnon, and Nielsen (2017). There are two extreme cases,
with all other cases lying in between: (i) Ω is diagonal with no intra-cluster correlation at all,
and (ii) the Ωgh are dense matrices without restrictions, and the regressors are correlated within
clusters. In case (i) we easily find that, under Assumption 2,

‖VN‖ = OP (N−1). (12)

Thus, in particular, β̂ clearly converges at rate OP (N−1/2), because VN is the conditional variance
matrix of β̂ under Assumption 1. On the other hand, in case (ii) for general Ωgh without restrictions,
it holds that

E(X>ghΩghXgh) = E
( Ngh∑
i,j=1

X>gh,iΩgh,ijXgh,j

)
= O

(
N2
gh

)
, (13)

where Ωgh,ij is the (i, j)th element of Ωgh. Similarly, E(X>g ΩgXg) = O(N2
g ) and E(X>h ΩhXh) =
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O(N2
h). It follows, using also (6), (7), and Assumption 2, that

‖VN‖ = OP (1)OP
(
N−2

G∑
g=1

N2
g +N−2

H∑
h=1

N2
h +N−2

G∑
g=1

H∑
h=1

N2
gh

)

= OP

(
N−1 sup

1≤g≤G
Ng +N−1 sup

1≤h≤H
Nh

)
. (14)

Note that N−1 supg,hNgh → 0 is implied by N−1 supgNg → 0 and N−1 suphNh → 0. Therefore, in
case (ii), β̂ converges at rate OP

(
N−1/2 supgN

1/2
g +N−1/2 suphN

1/2
h

)
. In general, it follows that,

under Assumptions 1 and 2, the condition

sup1≤g≤GNg

N
+

sup1≤h≤H Nh

N
→ 0 (15)

is sufficient for consistency of β̂ in the model (1).
Our first result in Theorem 1 below has several precursors in the literature on one-way clustering,

although these are all obtained under assumptions that are very different from ours. In particular,
White (1984, Chapter 6) assumes equal-sized, homogeneous (same variance) clusters, and Hansen
(2007) assumes equal-sized, heterogeneous clusters. Thus both these papers assume that Ng = N/G
for all g. In contrast, the primitive moment and rate conditions in Assumptions 1 and 3 allow
clusters to be heterogeneous.

More recently, Carter, Schnepel, and Steigerwald (2017) and Djogbenou, MacKinnon, and
Nielsen (2017) obtain results for one-way clustering that allow clusters to be heterogeneous. The
former paper invokes a primitive moment condition and makes some high-level assumptions about
cluster-size heterogeneity and interactions between regressors and disturbances. The latter paper
makes much weaker assumptions, similar to those in Assumptions 1–3, which allow for arbitrary de-
pendence and correlation within each cluster. See Djogbenou et al. (2017) for a detailed comparison
of the assumptions in the two papers.

Since we do not restrict the dependence within clusters in either dimension, and we wish to
allow any structure for the intra-cluster variance matrices, we cannot normalize β̂ − β0 in the
usual way to obtain an asymptotic distribution. Instead, we follow Djogbenou, MacKinnon, and
Nielsen (2017) and consider asymptotic limit theory for the studentized (self-normalized) quantities
(a>VNa)−1/2a>(β̂ − β0), (a>VNa)−1a>V̂ a, and ta. For related arguments, see Hansen (2007,
Theorem 2) and Carter, Schnepel, and Steigerwald (2017).

The following result establishes the asymptotic normality of β̂ and ta.

Theorem 1. Suppose that Assumptions 1–3 are satisfied and the true value of β is given by β0.
It then holds that

a>(β̂ − β0)
(a>VNa)1/2

d−→ N(0, 1), (16)

and if also λ ≥ 2 then

a>V̂ a

a>VNa
P−→ 1 and (17)

ta
d−→ N(0, 1). (18)

Equation (18) justifies the use of critical values and P values from a normal approximation to
perform t-tests and construct confidence intervals. However, based on results in Bester, Conley,
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and Hansen (2011), it will often be more accurate to use the t(G− 1) distribution in the one-way
case; see also Cameron and Miller (2015) for a discussion of this issue. In the two-way case, CGM
suggests using the t

(
min(G,H)− 1

)
distribution, and we do this in Sections 5 and 6 below.

An important consequence of the results in Theorem 1 is that the relevant notion of sample
size in models that have a cluster structure is generally not the number of observations, N. This
is seen clearly in the rate of convergence of the estimator in (16), which is (a>VNa)1/2 instead of
N−1/2, G−1/2, or H−1/2; see the discussion around (14).

4 Asymptotic Validity of the Wild (Cluster) Bootstrap
In this section, we consider the asymptotic validity of inference based on several variants of the wild
bootstrap, or WB, and the wild cluster bootstrap, or WCB (Cameron, Gelbach, and Miller, 2008),
as alternatives to the asymptotic inference justified in Theorem 1. Both the WB and WCB may
be implemented using either restricted or unrestricted estimates in the bootstrap data-generating
process. In general, it is desirable to impose restrictions on bootstrap DGPs (Davidson and Mac-
Kinnon, 1999), and there is compelling evidence in MacKinnon and Webb (2017) and Djogbenou,
MacKinnon, and Nielsen (2017) that, for one-way clustering, the restricted versions of both the WB
and WCB (henceforth WR and WCR) never perform much worse than the unrestricted versions
(WU and WCU) and sometimes perform very much better. However, it is much easier to construct
studentized bootstrap confidence intervals using WU and WCU than to construct confidence inter-
vals based on WR and WCR; Hansen (1999) and MacKinnon (2015) discuss confidence intervals
based on restricted bootstraps.

For the wild bootstrap, the bootstrap disturbance vectors u∗ are obtained by multiplying each
residual ũgh,i (for WR) or ûgh,i (for WU) by a draw v∗gh,i from an auxiliary random variable v∗ with
mean 0 and variance 1. A popular choice is the Rademacher distribution, which takes on the values
1 and −1 with equal probabilities; see Davidson and Flachaire (2008). Thus it takes N draws from
the auxiliary distribution to create each bootstrap sample.

For the wild cluster bootstrap, the number of draws from the auxiliary distribution is equal to
the number of clusters instead of the number of observations. For the two-way model (2), there are
three natural ways to cluster the bootstrap disturbances. We can cluster by the first dimension,
by the second dimension, or by their intersection. The number of draws would then be G, H, or
GH.1 For each bootstrap sample, every residual within each cluster in the appropriate dimension
is multiplied by the same draw from v∗.

The idea of the WCB is that the bootstrap samples should preserve the pattern of correlations
within each cluster. This idea works well for one-way clustering. However, when clustering is
actually in two dimensions, the best the WCB can do is to preserve some of the intra-cluster
correlations. In Theorem 2 below, we prove that both the WB and all suggested variants of the
WCB are asymptotically valid. However, it is not clear which variant of the WCB is likely to perform
best in any given case or whether any variant is likely to outperform the WB. This undoubtedly
depends on G, H, the cluster sizes, X, Ω, and so on.

