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Abstract

We consider truncated (or conditional) sum of squares estimation of a parametric
model composed of a fractional time series and an additive generalized polynomial
trend. Both the memory parameter, which characterizes the behaviour of the stochas-
tic component of the model, and the exponent parameter, which drives the shape of
the deterministic component, are considered not only unknown real numbers, but also
lying in arbitrarily large (but finite) intervals. Thus, our model captures different
forms of nonstationarity and noninvertibility. As in related settings, the proof of con-
sistency (which is a prerequisite for proving asymptotic normality) is challenging due
to non-uniform convergence of the objective function over a large admissible parameter
space, but, in addition, our framework is substantially more involved due to the com-
petition between stochastic and deterministic components. We establish consistency
and asymptotic normality under quite general circumstances, finding that results differ
crucially depending on the relative strength of the deterministic and stochastic compo-
nents. Finite-sample properties are illustrated by means of a Monte Carlo experiment.
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1 Introduction

In time series analysis the most traditional approach to modeling stochastic components is
by stationary and invertible autoregressive moving average (ARMA) processes, but unit root
nonstationary and noninvertible processes have also been extensively considered. Addition-
ally, supplementing the random component, the presence of a low-order polynomial term,
such as a constant or a linear deterministic trend is usually assumed.

More recently, the relatively simple ARMA modeling framework has been generalized
in various directions. Here, one of the main developments is that of fractionally integrated
ARMA (FARIMA) models which bridge the behavioral gap between stationary and invert-
ible ARMA, which has “memory parameter” δ0 equal to zero, and unit root nonstationary
process, where δ0 = 1. A zero-mean FARIMA(p1, δ0, p2) process zt is given by

zt = ∆−δ0+ ut, t = 0,±1,±2, . . . , (1)

α(L)ut = β(L)εt, t = 0,±1,±2, . . . , (2)

where ∆ = 1− L and L are the difference and lag operators, respectively, and where δ0 can
take any value within an arbitrarily large compact interval. For any series vt, real number ζ
and t ≥ 1, we define the operator ∆ζ

+ by

∆ζ
+vt = ∆ζ{vtI(t ≥ 1)} =

t−1∑
i=0

πi (−ζ) vt−i

with I(·) denoting the indicator function, πi(v) = 0 for i < 0, π0(v) = 1, and

πi (v) =
Γ (v + i)

Γ (v) Γ (1 + i)
=
v(v + 1) . . . (v + i− 1)

i!
, i ≥ 1, (3)

denoting the coefficients in the usual binomial expansion of (1 − z)−v, where Γ (·) is the
gamma function with the convention Γ (i) = 0 for i = 0,−1,−2, ... Thus, in particular, (1)
implies the initial condition zt = 0 for t ≤ 0, which is common in the fractional time series
literature implying a so-called “Type II” fractional model. Additionally, α(L) and β(L) are
real polynomials of degrees p1 and p2, which share no common zeros and have all their zeros
outside the unit circle in the complex plane, and εt is a zero-mean, serially uncorrelated and
homoskedastic sequence. More precise conditions will be imposed below.

For the sake of greater generality, we retain (1) but generalize (2) to

ut = ω(L;ϕ0)εt, t = 0,±1,±2, . . . , (4)

where ϕ0 is an unknown p × 1 vector and ω(s;ϕ) =
∑∞

j=0 ωj(ϕ)sj with ω0(ϕ) = 1 and
|ω(s;ϕ)| 6= 0 for |s| ≤ 1 (these conditions on ω(s;ϕ) will be made precise in Assumption A1
below). Like α and β in (2), ω in (4) characterizes parametric short memory autocorrelation.

Although many theoretical works have exclusively assumed a purely random process (see,
e.g., the discussion in Hualde and Robinson, 2011, or Nielsen, 2015), in practice, model (1),
(4) (or a semiparametric version of it, where ut is a nonparametric invertible weakly depen-
dent process, that is with spectrum which is bounded and bounded away from zero at all
frequencies) is usually complemented with deterministic components. To model determinis-
tic behavior, the literature stresses low-order polynomials in t, such as a constant intercept
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or a linear function, but this seems arbitrary in light of the fractional behaviour of zt. In
fact, these cases are nested by the so-called generalized polynomial (or power law) model
considered by, e.g., Wu (1981), Robinson (2005, 2012), and Phillips (2007). Thus, we extend
the fractional model (1), (4) by letting the observable process xt be generated by

xt = µ0t
γ0
+ + zt, (5)

where we define t+ = tI(t ≥ 1) and µ0, γ0 are unknown real-valued parameters and zt is
generated by (1), (4). The truncation in t+ in (5) has been employed in related settings, see
e.g. (1.8) in Robinson (2005) and (19)–(20) in Robinson and Iacone (2005), and like that in
(1), it imposes zero initial conditions. Obviously, (5) covers standard cases like a constant
(γ0 = 0) or a linear trend (γ0 = 1), but since γ0 is real, model (5) characterizes a wide range
of situations.

Of course, by letting γ0 be known, (5) reduces to a fractional time series model with an
additive deterministic component such as a constant term, µ0, or a linear trend term, µ0t+
(for the cases γ0 = 0 and γ0 = 1, respectively). These special cases are also covered by our
results. We note that, even for these special cases of the model, our results appear to be
novel. However, in general, we consider γ0 to be an unknown, real-valued parameter to be
estimated jointly with the remaining parameters.

Letting the deterministic component be of a fractional order mimics the fractional be-
havior of the stochastic component. This can be made more precise using the terminology
of White and Granger (2011), where different definitions of trends appear. Because V ar (xt)
grows at rate t2δ0−1 when δ0 > 1/2, whereas E(xt) = µ0t

γ0
+ , according to White and Granger

(2011, pp. 9–10), if δ0 > 1/2, the process (5) has a “stochastic trend in variance”, whereas if
µ0 6= 0 and γ0 6= 0, it also has a “stochastic trend in mean”. We note that the evolution of
these two trends is governed by the parameters δ0 and γ0, respectively, and hence letting γ0

be real-valued appears as natural as letting δ0 be real-valued; the two parameters just affect
different aspects of the distribution of xt.

As will be seen below, apart from belonging to a compact set, the only restriction we
place on γ0 is that γ0 > −1. The reason is mainly technical: most of our results are rooted
on the analysis of fractional differences of time trends, that is for t ≥ 1, ∆d

+t
c for real values

of c and d. As Robinson (2005) justifies (see also Lemma S.13 below), ∆d
+t

c is driven by
the exact rate tc−d, but only if c > −1. Thus, while considering the case γ0 ≤ −1 in (5)
is possible, this would increase substantially the technical difficulties in our proofs without
adding much, if any, relevance from an empirical perspective.