We next describe the algorithm for all variants of the WB and WCB in some detail. We then
prove the asymptotic validity of all variants. To describe the bootstrap algorithm and the properties
of the bootstrap procedures, we introduce the notation ü and β̈, which will be taken to represent
either restricted or unrestricted quantities as appropriate.

1Actually, if any of the possible intersections of the two dimensions were empty, the number of draws in the last
case would be less than GH. For simplicity, we ignore this possibility.
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Multiway Wild (Cluster) Bootstrap Algorithms.

1. Run an OLS regression of y on X to obtain β̂ and (multiway) V̂ defined in (5) and (8),
respectively. Check that V̂ is positive semidefinite, and replace it by V̂ + if necessary; see
Section 2. For WR and WCR, additionally re-estimate model (1) subject to the restriction
a>β = a>β0 so as to obtain restricted estimates β̃ and restricted residuals ũ.

2. Calculate the cluster-robust t-statistic ta, given in (11), for H0: a>β = a>β0.

3. For each of B bootstrap replications, indexed by b:

(a) Generate a new set of bootstrap disturbances given by u∗b. For the wild bootstrap, set
u∗bgh,i = v∗bgh,iügh,i. For the wild cluster bootstrap, set u∗bgh = v∗bghügh, or u∗bg = v∗bg üg, or
u∗bh = v∗bh üh, depending on the level of bootstrap clustering.

(b) Generate the bootstrap dependent variables according to y∗b = Xβ̈ + u∗b.
(c) Obtain the bootstrap estimates β̂∗b = (X>X)−1X>y∗b, the bootstrap residuals û∗b,

and the bootstrap (multiway) variance matrix estimate

V̂ ∗b = (X>X)−1N2 Γ̂∗b(X>X)−1 = Q−1
N Γ̂∗bQ−1

N ,

where

N2 Γ̂∗b = G(N − 1)
(G− 1)(N − k)

G∑
g=1

X>g û
∗b
g û
∗b>
g Xg + H(N − 1)

(H − 1)(N − k)

H∑
h=1

X>h û
∗b
h û
∗b>
h Xh

− GH(N − 1)
(GH − 1)(N − k)

G∑
g=1

H∑
h=1

X>ghû
∗b
ghû

∗b>
gh Xgh;

If V̂ ∗b is not positive semidefinite, replace it by V̂ ∗b+, which is the bootstrap analogue
of the matrix V̂ +.

(d) Calculate the bootstrap t-statistic

t∗ba = a>(β̂∗b − β̈)√
a>V̂ ∗ba

.

4. Depending on whether the alternative hypothesis is HL: a>β < a>β0, HR: a>β > a>β0, or
H2: a>β 6= a>β0, compute one of the following bootstrap P values:

P̂ ∗L = 1
B

B∑
b=1

I(t∗ba < ta), P̂ ∗H = 1
B

B∑
b=1

I(t∗ba > ta) or P̂ ∗S = 1
B

B∑
b=1

I
(
|t∗ba | > |ta|

)
,

where I(·) denotes the indicator function. If the null hypothesis is H2, but it is inappropriate
to assume symmetry, then the symmetric P value P̂ ∗S can be replaced by the equal-tail P value,
which is simply 2 min(P̂ ∗L , P̂ ∗H).

The above algorithm presents the steps needed to implement the WR, WCR, WU, and WCU
bootstraps for testing the hypothesis H0. If interest instead focuses on confidence intervals for
the quantity a>β, studentized bootstrap confidence intervals based on WU and WCU can be
constructed by calculating lower-tail and upper-tail quantiles of the t∗ba instead of P values; see
Davidson and MacKinnon (2004, Section 5.3).
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A key feature of all the wild bootstrap methods we consider is that the variance matrix V̂ ∗b
obtained in step 3(c) does not in fact consistently estimate the limit of the true variance matrix
VN ; see (20) below. To accommodate this fact, we introduce the following notation. Let Ω̄ denote
the limiting variance matrix of the bootstrap disturbances. For the WB, this will be the matrix
obtained by setting all the off-diagonal elements of Ω to zero. For the WCB, it will be a block
diagonal matrix, with either G, H, or GH nonzero blocks. We also define

Γ̄N = N−2X>Ω̄X and V̄N = Q−1
N Γ̄NQ−1

N ;

see equations (6) and (7). The form of Γ̄N is much simpler than the form of ΓN , because the
former involves at most one-way clustering while the latter involves two-way clustering. Notice
that, except in very special cases, V̄N 6= VN .

The following theorem is the bootstrap analogue of Theorem 1. It establishes the asymptotic
normality of the WB and WCB estimators and t-statistics.

Theorem 2. Suppose Assumptions 1–3 are satisfied with λ ≥ 2, that the true value of β is β0, and
that E∗|v∗|2+λ <∞. It then holds that

a>(β̂∗ − β̈)
(a>V̄Na)1/2

d∗−→ N(0, 1), (19)

a>V̂ ∗a

a>V̄Na

P ∗−→ 1, and (20)

t∗a
d∗−→ N(0, 1), (21)

in probability.

Recall that β̈ denotes whatever vector of estimates was used in step 3(b) above. For WR and
WCR, this estimate satisfies the null hypothesis. For WU and WCU, it is the unrestricted OLS
estimate of β in model (1). From (19), we see that the WB and WCB are unable to replicate
the variance matrix of the vector β̂. The bootstrap estimator a>β̂∗ asymptotically has variance
a>V̄Na, conditional on the original sample, whereas the actual estimator a>β̂ asymptotically has
variance a>VNa; compare (16) and (19).

More importantly, however, the distribution of the bootstrap t-statistic given in (21) replicates
that of the original sample t-statistic. This essentially follows from the fact that the t-statistic is
asymptotically pivotal. Even though a>β̂∗ does not have the same variance as a>β̂, this has no
effect on the asymptotic validity of the bootstrap, because t∗a is based on a valid estimate of a>V̄Na
by the result (20) and thus has the correct asymptotic distribution by the result (21).

Furthermore, all the results in Theorem 2 are conditional on the original sample, and hence also
conditional on ta. This implies that the results (19)–(21) hold for any possible realization of the
original sample, and therefore also any possible realization of ta, which is the crucial requirement
for asymptotic validity of the bootstrap.

Let the cumulative distribution function (CDF) of ta be denoted P (ta ≤ x). Then the following
result follows immediately from Theorems 1 and 2 by an application of the triangle inequality and
Polya’s Theorem.

Corollary 1. Under the conditions of Theorem 2 and H0,

sup
x

∣∣P ∗(t∗a ≤ x)− P (ta ≤ x)
∣∣ = oP (1).

9



Corollary 1 implies that the P values computed in step 4 of the WB and WCB algorithms are
asymptotically valid, as are studentized bootstrap confidence intervals. Intuitively, the bootstrap
test must have the correct size asymptotically under the null hypothesis, because comparing ta to
the bootstrap distribution P ∗(t∗a ≤ x) is asymptotically equivalent to comparing it to N(0, 1); c.f.
the results (18) and (21).

5 Simulation experiments
In Theorems 1 and 2, we proved the asymptotic validity of inference based on t-statistics constructed
using the multiway CRVE and on several variants of the wild bootstrap. However, we did not prove
that the latter will outperform the former in finite samples, and we would very surprised if such
a result could be proved. Nevertheless, it is reasonable to conjecture that bootstrap inference will
typically be more reliable than inference based on the t distribution. In this section, we investigate
this conjecture via simulation experiments. We also investigate how the performance of all methods
depends on the number of clusters in each dimension and on other features of the data generating
process.

In most of our experiments, the DGP is

ygh,i = β0 + β1Xgh,i + ugh,i, ugh,i = σgvg + σhvh + σεεgh,i, (22)

where the vg, vh, and εgh,i are all independent standard normals. The values of σg, σh, and σε are
chosen so that the correlation between any two disturbances that belong to the same cluster in the
G (or H) dimension is ρg (or ρh). This implies that the correlation is ρg + ρh for disturbances that
belong to the same cluster in both dimensions, and 0 for disturbances that do not belong to the
same cluster in either dimension.

The regressor Xgh,i is lognormally distributed. It is the exponential of a random variable that
is generated in almost the same way as the ugh,i, but with correlations φg and φh. We make Xgh,i

lognormal to avoid the risk that any of our results may be artifacts of an experimental design in
which both the regressor and the disturbances are normally distributed.

Table 1 presents rejection frequencies for a large number of procedures for various values of G
and H with balanced clusters. For example, when N = 4000 with G = 10 and H = 20, the clusters
in the G dimension each contain 400 observations, the clusters in the H dimension each contain
200, and the clusters in the G×H dimension each contain 20. The details of the experiments are
given in the notes to Table 1. Both ρg and ρh are equal to 0.05, and both φg and φh are equal to
0.40.2 That is because, in our experience, intra-cluster correlations for residuals tend to be quite
small, while intra-cluster correlations for at least some regressors can be large.

It is evident from Table 1 that using heteroskedasticity-robust standard errors, or clustering at
the G×H level, always leads to very severe overrejection. Note that these procedures are identical
when N = GH, as in the last three rows of the table. One-way clustering also always leads to
overrejection, which can be very severe, especially when H is much larger than G and we cluster
by H. Using t-statistics based on the two-way CRVE (denoted CV-M in the table), together with
critical values from the t

(
min(G,H)−1

)
distribution, always results in overrejection, which is quite

severe in some cases, but not nearly as severe as with one-way clustering. There is overrejection
even when G = H = 100, which may be surprising. We would have obtained somewhat smaller
rejection frequencies (but still greater than .05) if the regressor had been normally rather than
lognormally distributed or if ρg and ρh had been larger.

2In contrast, CGM implicitly set ρg = ρh = 1/3 in many of their experiments. Their DGP has two regressors,
each correlated in just one dimension, instead of one regressor that is correlated in both dimensions.
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Table 1: Rejection Frequencies for Balanced Clusters with Homoskedastic Errors

G H HC1 CVGH CVG CVH CV-M WR WCRGH WCRG WCRH λj ≤ 0

5 5 0.6865 0.3312 0.2322 0.2316 0.1934 0.1073 0.0954 0.0810 0.0811 0.1067
5 10 0.6378 0.3312 0.1977 0.2672 0.1300 0.0753 0.0682 0.0609 0.0579 0.0294
5 20 0.5902 0.4179 0.1657 0.3004 0.1004 0.0592 0.0540 0.0536 0.0533 0.0096
5 40 0.5495 0.4179 0.1375 0.3389 0.0876 0.0502 0.0465 0.0509 0.0538 0.0043
10 10 0.5814 0.3727 0.2277 0.2263 0.1427 0.0544 0.0514 0.0514 0.0515 0.0047
10 20 0.5251 0.2319 0.1867 0.2511 0.1151 0.0443 0.0422 0.0485 0.0517 0.0013
10 40 0.4762 0.3926 0.1551 0.2806 0.1026 0.0416 0.0399 0.0468 0.0544 0.0007
20 20 0.4519 0.3648 0.1976 0.1979 0.1115 0.0387 0.0371 0.0488 0.0488 0.0005
20 40 0.3933 0.3477 0.1575 0.2153 0.0976 0.0386 0.0374 0.0475 0.0516 0.0003
40 40 0.3218 0.3014 0.1620 0.1624 0.0919 0.0390 0.0385 0.0489 0.0485 0.0001
50 50 0.4521 0.4137 0.1783 0.1790 0.0832 0.0380 0.0375 0.0491 0.0496 0.0000
50 100 0.3920 0.3782 0.1351 0.2047 0.0775 0.0412 0.0410 0.0476 0.0519 0.0000
50 200 0.3533 0.3533 0.1099 0.2371 0.0761 0.0452 0.0452 0.0472 0.0538 0.0000
25 400 0.4422 0.4422 0.1051 0.3764 0.0899 0.0492 0.0492 0.0476 0.0595 0.0000

100 100 0.3169 0.3169 0.1456 0.1460 0.0718 0.0433 0.0433 0.0493 0.0492 0.0000

Notes:
All results are based on 400,000 replications, with B = 399 for the bootstrap methods.
All tests are at 5% nominal level.
The model contains a constant and one regressor, which follows a lognormal distribution. The
disturbances are normally distributed.

When G ≤ 40 and H ≤ 40, N = 4000. Otherwise, N = 10,000.
In all cases, ρg = ρh = 0.05, and φg = φh = 0.40.
HC1 uses heteroskedasticity-robust standard errors and t(n− k) critical values.
CVGH uses standard errors clustered at the G×H level and t(GH − 1) critical values.
CVG uses standard errors clustered at the G level and t(G− 1) critical values.
CVH uses standard errors clustered at the H level and t(H − 1) critical values.
CV-M uses multiway CRVE standard errors (using the eigendecomposition if necessary) and
t
(
min(G,H)− 1

)
critical values.

In most cases, the auxiliary random variable for the wild bootstrap is Rademacher. For WCRG

with G = 5 and WCRH with H = 5, it follows Webb’s 6-point distribution.
WR uses ordinary wild bootstrap symmetric P values.
WCRGH uses wild cluster bootstrap symmetric P values, with clustering at the G×H level.
WCRG uses wild cluster bootstrap symmetric P values, with clustering at the G level.
WCRH uses wild cluster bootstrap symmetric P values, with clustering at the H level.
λj ≤ 0 is the proportion of simulations for which any of the eigenvalues of V̂ is less than 10−8.