In similar contexts to ours, several authors have considered the same type of general-
ized polynomial trends as in (5), with γ0 being an unknown real-valued parameter. For the
same type of truncated/conditional sum-of-squares estimator that we analyze in this paper,
Wu (1981) noted in his Example 4 that model (5) does not satisfy his assumptions for the
asymptotic analysis, even when zt is an independent sequence, because of the asymptotic
singularity of the Hessian and the requirement that the parameters µ and γ have different
normalizations. The analysis of Wu (1981) was generalized by Phillips (2007) to allow such
singularity of the Hessian and hence accommodate model (5), but assuming at most weakly
dependent errors zt. Robinson and Marinucci (2000) and Robinson and Iacone (2005) con-
sider semiparametric frequency domain estimators in models that include both a generalized
polynomial trend and a nonstationary FARIMA stochastic component. In a spatial setting,
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Robinson (2012) considers a general version of (5) involving more deterministic terms, but
with only weakly dependent errors, zt, and explicitly excludes the situation where the deter-
ministic component is dominated by the stochastic component, i.e. where γ0 + 1/2 < δ0 in
our notation. The latter situation is discussed in Johansen and Nielsen (2016), who consider
truncated/conditional sum-of-squares estimation of (5) with known γ0 = 0 and δ0 > 1/2,
and hence γ0 + 1/2 < δ0, although with ut being an independent sequence. They prove con-
sistency and asymptotic normality of the standard estimator which ignores the deterministic
term. Finally, Robinson (2005) considers M -estimation of a model like (5) with known γ0

and allowing for fractional zt. We note that if γ0 were known in (5) our estimation problem
would be simplified greatly. More importantly, since γ0 is allowed to take any real value, it
seems natural to consider it an unknown parameter as in, e.g., Phillips (2007) and Robinson
(2012).

In this paper we analyze the model (5) with the stochastic term zt given by (1) and (4),
and prove consistency and asymptotic normality of the parameter estimators. Note that (5)
with µ0 = 0 assumed as known corresponds to the model discussed in Hualde and Robinson
(2011), where the behaviour of the observable process is entirely driven by δ0 and the short-
memory parameters ϕ0. As will be seen, the complication added by the consideration of
unknown deterministic parameters is substantial, especially because we let both the memory
(δ0) and exponent (γ0) parameters lie in arbitrarily large, but finite, intervals, so xt can
display many different behaviours. As in related works, e.g. Hualde and Robinson (2011)
and Nielsen (2015), the proof of consistency (which is a prerequisite for proving asymptotic
normality) is challenging due to non-uniform convergence of the objective function over a
large admissible parameter space. However, in addition to this well-known complication, our
framework is substantially more involved due to the competition between the stochastic and
deterministic components, and this competition needs to be explicitly taken advantage of in
the proof of consistency.

We establish consistency and asymptotic normality of the parameter estimators under
quite general circumstances, finding that results differ substantially depending on the relative
strength of the deterministic and stochastic components. In particular, when γ0 + 1/2 > δ0

we find that the estimators of all parameters in the model are consistent and asymptotically
normally distributed. On the other hand, when γ0 + 1/2 < δ0 the parameters related
to the deterministic part of the model, µ0 and γ0, cannot be consistently estimated, but,
interestingly, those related to the stochastic part of the model, i.e. δ0 and ϕ0, are still
consistently estimated and their asymptotic normal distribution is unaffected by the presence
of the remaining unestimable parameters. This latter result resembles that of Heyde and
Dai (1996), who provided conditions under which small trends do not affect the properties of
Whittle estimators applied to short- or long-range dependent processes. Similar results were
derived by Abadir, Distaso, and Giraitis (2007) and Iacone (2010) for different versions of
the local Whittle estimator. Actually, in comparison to these works, our main results can be
view as a step forward in the difficult task of disentangling the stochastic memory properties
of observed time series from the low-frequency effect of deterministic components; a problem
that goes back to, at least, Künsch (1986). In fact, our proposed estimators of the stochastic
components of the model retain their limiting properties regardless the intensity of the
deterministic signal, which seems an advantage of our approach in this context. Finally, we
include a Monte Carlo simulation study which supports our theoretical results and illustrates
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the findings.
The next section formalizes the model and assumptions. In Section 3 we present the

estimator and our main results on consistency and asymptotic normality. The results of some
Monte Carlo simulations are reported in Section 4, and concluding remarks are presented in
Section 5. All proofs are given in the supplementary material Hualde and Nielsen (2018),
which, apart from the proofs of the main theorems, also contains some auxiliary and technical
lemmas and their respective proofs.

2 Model and assumptions

As usual, we let the true values of the parameters be denoted by subscript zero. We consider
the model (5), where zt is generated by (1) and (4), and µ0, γ0, δ0, and ϕ0 are unknown
parameters to be estimated.

We first impose an assumption on the short memory component, ω, where ϕ0 is assumed
to lie in Ψ, which is a compact and convex subset of Rp.

A1. (i) for all ϕ ∈ Ψ\{ϕ0}, |ω(s;ϕ)| 6= |ω(s;ϕ0)| on a set S ⊂ {s : |s| = 1} of positive
Lebesgue measure;

(ii) for all ϕ ∈ Ψ, ω
(
eiλ;ϕ

)
is differentiable in λ with derivative in Lip (ς) for 1/2 <

ς ≤ 1;

(iii) for all λ, ω
(
eiλ;ϕ

)
is continuous in ϕ;

(iv) for all ϕ ∈ Ψ, |ω (s;ϕ)| 6= 0, |s| ≤ 1.

Assumption A1 is identical to A1 in Hualde and Robinson (2011). In particular, (i)
ensures identification, (ii) and (iv) imply that ut is an invertible weakly dependent process,
while by (ii) and (iii), for all j, supϕ∈Ψ |ωj (ϕ)| = O (j−1−ς) as j → ∞ (see Hualde and
Robinson, 2011). Also, writing ω−1(s;ϕ) = φ(s;ϕ) =

∑∞
j=0 φj(ϕ)sj, it holds that φ0 (ϕ) = 1

for all ϕ, and (ii), (iii), and (iv) imply that

sup
ϕ∈Ψ
|φj (ϕ)| = O

(
j−1−ς) as j →∞, (6)

whereas (ii) also implies that
inf

|s|=1,ϕ∈Ψ
|φ (s;ϕ)| > 0. (7)

A1 is easily satisfied in the stationary and invertible ARMA case. Another model covered
by A1 is the exponential spectrum model of Bloomfield (1973), which leads to a relatively
simple covariance matrix formula in the context of fractional time series models, see Robinson
(1994). More generally, A1 is also similar to other conditions employed in asymptotic theory

for the estimate τ̂ = (δ̂, ϕ̂′)′ below, see Hualde and Robinson (2011) and Nielsen (2015), as
well as Whittle estimators that restrict to stationarity, e.g. Fox and Taqqu (1986), Dahlhaus
(1989), and Giraitis and Surgailis (1990). Assumption A1 can be readily verified because
ω is a known parametric function. In fact ω satisfying A1 are invariably employed by
practitioners.

A2. The εt in (4) are stationary and ergodic with finite fourth moment, E (εt| Ft−1) = 0,
E (ε2

t | Ft−1) = σ2
0, a.s., where Ft is the σ-field of events generated by εs, s ≤ t,

and conditional (on Ft−1) third and fourth moments of εt equal the corresponding
unconditional moments.
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Assumption A2 is identical to A2 in Hualde and Robinson (2011). It does not impose
independence or identity of distribution of εt, but rules out conditional heteroskedasticity.
It is standard in the time series asymptotics literature since Hannan (1973).

A3. The parameter space for ϑ = (δ,ϕ′, γ)′ is given by Ξ = [51,52] × Ψ × [�1,�2] with
51 < 52 and −1 < �1 < �2, where Ψ is compact and convex and ϑ0 = (δ0,ϕ

′
0, γ0)′ ∈

Ξ. For µ the parameter space is R, and if γ0 + 1/2 > δ0, we also assume that µ0 6= 0.

We assume that µ0 6= 0 when γ0 + 1/2 > δ0 since otherwise γ0 is not identified. Note
that even vanishing trends (negative γ0) can be identified when δ0 is sufficiently small (δ0 <
γ0 +1/2) because then, in a sense, the value of δ0 helps the identification of the deterministic
part.

Finally, note that the model where γ0 is known, e.g., the model with a constant term or a
linear trend, is a special case of our model with unknown γ0. Hence, the asymptotic results
below can easily be specialized to this situation. In general, though, [51,52] and [�1,�2]
are allowed to be arbitrarily large, with the only restriction that �1 > −1, which implies
γ0 > −1.

3 Truncated sum of squares estimation

We collect the parameters for the stochastic component in τ = (δ,ϕ′)′ with true value

τ 0 = (δ0,ϕ
′
0)′, and denote the estimator (to be defined below) by τ̂ = (δ̂, ϕ̂′)′. We also

use the notation ϑ = (τ ′, γ)′, ϑ0 = (τ ′0, γ0)′, and ϑ̂ = (τ̂ ′, γ̂)′. The Gaussian log-likelihood,
conditional on xt = 0 for t ≤ 0, is, apart from a constant, given by

LT (ϑ, µ, σ2) = − T

2
log σ2 − 1

2σ2

T∑
t=1

(
φ(L;ϕ)∆δ

+(xt − µtγ)
)2

= −T
2

log σ2 − 1

2σ2

T∑
t=1

(
φ(L;ϕ)∆δ

+xt − µct(γ, δ,ϕ)
)2
, (8)

where we define the (convolution) coefficients

ct(γ, δ,ϕ) = φ(L;ϕ)∆δ
+t

γ =
t−1∑
j=0

aj (−δ,ϕ) (t− j)γ , (9)

and

aj (d,ϕ) =

j∑
k=0

φk(ϕ)πj−k (d) , (10)

Alternatively,

ct(γ, δ,ϕ) =
t∑

j=1

bj (γ, δ)φt−j(ϕ),

with

bj (γ, δ) = ∆δ
+j

γ =

j−1∑
k=0

πk (−δ) (j − k)γ . (11)
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Clearly, the likelihood function (8) is quadratic in µ, so for any given ϑ we concentrate
with respect to µ and find

µ̂ (ϑ) =

∑T
t=1 ct (γ, δ,ϕ)φ(L;ϕ)∆δ

+xt∑T
t=1 c

2
t (γ, δ,ϕ)

, (12)

and we then propose the estimator

ϑ̂ = arg min
ϑ∈Ξ

RT (ϑ) , RT (ϑ) =
1

T

T∑
t=1

(
φ(L;ϕ)∆δ

+xt − µ̂ (ϑ) ct (γ, δ,ϕ)
)2
, (13)

along with µ̂ = µ̂(ϑ̂). Finally, an estimator of σ2
0 = V ar(εt) is given by σ̂2 = RT (ϑ̂).

The estimator (13) is often termed nonlinear least squares or conditional sum-of-squares,
although we prefer the term truncated sum-of-squares as suggested by Hualde and Robinson
(2011). It is motivated by the Gaussian likelihood function (8) and is therefore expected
to be asymptotically efficient under Gaussianity (though we do not assume Gaussianity
anywhere in the analysis). The estimator goes back to, at least, Box and Jenkins (1971) for
estimation of nonfractional ARMA models (where δ0 is a known integer). In the context of
fractional time series, the estimator was first analyzed by Li and McLeod (1986) in stationary
FARIMA models with 0 < δ0 < 1/2, Beran (1995), and later by Hualde and Robinson (2011)
and Nielsen (2015) for δ0 lying in arbitrarily large compact intervals.

Theorem 1 Let (1), (4), (5), and Assumptions A1–A3 hold.

(i) If γ0 + 1/2 > δ0 then ϑ̂→p ϑ0 as T →∞.

(ii) If γ0 + 1/2 < δ0 then τ̂ →p τ 0 as T →∞.

We note that the result in part (i) of Theorem 1 shows consistency of the estimator of
the parameter vector ϑ0. Under (i), µ0 can also be consistently estimated, but we do not

report this result here. Because µ̂ = µ̂(ϑ̂) is given in explicit form in (12), consistency is not
a prerequisite to justifying its limiting distribution, which we provide in Theorem 2. For the
same reason we do not report a consistency result for σ̂2 = RT (ϑ̂), which is also consistent
in case (i) of Theorem 1.

The result in part (ii) only includes consistency of the estimator of τ 0. In fact, γ0 and
µ0 cannot possibly be consistently estimated in the case in part (ii), where the deterministic
signal is not strong enough. This is easily seen by considering for example δ0 = 1 (a random
walk) in which case the deterministic parameters cannot be estimated consistently when
γ0 < 1/2 because the deterministic signal is drowned by the stochastic noise. This is the
well-known result that a level (γ0 = 0) cannot be estimated consistently for a unit root
process (δ0 = 1), whereas a linear trend (γ0 = 1) can be consistently estimated. Another
example is δ0 = 0 (short memory) in which case trends of order γ0 < −1/2 cannot be
estimated consistently. In other words, suppose the unknown deterministic component is
dominated by a constant (γ0 = 0), then γ̂ and µ̂ are consistent as long as δ0 < 1/2, i.e.
zt is (asymptotically) stationary. Thus, a notable feature about part (ii) of Theorem 1 is
that, even though γ0 and µ0 cannot be consistently estimated, the remaining parameters
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τ 0 can still be consistently estimated. Indeed, in part (ii) of Theorem 1 it is not assumed
that µ0 6= 0; that is, µ0 = 0 is allowed, in which case γ0 is not even identified, but the
remaining parameters τ 0 can still be consistently estimated. The intuition here is that when
µ0 = 0 there is no deterministic term in the model, and estimating one does not render the
remaining estimates inconsistent.

As in related work, e.g. Hualde and Robinson (2011) and Nielsen (2015), the proof of
Theorem 1 is challenging due to non-uniform convergence of the objective function over a
large admissible parameter space for δ. However, in addition to this well-known compli-
cation, our framework is substantially more involved due to the competition between the
stochastic and deterministic components. In our proof of Theorem 1(i), this competition is
used explicitly for some parts of the parameter space; for details of the proof strategy please
see Subsection S.2.1.1 of the supplementary material Hualde and Nielsen (2018).

Next, we discuss the asymptotic distribution of our estimators, which requires an addi-
tional regularity condition.