In contrast, the bootstrap methods generally work very well and perform very similarly, except
when G = 5 and H ≤ 10. For the larger values of G and H, the WR and WCRGH bootstraps
actually underreject. This is evident even for G = H = 100. When the number of draws of the
auxiliary random variable is very small (that is, when G = 5 for WCRG and when H = 5 for
WCRH), we use the 6-point distribution proposed in Webb (2014) rather than the Rademacher
distribution. For the latter, there would have been only 25 = 32 distinct bootstrap samples. For
the former, there are 65 = 7776.
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Figure 1: Rejection frequencies when cluster sizes vary (restricted bootstraps)
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Notes:
There are 400,000 replications, with N = 4000 and G = H = 10.
All tests are at 5% nominal level.
CV-M rejection frequencies are based on the t(9) distribution.
All bootstrap tests use the Rademacher distribution with symmetric P values and B = 399.

Interestingly, in every case, either the WCRG bootstrap, the WCRH bootstrap, or both of
them, perform better than the WCRGH bootstrap. Except when G = H = 5, both these methods
work remarkably well. When G = H, the WCRG and WCRH bootstraps are equivalent, although
the rejection frequencies differ slightly because of simulation errors.

In the experiments of Table 1, all clusters are balanced. In the next set of experiments, with
G = H = 10, we allow cluster sizes to vary in the G dimension, but not in the H dimension. In
order to allow for unbalanced cluster sizes, Ng is determined by a parameter γ, as follows:

Ng =
[
N

exp(γg/G)∑G
j=1 exp(γj/G)

]
, g = 1, . . . , G− 1, (23)

where [·] denotes the integer part of its argument, and NG = N −
∑G−1
j=1 Ng. When γ = 0, every

Ng is equal to N/G. As γ increases, cluster sizes become increasingly unbalanced.
Figure 1 shows rejection frequencies for five tests as a function of the parameter γ, which varies

between 0 and 4. When γ = 0, all clusters are of size 400 in the G dimension. When γ = 4, the
smallest cluster in the G dimension has 36 observations and the largest has 1349. The vertical
axis has been subjected to a square root transformation so that both large and small rejection
frequencies can be shown legibly. It is evident that all the tests perform worse as cluster sizes
become more variable. However, the bootstrap tests (all of them based on restricted estimates)
always perform very much better than CV-M, that is, using multiway CRVE standard errors and
t
(
min(G,H)−1)

)
critical values. Among the bootstrap methods, the ordinary wild bootstrap (WR)

always performs worst, and WCRG always performs best, especially when cluster sizes vary a lot.
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Figure 2: Rejection frequencies when cluster sizes vary (unrestricted bootstraps)
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Notes:
There are 400,000 replications, with N = 4000 and G = H = 10.
All tests are at 5% nominal level.
CV-M rejection frequencies are based on the t(9) distribution.
All bootstrap tests use the Rademacher distribution with symmetric P values and B = 399.

Figure 2 deals with the same experiments as Figure 1. The only difference is that the four
bootstrap methods now use unrestricted estimates. The results for WU are almost the same as
for WR, although the rejection frequencies are actually very slightly higher. For the other three
methods, however, the rejection frequencies are substantially higher when we use unrestricted
estimates. In the most extreme case, WCUG has a rejection frequency of 0.1141 when γ = 4.

There is nothing unique about Figures 1 and 2. In every case where we compare the performance
of wild bootstrap methods that differ only in being based on either restricted or unrestricted
estimates and residuals, the latter reject more often (often much more often) than the former.
Only for the ordinary wild bootstrap (WR and WU) do the differences tend to be negligible. We
conclude that, when bootstrapping models that use a multiway CRVE, it seems to be particularly
important to impose the null hypothesis on the bootstrap DGP. In the remainder of the paper, we
therefore do not report results for unrestricted bootstrap methods.

The DGP (22) evidently depends on the parameters ρg, ρh, φg, and φh. However, the results
in Table 1 and Figures 1 and 2 are all for the same values of those parameters. We therefore
performed a number of experiments to see how sensitive the results are to those values. Results
for invalid methods like HC1 and CVGH are, of course, quite sensitive to them. Results for CV-M
are sometimes fairly sensitive, but we never found a case where results for the bootstrap methods
change substantially.

As an example, consider Figure 3, which shows φg = φh on the horizontal axis for balanced
clusters with G = H = 10. As usual, the vertical axis shows rejection frequencies. The values of ρg
and ρh are 0.05, as before. It is evident that the performance of CV-M deteriorates fairly sharply
as the intra-cluster correlations of the regressor increase. In contrast, all of the bootstrap methods
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Figure 3: Rejection frequencies as a function of the regressor’s intra-cluster correlation
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There are 400,000 replications, with N = 4000 and G = H = 10.
All tests are at 5% nominal level.
CV-M rejection frequencies are based on the t(9) distribution.
All bootstrap tests use the Rademacher distribution with symmetric P values and B = 399.

perform better as they increase, with rejection frequencies gradually decreasing from approximately
0.06 to approximately 0.05.

In empirical work, it is not uncommon for one of the two dimensions in which the data are
clustered to be quite small. To investigate this situation, we perform a further set of experiments
with N = 4000 in which H = 20 and G varies from 2 to 10. The value of γ is 2, so that the
clusters in the G dimension vary in size. When G = 2, the smallest is 1075, and the largest is 2925.
When G = 10, the smallest is 138, and the largest is 843. All clusters in the H dimension have 200
observations.

The results of these experiments, which are shown in Figure 4, may be surprising. The CV-M
procedure actually underrejects for G = 2, perhaps because the t-statistic is being compared with
the t(1) distribution, for which the 5% critical value is 12.71. Results for this extreme case are
probably also influenced by the fact that there is at least one negative eigenvalue 21.5% of the time
when G = 2. The CV-M procedure overrejects more and more severely as G becomes larger, with
the rejection frequency starting to drop only very slightly when G = 10.

For the various wild bootstrap procedures, we use the Rademacher distribution whenever the
number of auxiliary random variables is at least 10 and the 6-point distribution otherwise. This
means that we use the latter for WCRG whenever G ≤ 9. Most of the bootstrap methods do not
perform well when G is very small, although WCRG does perform remarkably well for G = 2 and
G = 3. However, given that this method uses auxiliary random variables that can take on only
36 or 216 sets of values, these results should probably should not be taken too seriously. All the
bootstrap methods perform surprisingly well for the larger values of G. In fact, they all reject
between 4% and 6% of the time for G ≥ 6, while CV-M rejects between 12.5% and 13.1% of the
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Figure 4: Rejection frequencies for H = 20 and small values of G
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Notes:
There are 400,000 replications, with N = 4000, H = 20, and G varying from 2 to 10.
All tests are at 5% nominal level.
CV-M rejection frequencies are based on the t(G− 1) distribution.
Bootstrap tests use either the Rademacher distribution (if there are 10 or more draws of v∗ per
bootstrap sample) or the 6-point distribution (if not), with symmetric P values and B = 399.

time. It is difficult to say which method should be preferred, since the relative performance of
different methods seems to vary with G.