A4. (i) ϑ0∈ int(Ξ);

(ii) for all λ, ω
(
eiλ;ϕ

)
is thrice continuously differentiable in ϕ on a closed neighbour-

hood Nε (ϕ0) of radius ε ∈ (0, 1/2) about ϕ0, and for all ϕ ∈ Nε(ϕ0) these partial
derivatives with respect to ϕ are themselves differentiable in λ with derivative in
Lip (ς) for 1/2 < ς ≤ 1;

(iii) the matrix

A =

(
π2/6 −

∑∞
j=1 b

′
j (ϕ0) /j

−
∑∞

j=1 bj (ϕ0) /j
∑∞

j=1 bj (ϕ0) b′j (ϕ0)

)
is nonsingular, where bj (ϕ0) =

∑j−1
k=0 ωk (ϕ0) ∂φj−k (ϕ0) /∂ϕ.

This assumption is almost identical to A3 in Hualde and Robinson (2011), with the only
difference that our A4(ii) is slightly stronger than their A3(ii) in imposing thrice instead
of twice continuously differentiable ω(eiλ;ϕ) and corresponding Lip (ς) conditions, which
appear to be necessary to derive the bounds in (14) below and the corresponding bounds in
Hualde and Robinson (2011, p. 3169). The main reason for strengthening the assumption in
Hualde and Robinson (2011) is to obtain the bounds (14) and also that, in our proof, third
derivatives of φj(ϕ) are involved in the proof of convergence of the Hessian matrix below.
As in (6), letting ϕi denote the i-th element of ϕ, A1(ii), A1(iv) and A4(ii) imply that, as
j →∞,

sup
ϕ∈Nε(ϕ0)

∣∣∣∣∂φj(ϕ)

∂ϕi

∣∣∣∣ = O(j−1−ς), sup
ϕ∈Nε(ϕ0)

∣∣∣∣∂2φj(ϕ)

∂ϕi∂ϕl

∣∣∣∣ = O(j−1−ς),

sup
ϕ∈Nε(ϕ0)

∣∣∣∣ ∂3φj(ϕ)

∂ϕi∂ϕl∂ϕk

∣∣∣∣ = O(j−1−ς). (14)

Again A4 is satisfied in the ARMA case.
Define the scaling matrices

MT =

(
Ip+1 0p+1

0′p+1 T−(γ0−δ0)

)
and P T =

(
MT 0p+2

0′p+2 T−(γ0−δ0) log T

)
,
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where 0q denotes a q-dimensional vector of zeros, and also define

V =

(
σ2

0A 0p+1

0′p+1
µ20φ

2(1;ϕ0)Γ2(γ0+1)

Γ2(γ0−δ0)(2(γ0−δ0)−1)3

)
.

Theorem 2 Let (1), (4), (5), and Assumptions A1–A4 hold.

(i) If γ0 + 1/2 > δ0, then, as T →∞,

T 1/2P−1
T

(
ϑ̂− ϑ0

µ̂− µ0

)
→d

(
Ip+2

0′p+1 −µ0

)
N , (15)

where N is a random variable distributed as N
(
0p+2, σ

2
0V
−1
)
.

(ii) If γ0 + 1/2 < δ0, then, as T →∞,

T 1/2(τ̂ − τ 0)→d N
(
0p+1,A

−1
)
. (16)

A notable feature of the results in Theorem 2 is that the asymptotic distribution of τ̂
is unaffected by the presence of the deterministic component in (5), and τ̂ has the same
asymptotic distribution as in, e.g., Theorem 2.2 of Hualde and Robinson (2011). As with
the consistency result in Theorem 1, the asymptotic distribution result for τ̂ in Theorem 2 is
also unaffected by the relative magnitudes of the stochastic and deterministic components.
In particular, when γ0 + 1/2 > δ0, the estimates of the parameters of the deterministic and
stochastic parts of the model are asymptotically independently distributed, noting also that
the factor φ2 (1;ϕ0) in V is related to the long run variance of ut. Both these results are
common in the case when γ0 is known, and we therefore see that estimation of γ0 does
not alter these findings. Moreover, even when γ0 + 1/2 < δ0, so that γ0 and µ0 cannot be
consistently estimated, the asymptotic distribution of τ̂ is unaffected.

The variance A−1 in the asymptotic distribution of τ̂ in both (15) and (16) is equal
to the inverse Fisher information under Gaussianity, see also Dahlhaus (1989) and Hualde
and Robinson (2011). Because the estimate τ̂ is also asymptotically independent of the
remaining coefficient estimates, it therefore follows that τ̂ is asymptotically efficient under
the additional assumption of Gaussianity, regardless of the value of γ0.

We also remark that A−1 does not depend on the true value δ0 nor on the parameter
space of δ which can be arbitrarily large (see Assumption A3). This finding is expected
from the results of Hualde and Robinson (2011) and the block-diagonality of the variance
matrix V −1, and it is shared with other parametric estimators, see e.g. Dahlhaus (1989) and
Hualde and Robinson (2011). However, it is not shared by all parametric estimators that
allow arbitrarily large parameter space for δ. For example, the tapered parametric Whittle
estimate of Velasco and Robinson (2000) has asymptotic variance that depends on the order
of the taper, which in turn must be chosen as a function of the parameter space for δ, and
in that sense the asymptotic variance of their estimator depends on the parameter space
chosen for δ.

We notice from (15) in Theorem 2 that γ̂ is T γ0−δ0+1/2-consistent whereas µ̂ is only
T γ0−δ0+1/2/ log T -consistent. In fact, if γ0 were known, then the least squares regression
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estimator of µ would be T γ0−δ0+1/2-consistent, and hence there is a rate-of-convergence loss,
albeit small, in not knowing γ0. To conduct inference on µ0 using Theorem 2(i), an estimator

of σ2
0 is needed. For this purpose we propose σ̂2 = RT (ϑ̂), the consistency of which can be

proved, using Theorem 1, by standard methods.
Finally, the joint asymptotic distribution of ϑ̂ and µ̂ given in (15) is singular, i.e. the

asymptotic variance matrix is singular, which makes testing joint hypotheses on ϑ0 and µ0

impossible. However, separate inference can be conducted on ϑ0 and µ0. For example, it
is straightforward given (15) to construct confidence intervals and test hypotheses such as
γ0 = 0 (the deterministic term is constant).

4 Monte Carlo evidence

With the aim of investigating several finite sample issues we carried out a Monte Carlo exper-
iment. This is divided in three main parts. First we analyze the finite sample performance of
the estimates (13). Next, the second part is devoted to illustrating the behaviour of a test-
ing procedure designed to assess whether we face a strong deterministic component situation
(with γ0 + 1/2 > δ0) or not. Because the limiting properties of our proposed estimators rely
on the relative strength of the deterministic and stochastic components, this is an important
issue. We present a heuristic testing strategy and justify its use by means of several finite
sample results covering various scenarios. A formal theoretical treatment of our proposal
should be possible, but we do not pursue it here because it would mainly require very lengthy
repetitions of the steps and techniques that we have already employed to justify the main
theoretical results of the paper. Finally, the third part will be devoted to describing the
behaviour of the estimator which assumes µ0 = 0 in (5), which is precisely that considered
by Hualde and Robinson (2011) and Nielsen (2015). This estimator omits the presence of
possible deterministic terms and it is therefore misspecified whenever µ0 6= 0. However, this
estimator could be sensible in cases where the deterministic component is dominated by
the stochastic one, and, again, without providing a formal analysis, we provide some finite
sample evidence which corroborates our conjecture.