The final set of experiments also involves small values of G and H, but this time G = H.
Clusters are balanced in the H dimension, but γ = 2 for the G dimension. Results are shown
in Figure 5. The CV-M procedure performs quite well for G = H = 2, which, as in the case
with G = 2, H = 20 in Figure 4, is probably because the t-statistic is compared with the t(1)
distribution in this case. However, the CV-M procedure overrejects severely for all other values.
The four bootstrap procedures overreject less severely (except for G = H = 2), but they improve
rapidly once G > 3. For all but the largest values of G = H, the WCRG and WCRH bootstraps
perform noticeably better than the WR and WCRGH ones. Note that WCRG and WCRH differ
only because the cluster sizes are unbalanced in the G dimension and balanced in the H dimension.

Like all simulation results, the ones in this section must be interpreted with caution. The
performance of all methods evidently depends on the Ng, the Nh, the Ω matrix, and the X matrix.
Since any or all of those could be very different from the ones in these experiments, we certainly
cannot conclude that bootstrap methods will always work as well as they do here. For a case in
which the wild cluster bootstrap works badly with one-way clustering, even when the number of
clusters is large, see MacKinnon and Webb (2017, Section 6). Nevertheless, it does seem fairly
safe to conclude that if CV-M and several bootstrap methods yield similar P values, the latter can
probably be relied on. On the other hand, if CV-M yields a much smaller P value than the better
bootstrap methods, the former is almost certainly not reliable.
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Figure 5: Rejection frequencies for small values of G and H
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There are 400,000 replications, with N = 4000, and G = H varying from 2 to 12.
All tests are at 5% nominal level.
Clusters in the G dimension vary in size, with γ = 2. For the H dimension, Nh = N/H.
CV-M rejection frequencies are based on the t(G− 1) distribution.
Bootstrap tests use either the Rademacher distribution (if there are 10 or more draws of v∗ per
bootstrap sample) or the 6-point distribution (if not), with symmetric P values and B = 399.

6 Empirical Example
To illustrate the implications of the simulation results in the previous section, we consider an
empirical example from Nunn and Wantchekon (2011). This paper (NW hereafter) investigated
whether current trust levels among different ethnic groups in several African countries are related
to historical slave exports. NW studied the relationship between the volume of slave exports and
current levels of trust between ethnicities using the following equation:

trustiedc = αc + β exportse +X ′iedcφ1 +X ′dφ2 +X ′eφ3 + εiedc, (24)

where i, e, d, and c indicate individual, ethnicity, district, and country, respectively. The subscript
notation in (24) follows NW and therefore differs somewhat from what is used elsewhere in this
paper. The outcome variable is trustiedc, which is the level of trust an individual has towards their
neighbors. We multiply the outcome variable by 1000 to avoid many leading zeros and increase the
number of significant digits in the reported coefficients and standard errors.

The principal coefficient of interest in equation (24) is β, which measures the extent to which
historical slave exports of a certain ethnicity affect trust levels of an individual of the same ethnicity
today. On the right-hand side, αc is a vector of country-level fixed effects, X ′iedc contains control
variables such as age, gender, and education, and X ′d contains two specific district-level variables
which may influence an ethnic group’s current levels of trust. These are the degree of ethnic
fractionalization in the district, and the proportion of the district population that is of the same
ethnic background as the survey respondent. Finally, X ′e contains ethnicity-level variables which
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Table 2: OLS Estimates of the Determinants of Trust in Neighbors

Dependent Variable slave exports

Trust of Neighbors×1000 district country region

β̂ −0.6791 −0.6791 −0.6791

One-way CVH : ethnicity, SE 0.1422 0.1422 0.1422
One-way CVH : ethnicity, P value 0.0000 0.0000 0.0000
One-way CVG: geography, SE 0.0822 0.2051 0.1814
One-way CVG: geography, P value 0.0000 0.0475 0.1338
One-way CVGH : ethnicity×geography, SE 0.0811 0.1426 0.1431
One-way CVGH : ethnicity×geography, P value 0.0000 0.0000 0.0000

Two-way CV-M: ethnicity and geography, SE 0.1451 0.2070 0.1810
Two-way CV-M: ethnicity and geography, t-stat −4.6809 −3.2809 −3.7527
Two-way CV-M: ethnicity and geography, P value 0.0000 0.0047 0.0133

Bootstrap WR: individual, P value 0.0005 0.0281 0.0384
Bootstrap WCRGH : ethnicity×geography, P value 0.0006 0.0470 0.0538
Bootstrap WCRH : ethnicity, P value 0.0012 0.0754 0.0832
Bootstrap WCRG: geography, P value 0.0004 0.1329 0.2539

Number of clusters, G: geography 1257 17 6
Number of clusters, H: ethnicity 185 185 185

Notes:
This example is taken from Nunn and Wantchekon (2011), Table 1, column 1.
Geographical clustering is done at a different level in each column.
All bootstrap P values are symmetric and based on B = 9999.
All bootstrap procedures use the Rademacher distribution, except for the WCRG bootstrap

(geography) with clustering at the region level, which uses the 6-point distribution.
A Stata .do file to replicate this table may be found at

http://qed.econ.queensu.ca/pub/faculty/mackinnon/two-way-boot/.

aim to control for historical differences between ethnicities, including the degree of colonization.
The trust variable comes from surveys for the Afrobarometer. These surveys were conducted

in 2005 and covered either 1200 or 2400 individuals in each of 17 countries. Survey respondents
were asked to indicate the level of trust they had for their neighbors. Data on slave exports were
obtained from Nunn (2008) and include the number of slave exports from each country, as well as
information about the ethnicities of the slaves. The data cover the four major African slave trades
from 1400 to 1900, the trans-Atlantic, Indian Ocean, Red Sea, and trans-Saharan, although only
data from the trans-Atlantic and Indian Ocean slave trades were used in NW. After cleaning the
data, the final sample consists of N = 21, 702 observations.

Table 2 reproduces and extends the results from NW’s Table 1 (column 1). NW used three
different variables as their key regressor. We focus on exports, but the results for exports/area and
exports/(historical population) follow a broadly similar pattern. Table 2 presents the results from
the OLS regression specified in equation (24). To illustrate the differences between CV-M and the
bootstrap procedures, we consider different levels of clustering in the geographic dimension, where
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NW simply clustered by district. We do not mean to imply that this is incorrect. However, it is
interesting to see what would happen if the geographic clustering dimension were chosen differently.
We choose it in two alternative ways, once clustering by country and once clustering by investment
region.3 Thus, the number of clusters in the geographic dimension (which can be thought of as G)
is either 1257 districts, 17 countries, or 6 regions. The number of clusters in the ethnic clustering
dimension (which can be thought of as H) is always 185 ethnicities.

The first row of results in Table 2 presents the coefficient estimate. Following it, the top panel
presents standard errors and P values clustered by three different one-way clustering variables,
specifically, ethnicity, geography, and the intersection of ethnicity and geography. The majority
of these P values are quite small, with only the P values for geographical clustering at either the
country or region level being insignificant at the 1% level.