In all settings covered by our experiment we generated the observable series xt, t =
1, . . . , T , from (5) for T = 64, 128, 256. Regarding the stochastic component zt, we fix δ0 = 1
and set ut = εt, where εt is an independent N (0, 1) sequence. Essentially there is no loss
of generality in fixing δ0 = 1: our estimates are approximately invariant to the particular
values δ0, γ0, as long as the difference γ0 − δ0 is kept fixed. The reason for this approximate
invariance is that one of the key ingredients of the loss function is the difference operator
applied to a time trend, namely bt (γ, δ), see (11), and this behaves approximately as a
multiple of tγ−δ, so it is the difference γ − δ (and not the particular values γ or δ) that is
the relevant quantity. This is confirmed by our experiment, so we do not report results for
other values of δ0, although they are available from the authors upon request.

Regarding the deterministic part, we let γ0 and µ0 vary. In particular, we set γ0 =
δ0− 0.1i, for i taking all integer values between −2 and 11, and µ0 = −5, 1, 10. Note that µ0

does not have any effect on the limiting distribution of τ̂ , but it does indeed affect that of
γ̂. In particular, in view of Theorem 2, it is expected that larger (in absolute value) values
of µ0 lead to better estimates γ̂, the intuitive reason being that the deterministic signal is
stronger.

We computed δ̂ and γ̂ using the optimizing intervals δ ∈ [δ0 − 5, δ0 + 5] and γ ∈ [−0.99999, γ0 + 5],
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Table 1: Monte Carlo bias of δ̂
µ0 = −5 µ0 = 1 µ0 = 10

γ0 − δ0 \ T 64 128 256 64 128 256 64 128 256

0.2 −0.122 −0.059 −0.031 −0.122 −0.059 −0.031 −0.122 −0.059 −0.031
0.1 −0.119 −0.058 −0.030 −0.119 −0.057 −0.030 −0.119 −0.058 −0.030
0.0 −0.115 −0.056 −0.029 −0.115 −0.056 −0.029 −0.115 −0.056 −0.029
−0.1 −0.110 −0.053 −0.028 −0.110 −0.053 −0.028 −0.110 −0.053 −0.028
−0.2 −0.103 −0.050 −0.026 −0.104 −0.050 −0.026 −0.103 −0.050 −0.026
−0.3 −0.096 −0.046 −0.024 −0.098 −0.047 −0.025 −0.096 −0.046 −0.024
−0.4 −0.089 −0.042 −0.022 −0.093 −0.045 −0.023 −0.088 −0.042 −0.022

−0.5 −0.081 −0.039 −0.020 −0.089 −0.043 −0.022 −0.081 −0.039 −0.020

−0.6 −0.073 −0.035 −0.018 −0.086 −0.042 −0.022 −0.073 −0.035 −0.018
−0.7 −0.065 −0.031 −0.015 −0.083 −0.041 −0.022 −0.066 −0.031 −0.016
−0.8 −0.058 −0.027 −0.013 −0.081 −0.041 −0.021 −0.058 −0.027 −0.014
−0.9 −0.051 −0.023 −0.012 −0.079 −0.040 −0.021 −0.051 −0.023 −0.011
−1.0 −0.044 −0.020 −0.010 −0.078 −0.039 −0.021 −0.044 −0.020 −0.010
−1.1 −0.039 −0.018 −0.009 −0.077 −0.039 −0.020 −0.038 −0.017 −0.009

Note: Based on 10,000 Monte Carlo replications.

Table 2: Monte Carlo bias of γ̂

µ0 = −5 µ0 = 1 µ0 = 10

γ0 − δ0 \ T 64 128 256 64 128 256 64 128 256

0.2 0.000 0.000 0.000 0.003 0.001 0.000 0.000 0.000 0.000
0.1 0.000 0.000 0.000 0.007 0.002 0.001 0.000 0.000 0.000
0.0 0.001 0.001 0.000 0.015 0.007 0.004 0.000 0.000 0.000
−0.1 0.001 0.001 0.000 0.036 0.018 0.010 0.000 0.000 0.000
−0.2 0.002 0.001 0.001 0.088 0.046 0.026 0.000 0.000 0.000
−0.3 0.002 0.002 0.001 0.205 0.148 0.097 0.001 0.000 0.000
−0.4 0.002 0.001 0.001 0.363 0.322 0.267 0.001 0.001 0.001

−0.5 −0.001 −0.001 −0.001 0.496 0.502 0.437 0.000 0.000 0.000

−0.6 −0.007 −0.007 −0.005 0.605 0.610 0.565 −0.001 0.000 0.000
−0.7 −0.018 −0.017 −0.016 0.685 0.707 0.673 −0.002 −0.002 −0.002
−0.8 −0.033 −0.032 −0.029 0.744 0.780 0.740 −0.005 −0.004 −0.005
−0.9 −0.046 −0.047 −0.042 0.809 0.836 0.800 −0.008 −0.007 −0.008
−1.0 −0.055 −0.057 −0.052 0.869 0.878 0.856 −0.011 −0.010 −0.011
−1.1 −0.059 −0.062 −0.057 0.940 0.946 0.906 −0.013 −0.012 −0.014

Note: Based on 10,000 Monte Carlo replications.

respectively, and for each we report Monte Carlo bias and standard deviation (SD). All re-
sults are based on 10,000 replications.

Results for Monte Carlo bias of δ̂ and γ̂ are presented in Tables 1 and 2, respectively.
Here, the performance of δ̂ reflects the limiting theory developed in Theorems 1 and 2. The
bias of δ̂ is clearly decreasing in absolute value as T increases, even for the boundary case
γ0 − δ0 = −1/2, which is not covered by our theory. It is also noticeable that when the
deterministic signal gets stronger (so γ0− δ0 is higher) results worsen substantially, although

higher values of |µ0| improve δ̂ when γ0 − δ0 ≤ −1/2. As expected, the behaviour of γ̂ is
qualitatively different. When γ0 − δ0 ≤ −1/2 and µ0 = 1, the bias of γ̂ is very large (in
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Table 3: Monte Carlo standard deviation of δ̂
µ0 = −5 µ0 = 1 µ0 = 10

γ0 − δ0 \ T 64 128 256 64 128 256 64 128 256

0.2 0.143 0.087 0.057 0.143 0.087 0.057 0.143 0.087 0.057
0.1 0.143 0.087 0.056 0.144 0.087 0.056 0.143 0.087 0.057
0.0 0.144 0.087 0.057 0.144 0.087 0.057 0.144 0.087 0.057
−0.1 0.144 0.087 0.057 0.144 0.087 0.057 0.144 0.087 0.056
−0.2 0.143 0.087 0.056 0.145 0.087 0.057 0.143 0.087 0.056
−0.3 0.142 0.086 0.056 0.144 0.087 0.057 0.142 0.086 0.056
−0.4 0.142 0.085 0.056 0.142 0.086 0.056 0.141 0.085 0.056

−0.5 0.140 0.084 0.055 0.140 0.085 0.056 0.139 0.084 0.055

−0.6 0.138 0.084 0.055 0.138 0.084 0.055 0.138 0.083 0.055
−0.7 0.136 0.083 0.055 0.137 0.084 0.055 0.136 0.083 0.055
−0.8 0.133 0.082 0.054 0.138 0.084 0.055 0.134 0.081 0.054
−0.9 0.130 0.080 0.053 0.138 0.084 0.055 0.131 0.080 0.053
−1.0 0.127 0.079 0.053 0.138 0.084 0.055 0.127 0.079 0.053
−1.1 0.125 0.078 0.053 0.138 0.084 0.055 0.124 0.078 0.052

Note: Based on 10,000 Monte Carlo replications.