The second panel of Table 2 presents two-way clustered standard errors and P values based on
the t(min(G,H)−1) distribution with clustering by both ethnicity and geography. The first column
in this panel reports results similar to those of NW, since they used district as their measure of
geography.4 The second and third columns report standard errors and P values using country and
region as the measure of geography. As the geographical clustering variable becomes coarser, the
multiway clustering P value becomes larger, although all three P values are quite small. It may
seem odd that the P value in the third column is larger than the one in the second column, even
though the t-statistic is larger in absolute value (−3.7527 versus −3.2809). That is because the
test in the second column uses the t(16) distribution and the one in the third column uses t(5).

The most interesting part of Table 2 is the third panel, which shows the various bootstrap
P values. In every case, the bootstrap P value increases with the coarseness of the geographical
clustering variable. All of the bootstrap P values are significant at the 1% level when clustering
by district in the geography dimension as in NW. However, when clustering instead by country or
region in the geography dimension, several of the bootstrap P values are not significant at the 5%
or even the 10% level. In fact, all of the bootstrap P values are larger than the associated CV-M
P values, even when there is a large number of clusters in both dimensions.

The WCRG (geography) P value increases dramatically across columns, from 0.0004 when clus-
tering by district to 0.2539 when clustering by region. The WCRH (ethnicity) P value also increases
across columns, but less dramatically. Given the often severe overrejection by the CV-M procedure
that is evident in the simulations of Section 5, coupled with the generally good performance of
the bootstrap methods, especially WCRG and WCRH , it seems that the evidence against the null
hypothesis is not at all strong when geographic clustering is by country or region.

7 Conclusion
In this paper, we obtain two important results. In Section 3, we prove that the multiway cluster-
robust variance estimator (CRVE) is asymptotically valid for the case of two-dimensional clustering
under precisely stated conditions which limit the extent of cluster size heterogeneity and the rates

3The 17 countries were further grouped into 6 investment regions based on their proximity to each other as well as
their shared economic and political ties. The aggregation of countries to investment regions is as follows: Francophone
West Africa: Benin, Mali, Senegal; Nigeria (region): Nigeria; East Africa: Kenya, Tanzania, Uganda; Southern Africa
(excluding South Africa): Botswana, Madagascar, Mozambique, Malawi, Namibia, Zambia, Zimbabwe; South Africa
(region): Lesotho, South Africa; Other West Africa: Ghana. Further details about the methodology can be found at
http://www.riscura.com/brightafrica/segmenting-africa/.

4NW did not report a P value for their estimate. Care should be taken using the cgmreg Stata command, as it
will calculate a P value using the t(n − k) distribution instead of the t(min(G,H) − 1) distribution which is used
throughout this paper.
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at which cluster sizes can grow with the sample size. Our conditions also imply that the numbers
of clusters in both dimensions must increase as the sample size increases, and they restrict the sizes
of the largest clusters in each dimension.

In Section 4, we propose eight bootstrap methods, which appear to be the first ones for least
squares regression with multiway cluster-robust standard errors. Two of these methods simply com-
bine the multiway CRVE with the ordinary wild bootstrap, using either restricted or unrestricted
estimates, and the other six combine it with the wild cluster bootstrap with the residuals clustered
according either to one of the two dimensions or to their intersection. None of these bootstraps
is capable of matching the two-dimensional nature of the clustered disturbances. Despite this,
we prove that they all yield valid inferences asymptotically. This happens because cluster-robust
t-statistics are asymptotically pivotal.

In Section 5, we provide extensive simulation evidence to show that the conventional approach of
comparing multiway cluster-robust t statistics to the t distribution with degrees of freedom equal
to one less than the minimum of the numbers of clusters in each dimension can lead to serious
overrejection, especially when the number of clusters in either dimension is small or cluster sizes
vary substantially. In almost all the cases that we study, bootstrap methods based on restricted
estimates yield more accurate inferences than this conventional approach. They are generally
much more accurate when the conventional approach works poorly. Bootstrap methods based
on unrestricted estimates generally also outperform the conventional approach, but they can be
substantially inferior to ones based on restricted estimates.

The best method often seems to be to use a multiway CRVE variant of the one-dimensional
wild cluster bootstrap for the dimension with the smallest number of clusters. This ensures that
the bootstrap DGP preserves the within-cluster correlation for the dimension with the clusters that
are, on average, largest. It is essential that the same procedure for calculating multiway CRVE
standard errors be used for both the original data and the bootstrap samples. However, since the
performance of all methods evidently depends on the features of the model and dataset, it would
be premature to conclude that any one of the restricted bootstrap methods should necessarily be
chosen over the others. In most cases, all bootstrap methods tend to yield similar inferences.

In Section 6, we illustrate several of our results using the data and one of the models of Nunn
and Wantchekon (2011). We find that results can change substantially as the level of clustering in
one of two dimensions changes. Moreover, the P values, especially the bootstrap P values, tend to
become larger as the number of clusters in one of the dimensions is reduced because clustering in
that dimension is coarser. This strongly suggests that the conventional results may be unreliable,
especially when there are few clusters in either dimension.

Appendix: Proofs of main results
The next two subsections contain the proofs of our two main results. Throughout, C denotes a
generic finite constant, which may take different values in different places.

A.1 Proof of Theorem 1

As usual, we give the proof conditional on X, which is sufficient because the limits do not depend
on X. Thus, we may treat X as if it were non-random.

Proof of (16). We write the left-hand side of equation (16) as (a>VNa)−1/2∑N
i=1 zi, where

zi = N−1a>Q−1
N X

>
i ui (ignoring the subscript N for the triangular array notation), and apply the
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central limit theorem of Romano and Wolf (2000) for m-dependent processes. Recall that zi is
m-dependent for some m ≥ 0, that may depend on the sample size, if the vector (z1, . . . , zj) is
independent of (zj+n, zj+n+1, . . . ) whenever n > m. We note that m is a characteristic of the data
and is not necessarily equal to the cluster size chosen by the econometrician. Specifically, it could be
the case that m = 0 even though Ngh 6= 1, as would happen if choosing to cluster when the data are
in fact independent. However, by Assumption 1, we have the upper bound m ≤ supgNg + suphNh.

Thus, we verify the conditions of Romano and Wolf (2000), which involve the quantities

B2
N,j = Var

( j∑
i=1

zi

)
and B2

N = B2
N,N = Var

( N∑
i=1

zi

)
= a>VNa.

Specifically, setting their γ = 0, we verify that (i) supi E|zi|2+λ ≤ ∆N , (ii) B2
N,j/j ≤ KN for all

j ≥ m, (iii) B2
N/N ≥ LN , (iv) KN/LN = O(1), (v) ∆N/L

1+λ/2
N = O(1), and (vi) m2+2/λ/N → 0.

First, note that if m = 0 all the conditions are easily seen to be satisfied, so we assume that
m ≥ 1. By Assumptions 1 and 2, condition (i) holds with ∆N = CN−2−λ, and

B2
N,j = N−2a>Q−1

N j2ΓjQ−1
N a = j2N−2a>Vja(1 + o(1)).