Table 4: Monte Carlo standard deviation of γ̂

µ0 = −5 µ0 = 1 µ0 = 10

γ0 − δ0 \ T 64 128 256 64 128 256 64 128 256

0.2 0.015 0.009 0.006 0.077 0.046 0.029 0.008 0.005 0.003
0.1 0.020 0.013 0.009 0.112 0.066 0.043 0.010 0.007 0.004
0.0 0.026 0.018 0.013 0.150 0.094 0.064 0.013 0.009 0.006
−0.1 0.033 0.024 0.018 0.248 0.150 0.095 0.016 0.012 0.009
−0.2 0.040 0.030 0.024 0.534 0.317 0.178 0.020 0.015 0.012
−0.3 0.047 0.038 0.031 0.938 0.761 0.552 0.023 0.019 0.015
−0.4 0.057 0.046 0.039 1.295 1.207 1.106 0.027 0.023 0.019

−0.5 0.071 0.060 0.051 1.508 1.505 1.435 0.033 0.028 0.025

−0.6 0.100 0.091 0.091 1.619 1.636 1.599 0.042 0.037 0.034
−0.7 0.142 0.128 0.132 1.660 1.681 1.670 0.055 0.050 0.047
−0.8 0.190 0.180 0.178 1.679 1.707 1.692 0.073 0.068 0.065
−0.9 0.235 0.227 0.225 1.694 1.712 1.702 0.093 0.088 0.087
−1.0 0.269 0.266 0.268 1.698 1.696 1.691 0.115 0.110 0.109
−1.1 0.302 0.295 0.300 1.687 1.693 1.677 0.136 0.132 0.132

Note: Based on 10,000 Monte Carlo replications.

absolute value) and does not decrease as T increases. On the other hand, the picture changes
dramatically when γ0−δ0 > −1/2, with very small biases as γ0−δ0 gets larger, reflecting the
fast convergence rates in those cases implied by Theorem 2. As anticipated, higher values of
|µ0| lead to smaller bias, although when γ0−δ0 ≤ −1/2 biases do not decrease as T increases.

The Monte Carlo standard deviation (SD) of δ̂ and γ̂ are reported in Tables 3 and 4,

respectively. Results for δ̂ are as expected, but now larger γ0− δ0 lead to slightly larger SD.
Also, as the theory predicts, results for δ̂ are hardly affected by the value of µ0. Regarding
γ̂, for γ0 − δ0 ≤ −1/2 and µ0 = 1 the SD is very large and quite stable for the different T ’s.
As anticipated from Theorem 2, for γ0 − δ0 > −1/2 the SD of γ̂ decreases with T and is
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very small for larger γ0− δ0. A similar pattern occurs for µ0 = −5 and µ0 = 10, although as
expected, when |µ0| increases the SD clearly displays much better behaviour.

We next examine the performance of a one-sided Lagrange multiplier (LM) testing pro-
cedure which tests the boundary condition H0 : γ0 − δ0 = −1/2 against the one-sided alter-
native H1 : γ0−δ0 > −1/2. This testing strategy is mainly based on the restricted estimator

ϑ̃ = arg minϑ∈Ξ̃ RT (ϑ), where Ξ̃ = {ϑ ∈ Ξ, γ − δ = −1/2}, and on the LM statistic

LM =
T

2σ̃2

∂RT (ϑ̃)

∂ϑ′

(
∂2RT (ϑ̃)

∂ϑ∂ϑ′

)−1
∂RT (ϑ̃)

∂ϑ
,

where σ̃2 = RT (ϑ̃). As mentioned before, we do not pursue here a formal analysis, but we
conjecture that, as T →∞,

LM →d χ
2
1 under H0. (17)

Justifying formally (17) requires the use of the proof techniques employed in the proofs of
Theorems 1 and 2. The result (17) is crucial for our testing strategy but, unfortunately,
this test statistic by itself is not informative enough: as expected, LM tends to take large
values whenever γ0 − δ0 > −1/2 or γ0 − δ0 < −1/2, so rejecting H0 based solely on LM is
not conclusive about whether we face a strong or weak deterministic component situation,
with γ0 − δ0 > −1/2 or γ0 − δ0 < −1/2, respectively. We implement a solution to this

problem based on the behaviour of δ̂ and δ̃, that is the unrestricted and restricted estimators
of δ0, respectively. As illustrated in Tables 1 and 3, our Monte Carlo evidence indicates
that δ̂ is consistent regardless of whether or not H0 is true; see also Theorem 1. On the
contrary, our Monte Carlo evidence indicates that δ̃ overestimates δ0 if γ0 − δ0 > −1/2, but
underestimates δ0 if γ0 − δ0 < −1/2. This is illustrated in Tables 5 and 6, where we report

Monte Carlo bias and SD of δ̃, respectively. Here, it is clear that the positive and negative
bias of δ̃ is exacerbated for larger |µ0|. It is also noticeable that the overestimation effect
when γ0 − δ0 > −1/2 is stronger than the underestimation effect when γ0 − δ0 < −1/2. As

expected, under H0, both δ̂ and δ̃ appear to be consistent.
This evidence suggests the following testing strategy, which can be named as a one-sided

LM test:

Reject H0 whenever δ̃ − δ̂ > 0 and LM is larger than the critical value from χ2
1.

Tables 7–9 present the proportion of rejections (out of 10,000 replications) corresponding
to this testing strategy for µ0 = 1, µ0 = −5, and µ0 = 10, respectively, and in each case
for nominal sizes α = 0.01, 0.05, 0.10. Overall, the performance of our proposal is very
satisfactory. First, under H1, as expected, the test shows higher power as γ0 − δ0 and/or
T get larger, results being substantially better as |µ0| increases. Second, under H0 the size
behaviour is adequate, although some undersizing occurs when the deterministic signal is
weak (µ0 = 1). However this is corrected as |µ0| increases. Nicely, when γ0 − δ0 < −1/2 the
proportion of rejections is in all cases smaller than the nominal size.

Finally, the last part of our Monte Carlo evidence is devoted to analyzing the behaviour of
the estimator studied by Hualde and Robinson (2011), which omits the presence of possible
deterministic terms. This is defined as

τ = arg min
τ∈Υ

QT (τ ) , QT (τ ) =
1

T

T∑
t=1

(
φ(L;ϕ)∆δ

+xt
)2
,
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Table 5: Monte Carlo bias of δ̃
µ0 = −5 µ0 = 1 µ0 = 10

γ0 − δ0 \ T 64 128 256 64 128 256 64 128 256

0.2 0.635 0.617 0.599 0.414 0.406 0.398 0.678 0.668 0.656
0.1 0.538 0.521 0.503 0.323 0.315 0.307 0.579 0.570 0.558
0.0 0.442 0.426 0.408 0.236 0.228 0.220 0.481 0.472 0.461
−0.1 0.347 0.332 0.315 0.154 0.148 0.141 0.383 0.375 0.364
−0.2 0.253 0.239 0.224 0.080 0.078 0.073 0.285 0.278 0.269
−0.3 0.161 0.150 0.138 0.021 0.024 0.024 0.188 0.183 0.175
−0.4 0.072 0.066 0.059 −0.018 −0.007 −0.002 0.092 0.089 0.084

−0.5 −0.012 −0.009 −0.007 −0.037 −0.020 −0.011 −0.003 −0.003 −0.002

−0.6 −0.086 −0.066 −0.046 −0.044 −0.024 −0.013 −0.096 −0.089 −0.079
−0.7 −0.139 −0.094 −0.056 −0.047 −0.025 −0.014 −0.186 −0.166 −0.134
−0.8 −0.164 −0.097 −0.052 −0.047 −0.025 −0.013 −0.266 −0.216 −0.149
−0.9 −0.169 −0.092 −0.046 −0.047 −0.024 −0.013 −0.322 −0.231 −0.139
−1.0 −0.165 −0.085 −0.042 −0.046 −0.024 −0.013 −0.346 −0.222 −0.123
−1.1 −0.159 −0.080 −0.039 −0.046 −0.024 −0.013 −0.347 −0.208 −0.112

Note: Based on 10,000 Monte Carlo replications.

Table 6: Monte Carlo standard deviation of δ̃
µ0 = −5 µ0 = 1 µ0 = 10

γ0 − δ0 \ T 64 128 256 64 128 256 64 128 256

0.2 0.024 0.016 0.011 0.037 0.023 0.014 0.016 0.012 0.009
0.1 0.025 0.017 0.012 0.041 0.026 0.016 0.017 0.013 0.009
0.0 0.027 0.019 0.013 0.048 0.031 0.020 0.018 0.014 0.010
−0.1 0.029 0.021 0.014 0.059 0.038 0.026 0.019 0.014 0.011
−0.2 0.032 0.023 0.017 0.075 0.050 0.034 0.020 0.016 0.012
−0.3 0.037 0.028 0.020 0.090 0.061 0.043 0.022 0.017 0.014
−0.4 0.045 0.034 0.027 0.101 0.069 0.048 0.025 0.020 0.017

−0.5 0.056 0.045 0.036 0.107 0.072 0.051 0.030 0.026 0.022

−0.6 0.072 0.059 0.046 0.111 0.074 0.052 0.039 0.034 0.030
−0.7 0.092 0.073 0.054 0.112 0.075 0.052 0.053 0.047 0.043
−0.8 0.110 0.083 0.058 0.113 0.075 0.052 0.071 0.067 0.062
−0.9 0.126 0.089 0.060 0.113 0.075 0.052 0.097 0.091 0.074
−1.0 0.136 0.091 0.059 0.114 0.075 0.052 0.127 0.109 0.078
−1.1 0.140 0.091 0.059 0.114 0.075 0.052 0.153 0.117 0.077

Note: Based on 10,000 Monte Carlo replications.

where Υ = [51,52]×Ψ, so that, when µ0 6= 0, the estimate τ is based on a misspecified loss
function. In Tables 10 and 11 we report results for Monte Carlo bias and SD, respectively,
of δ for the same situations as before. As anticipated, δ displays large bias whenever the
deterministic component is strong, i.e. when γ0 − δ0 > −1/2, with this effect being more
noticeable for larger |µ0|. However, when γ0− δ0 < −1/2, the bias is generally small and we
conjecture that δ is consistent in this case. The SD behaves in an opposite way to the bias:
as γ0 − δ0 decreases, the SD gets larger with smaller values of |µ0| also increasing the SD.
However, in all cases, the SD decreases as T increases.

To conclude our analysis, in Table 12 we compare the Monte Carlo bias and SD of the
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Table 7: Proportion of rejections of the one-sided LM test, µ0 = 1

α = 0.01 α = 0.05 α = 0.10

γ0 − δ0 \ T 64 128 256 64 128 256 64 128 256

0.2 0.034 0.628 0.998 0.633 0.988 1.000 0.906 0.998 1.000
0.1 0.019 0.329 0.975 0.419 0.938 0.999 0.770 0.987 1.000
0.0 0.010 0.125 0.767 0.242 0.742 0.990 0.561 0.928 0.998
−0.1 0.005 0.035 0.285 0.120 0.399 0.850 0.332 0.699 0.958
−0.2 0.002 0.007 0.042 0.054 0.132 0.360 0.167 0.337 0.631
−0.3 0.001 0.001 0.003 0.020 0.033 0.068 0.074 0.109 0.184
−0.4 0.000 0.000 0.000 0.008 0.008 0.010 0.033 0.032 0.039

−0.5 0.000 0.000 0.000 0.003 0.003 0.003 0.017 0.013 0.011

−0.6 0.000 0.000 0.000 0.002 0.001 0.001 0.009 0.006 0.004
−0.7 0.000 0.000 0.000 0.001 0.001 0.001 0.006 0.004 0.003
−0.8 0.000 0.000 0.000 0.001 0.000 0.001 0.004 0.002 0.003
−0.9 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.002 0.003
−1.0 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.002 0.003
−1.1 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.002

Note: Based on 10,000 Monte Carlo replications.

Table 8: Proportion of rejections of the one-sided LM test, µ0 = −5

α = 0.01 α = 0.05 α = 0.10

γ0 − δ0 \ T 64 128 256 64 128 256 64 128 256

0.2 0.956 1.000 1.000 0.997 1.000 1.000 0.999 1.000 1.000
0.1 0.890 0.999 1.000 0.987 1.000 1.000 0.996 1.000 1.000
0.0 0.755 0.991 1.000 0.952 1.000 1.000 0.985 1.000 1.000
−0.1 0.551 0.938 1.000 0.851 0.993 1.000 0.933 0.998 1.000
−0.2 0.302 0.699 0.971 0.655 0.923 0.998 0.797 0.969 1.000
−0.3 0.119 0.308 0.650 0.385 0.625 0.884 0.553 0.776 0.945
−0.4 0.036 0.063 0.127 0.164 0.230 0.352 0.277 0.360 0.497

−0.5 0.008 0.007 0.006 0.053 0.043 0.038 0.101 0.085 0.078

−0.6 0.001 0.001 0.000 0.014 0.006 0.001 0.031 0.014 0.005
−0.7 0.000 0.000 0.001 0.004 0.002 0.003 0.010 0.003 0.004
−0.8 0.000 0.000 0.003 0.001 0.004 0.014 0.005 0.007 0.020
−0.9 0.000 0.001 0.005 0.002 0.008 0.025 0.004 0.016 0.041
−1.0 0.000 0.001 0.004 0.002 0.012 0.027 0.006 0.023 0.044
−1.1 0.000 0.000 0.004 0.002 0.010 0.025 0.008 0.023 0.045