We also note that a>Vja = Cjmj
−1 for some constant Cj that depends on j, but is bounded and

bounded away from zero, uniformly in j. We therefore find that condition (ii) is satisfied with
KN = CmN−2 and condition (iii) with LN = CmN−2. It follows that condition (iv) is trivially
satisfied and that condition (v) holds if m−1−λ/2 = O(1), which is satisfied because m ≥ 1. Finally,
because m ≤ supgNg +suphNh, condition (vi) holds by Assumption 3 and the cr-inequality. Thus,
we have verified the conditions of Romano and Wolf (2000), which then proves (16).

Proof of (17). We start with the decomposition

a>V̂ a

a>VNa
− 1 = (a>VNa)−1a>(V̂ − VN )a = (a>VNa)−1a>

(
A1N −A2N −A>2N +A3N

)
a,

where

A1N = 1
N2Q

−1
N

( G∑
g=1

X>g ugu
>
gXg +

H∑
h=1

X>h uhu
>
hXh −

G∑
g=1

H∑
h=1

X>ghughu
>
ghXgh

)
Q−1
N − VN ,

A2N = 1
N2Q

−1
N

( G∑
g=1

X>g ug(β̂ − β0)>X>g Xg +
H∑
h=1

X>h uh(β̂ − β0)>X>hXh

−
G∑
g=1

H∑
h=1

X>ghugh(β̂ − β0)>X>ghXgh

)
Q−1
N = A2N,1 +A2N,2 +A2N,3, and

A3N = 1
N2Q

−1
N

( G∑
g=1

X>g Xg(β̂ − β0)(β̂ − β0)>X>g Xg +
H∑
h=1

X>hXh(β̂ − β0)(β̂ − β0)>X>hXh

−
G∑
g=1

H∑
h=1

X>ghXgh(β̂ − β0)(β̂ − β0)>X>ghXgh

)
Q−1
N = A3N,1 +A3N,2 +A3N,3.

Thus, we need to show that (a>VNa)−1a>AmNa
P−→ 0 for m = 1, 2, 3, or, since (a>VNa)−1 is at

most of order O(N), we show that Na>AmNa
P−→ 0 for m = 1, 2, 3
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To prove the result for m = 1, we note that E(A1N ) = 0 and prove convergence in mean-
square. Let C2 denote all the pairs (i1, i2) such that ui1 and ui2 have at least one cluster in
common and let C4 denote all quadruplets (i1, i2, i3, i4) such that ui1 , ui2 , ui3 , and ui4 all have
at least one cluster in common. Using the notation P12 = N−2Q−1

N X
>
i1Xi2Q

−1
N and P1234 =

N−4Q−1
N X

>
i1Xi2Q

−2
N X

>
i3Xi4Q

−1
N , we then find, by independence of errors that do not have at least

one cluster in common, that

E(A2
1N ) =

∑
i1,i2,i3,i4∈C2×C2

E(ui1ui2ui3ui4)P1234 −
( ∑
i1,i2∈C2

E(ui1ui2)P12

)2

=
∑

i1,i2,i3,i4∈C4

E(ui1ui2ui3ui4)P1234 +
∑

i1,i2,i3,i4∈C2×C2\C4

E(ui1ui2)E(ui3ui4)P1234

−
( ∑
i1,i2∈C2

E(ui1ui2)P12

)2

=
∑

i1,i2,i3,i4∈C4

E(ui1ui2ui3ui4)P1234 −
∑

i1,i2,i3,i4∈C4

E(ui1ui2)E(ui3ui4)P1234.

Using Assumptions 1 and 2, the right-hand side isO
(
N−4(supgNg+suphNh)4), so thatNa>A1Na =

OP (N−1(supgNg + suphNh)2) = oP (1) by Assumption 3.
Next, for m = 2, the proofs for the three terms are identical, so we give only the first one. Here

we use the fact that (β̂ − β0)>X>g XgQ
−1
N a is a scalar and find that

a>A2N,1a = (β̂ − β0)> 1
N2

G∑
g=1

X>g XgQ
−1
N aa

>Q−1
N X

>
g ug.

We first note that ‖β̂ − β0‖ = OP
(
‖VN‖1/2) = OP (N−1/2(supgNg + suphNh)1/2). Next, by the

cr-inequality,

sup
1≤g≤G

N−4
g E

(
‖X>g ug‖4

)
≤ sup

1≤g≤G
N−1
g

Ng∑
i=1
‖Xg,i‖4 E|ug,i|4 ≤ sup

1≤i≤Ng ,1≤g≤G
‖Xg,i‖4 E|ug,i|4 ≤ C

(A.1)
by Assumptions 1 and 2 because λ ≥ 2, and similarly

sup
1≤g≤G

N−4
g ‖X>g Xg‖4 ≤ C (A.2)

by Assumption 2. Then it follows that

E
(∥∥∥∥ 1

N2

G∑
g=1

X>g XgQ
−1
N aa

>Q−1
N X

>
g ug

∥∥∥∥2)
≤ 1
N4 ‖Q

−1
N ‖

4
G∑
g=1
‖X>g Xg‖2 E

(
‖X>g ug‖2

)
,

which is O(N−3 supgN3
g ) using also Assumption 2 and the Cauchy-Schwarz inequality. This yields

the bound Na>A2N,1a = OP (N−1(supgNg +suphNh)1/2 supgN
3/2
g ) = oP (1) under Assumption 3.

Finally, the proof for m = 3 is nearly identical to that for m = 2, using, for the first term, the
bound

‖Na>A3N,1a‖ ≤
1
N
‖Q−1

N ‖
2‖β̂ − β0‖2

G∑
g=1
‖X>g Xg‖2

= OP

((sup1≤g≤GNg(sup1≤g≤GNg + sup1≤h≤H Nh)
N

))
= oP (1).
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Proof of (18). Follows from (16), (17), and Slutsky’s Theorem.

A.2 Proof of Theorem 2

For the proof of Theorem 2 we define the quantities

V̈N = Q−1
N Γ̈NQ−1

N and Γ̈N = N−2X>E∗(u∗u∗>)X,

which are interpreted as the bootstrap true values, see also (6) and (7). We note that, by identical
steps to those in the proofs of (16) and (17), under the assumptions of Theorem 2 it holds that

a>(β̈ − β0)
(a>VNa)1/2 = OP (1) and a>V̈Na

a>V̄Na

P−→ 1. (A.3)

Proof of (19). Proceeding as in the proof of (16) we write the left-hand side of equation (19)
as (a>V̄Na)−1/2∑N

i=1 z
∗
i , where z∗i = N−1a>Q−1

N X
>
i u
∗
i , and apply the central limit theorem of

Romano and Wolf (2000). We note that m under the bootstrap measure is no longer the same as in
the original data, although it is bounded from above by the m for the original data. For example,
if the bootstrap data is constructed using the WB, then m = 0 under the bootstrap measure. In
any case, we will continue to use the notation m since this detail is not important for the proof.
We need to verify that the conditions of Romano and Wolf (2000) are satisfied under the bootstrap
measure with probability converging to one. To this end, we define

B2
N,j = Var∗

( j∑
i=1

z∗i

)
and B2

N = Var∗
( N∑
i=1

z∗i

)
,

which are now random variables. We then verify that (i) supi E∗|zi|2+λ = OP (∆N ), (ii) B2
N,j/j =

OP (KN ) for all j ≥ m, (iii) (B2
N/N)−1 = OP (LN ), (iv) KN/LN = O(1), (v) ∆N/L

1+λ/2
N = O(1),

and (vi) m2+2/λ/N → 0.
First, because E∗|v∗|2+λ <∞, condition (i) holds as in the proof of (16). Next, we find that

B2
N,j = N−2a>Q−1

N j2Γ̈jQ−1
N a = j2N−2a>V̄ja(1 + oP (1))

using Assumption 2 and (A.3). As before, a>V̄ja = Cjmj
−1 for some constant Cj that depends

on j, but is bounded and bounded away from zero, uniformly in j. Therefore, conditions (ii)–(vi)
follow in exactly the same way as in the proof of (16), which proves (19).

Proof of (20). We note that X>g û∗g = X>g u
∗
g −X>g Xg(β̂∗ − β̈), and similarly for X>h û∗h and

X>ghû
∗
gh, which implies the decomposition

(a>V̈Na)−1a>(V̂ ∗ − V̈N )a = (a>V̈Na)−1a>
(
B∗1N −B∗2N −B∗>2N +B∗3N

)
a,
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where

B∗1N = 1
N2Q

−1
N

( G∑
g=1

X>g u
∗
gu
∗>
g Xg +

H∑
h=1

X>h u
∗
hu
∗>
h Xh −

G∑
g=1

H∑
h=1

X>ghu
∗
ghu

∗>
ghXgh

)
Q−1
N − V̈N ,

B∗2N = 1
N2Q

−1
N

( G∑
g=1

X>g u
∗
g(β̂∗ − β̈)>X>g Xg +

H∑
h=1

X>h u
∗
h(β̂∗ − β̈)>X>hXh

−
G∑
g=1

H∑
h=1

X>ghu
∗
gh(β̂∗ − β̈)>X>ghXgh

)
Q−1
N = B∗2N,1 +B∗2N,2 +B∗2N,3, and

B∗3N = 1
N2Q

−1
N

( G∑
g=1

X>g Xg(β̂∗ − β̈)(β̂∗ − β̈)>X>g Xg +
H∑
h=1

X>hXh(β̂∗ − β̈)(β̂∗ − β̈)>X>hXh

−
G∑
g=1

H∑
h=1

X>ghXgh(β̂∗ − β̈)(β̂∗ − β̈)>X>ghXgh

)
Q−1
N = B∗3N,1 +B∗3N,2 +B∗3N,3.

Using this decomposition together with (A.3) and the fact that (a>V̈ a)−1 is at most of order
OP (N), it is sufficient to prove that Na>B∗mNa = oP ∗(1), in probability, for m = 1, 2, 3. The
proofs for each term roughly follow those for the corresponding term in the proof of (17).

To prove the result for m = 1, we note that E∗(B∗1N ) = 0 by definition of V̈N , and prove
convergence in mean-square. Let C2 denote all the pairs (i1, i2) such that u∗i1 and u∗i2 have at
least one cluster in common under the bootstrap measure (for example, under the WB measure,
C2 = {(i1, i2) : i1 = i2}) and let C4 denote all quadruplets (i1, i2, i3, i4) such that u∗i1 , u

∗
i2 , u

∗
i3 , and

u∗i4 all have at least one cluster in common under the bootstrap measure. Recalling the notation
P12 and P1234, we then find that, by independence of the bootstrap auxiliary draws for bootstrap
errors that do not have at least one cluster in common under the bootstrap measure,

E∗(B∗21N ) =
∑

i1,i2,i3,i4∈C4

E∗(u∗i1u
∗
i2u
∗
i3u
∗
i4)P1234 −

∑
i1,i2,i3,i4∈C4

E∗(u∗i1u
∗
i2)E∗(u∗i3u

∗
i4)P1234

=
∑

i1,i2,i3,i4∈C4

(η4 − 1)üi1 üi2 üi3 üi4P1234,

where η4 = E∗(v∗4) < ∞ because λ ≥ 2. Using the decomposition üi = ui + X>i (β̈ − β0)
and noting that the summation over (i1, i2, i3, i4) ∈ C4 contains at most (supgNg + suphNh)4

elements, it follows that the right-hand side is OP (N−4(supgNg+suphNh)4), so that Na>B∗1Na =
OP ∗(N−1(supgNg + suphNh)2) = oP ∗(1), in probability, by Assumption 3.

Next, for m = 2, the proofs for the three terms are again identical, so we give only the first one.
Using the fact that (β̂∗ − β̈)>X>g XgQ

−1
N a is a scalar, we find that

a>B∗2N,1a = (β̂∗ − β̈)> 1
N2

G∑
g=1

X>g XgQ
−1
N aa

>Q−1
N X

>
g u
∗
g,

where, by (19), ‖β̂∗ − β̈‖ = OP ∗
(
‖V̄N‖1/2) = OP ∗(N−1/2(supgNg + suphNh)1/2), in probability.

We then use üg = ug +X>g (β̈ − β0) and the cr-inequality to find that

sup
1≤g≤G

N−4
g ‖X>g üg‖4 ≤ 23 sup

1≤g≤G
N−4
g ‖X>g ug‖4 + 23‖β̈ − β0‖4 sup

1≤g≤G
N−4
g ‖X>g Xg‖4 = OP (1)

using (A.1), (A.2), and (A.3), and hence

sup
1≤g≤G

N−4
g E∗‖X>g u∗g‖4 ≤ sup

1≤g≤G
N−4
g ‖X>g üg‖4E∗|v∗|4 = OP (1). (A.4)
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It follows that

E∗
(∥∥∥∥ 1

N2

G∑
g=1

X>g XgQ
−1
N aa

>Q−1
N X

>
g u
∗
g

∥∥∥∥2)
≤ 1
N4 ‖Q

−1
N ‖

4
G∑
g=1
‖X>g Xg‖2 E∗

(
‖X>g u∗g‖2

)
= OP

(
N−3 sup

1≤g≤G
N3
g

)
using the Cauchy-Schwarz inequality, (A.2), and (A.4). This yields the bound Na>B∗2N,1a =
OP ∗(N−1(supgNg + suphNh)1/2 supgN

3/2
g ) = oP ∗(1), in probability, under Assumption 3. Finally,

the proof for m = 3 is nearly identical to that for m = 2, using, for the first term, the bound

‖Na>B∗3N,1a‖ ≤
1
N
‖Q−1

N ‖
2‖β̂∗ − β̈‖2

G∑
g=1
‖X>g Xg‖2

= OP ∗

((sup1≤g≤GNg(sup1≤g≤GNg + sup1≤h≤H Nh)
N

))
= oP ∗(1).

Proof of (21). Follows from (19), (20), and Slutsky’s Theorem.
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