Note: Based on 10,000 Monte Carlo replications.

estimates δ̂ and δ when µ0 = 0. Note that, if there is no deterministic component, δ is
based on the correct information µ0 = 0, so it is not misspecified and could have some
finite sample advantages over the less parsimonious δ̂. However, in view of Theorem 2, this
finite sample advantage should disappear asymptotically. As expected, the behaviour of δ̂
is similar to that displayed in Tables 1 and 3 for other values of µ0. Also, as expected, δ
outperforms δ̂, although the relative difference decreases as T increases. However, keeping
in mind the risk of misspecification, it appears that the price to pay due to estimating the
inexistent deterministic component outweighs the severe consequences of misspecification
seen in Tables 10 and 11. Although these results are not reported, when µ0 = 0, γ̂ behaves
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Table 9: Proportion of rejections of the one-sided LM test, µ0 = 10

α = 0.01 α = 0.05 α = 0.10

γ0 − δ0 \ T 64 128 256 64 128 256 64 128 256

0.2 0.981 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000
0.1 0.947 1.000 1.000 0.993 1.000 1.000 0.998 1.000 1.000
0.0 0.855 0.997 1.000 0.972 1.000 1.000 0.990 1.000 1.000
−0.1 0.664 0.976 1.000 0.901 0.997 1.000 0.958 0.999 1.000
−0.2 0.411 0.830 0.993 0.721 0.962 1.000 0.844 0.985 1.000
−0.3 0.185 0.440 0.824 0.446 0.730 0.954 0.605 0.850 0.981
−0.4 0.056 0.112 0.221 0.201 0.292 0.476 0.319 0.431 0.619

−0.5 0.013 0.012 0.010 0.063 0.053 0.047 0.120 0.101 0.090

−0.6 0.002 0.001 0.000 0.014 0.004 0.001 0.032 0.011 0.003
−0.7 0.001 0.000 0.000 0.002 0.000 0.000 0.007 0.000 0.000
−0.8 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000
−0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
−1.0 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001
−1.1 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000 0.002

Note: Based on 10,000 Monte Carlo replications.

Table 10: Monte Carlo bias of δ
µ0 = −5 µ0 = 1 µ0 = 10

γ0 − δ0 \ T 64 128 256 64 128 256 64 128 256

0.2 0.863 0.796 0.739 0.499 0.475 0.455 1.025 0.948 0.877
0.1 0.765 0.698 0.642 0.407 0.383 0.363 0.921 0.847 0.779
0.0 0.668 0.604 0.548 0.318 0.295 0.275 0.818 0.749 0.682
−0.1 0.575 0.511 0.456 0.236 0.213 0.193 0.718 0.653 0.588
−0.2 0.484 0.422 0.367 0.158 0.139 0.121 0.619 0.559 0.496
−0.3 0.397 0.336 0.283 0.093 0.078 0.064 0.525 0.467 0.407
−0.4 0.312 0.256 0.206 0.046 0.035 0.028 0.433 0.379 0.322

−0.5 0.235 0.183 0.138 0.018 0.012 0.009 0.345 0.296 0.244

−0.6 0.164 0.119 0.083 0.000 0.001 0.001 0.260 0.217 0.172
−0.7 0.102 0.069 0.044 −0.007 −0.003 −0.001 0.182 0.148 0.110
−0.8 0.052 0.033 0.019 −0.011 −0.006 −0.003 0.112 0.086 0.060
−0.9 0.013 0.007 0.004 −0.016 −0.009 −0.004 0.047 0.034 0.023
−1.0 −0.012 −0.007 −0.004 −0.017 −0.008 −0.004 −0.007 −0.005 −0.003
−1.1 −0.033 −0.018 −0.010 −0.019 −0.008 −0.004 −0.053 −0.035 −0.022

Note: Based on 10,000 Monte Carlo replications.

in a completely unpredictable way, displaying huge SD. Thus, the particular case µ0 =
0 raises a serious concern, that is, acting as if µ0 6= 0 with the possibility of taking γ̂
seriously. However, fortunately, when µ0 = 0, LM takes very small values (specifically,
the proportion of rejections when applying our testing strategy for sizes α = 0.01, 0.05, 0.10
is (0.000, 0.001, 0.003), (0.000, 0.000, 0.002), and (0.000, 0.000, 0.001), for T = 64, 128, 256,
respectively), so in this case H0 would hardly ever be rejected in favour of H1. In other words,
the probability of mistakenly believing that the estimates of the deterministic component
are accurate, when it in fact does not exist, is very small.
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Table 11: Monte Carlo standard deviation of δ
µ0 = −5 µ0 = 1 µ0 = 10

γ0 − δ0 \ T 64 128 256 64 128 256 64 128 256

0.2 0.033 0.021 0.013 0.034 0.021 0.013 0.034 0.022 0.014
0.1 0.033 0.021 0.013 0.038 0.023 0.014 0.033 0.023 0.014
0.0 0.034 0.022 0.014 0.044 0.028 0.018 0.033 0.022 0.015
−0.1 0.036 0.023 0.015 0.055 0.035 0.023 0.034 0.023 0.015
−0.2 0.038 0.025 0.016 0.071 0.047 0.032 0.033 0.024 0.016
−0.3 0.041 0.028 0.020 0.087 0.060 0.042 0.034 0.025 0.017
−0.4 0.046 0.034 0.025 0.098 0.068 0.047 0.036 0.027 0.020

−0.5 0.055 0.041 0.031 0.103 0.070 0.050 0.038 0.030 0.023

−0.6 0.064 0.051 0.039 0.106 0.072 0.050 0.042 0.035 0.028
−0.7 0.075 0.058 0.044 0.106 0.072 0.050 0.049 0.041 0.034
−0.8 0.082 0.062 0.046 0.108 0.073 0.050 0.055 0.046 0.038
−0.9 0.088 0.065 0.048 0.107 0.072 0.051 0.060 0.051 0.041
−1.0 0.090 0.067 0.048 0.108 0.073 0.050 0.064 0.054 0.043
−1.1 0.092 0.067 0.048 0.107 0.072 0.050 0.068 0.056 0.044

Note: Based on 10,000 Monte Carlo replications.

Table 12: Monte Carlo bias and standard deviation of δ̂ and δ, µ0 = 0

bias standard devation

δ \ T 64 128 256 64 128 256

δ̂ −0.095 −0.048 −0.025 0.138 0.085 0.056
δ −0.017 −0.009 −0.005 0.108 0.072 0.051

Note: Based on 10,000 Monte Carlo replications.

5 Concluding remarks

We have proposed and analyzed a parametric model which covers a wide range of situations
characterized by general deterministic and stochastic components. These are mainly driven
by power law and memory parameters, γ0 and δ0, respectively, which are assumed to lie in sets
which can be arbitrarily large. Our model might display many different behaviours, including
“stochastic trend in mean and/or variance” and various types of dependence (antipersistency,
weak dependence, long memory). Our results depend crucially on whether the deterministic
signal is sufficiently strong. If this is the case, that is if γ0 + 1/2 > δ0, all parameters can
be consistently estimated and their estimators are asymptotically normal. Interestingly, the
limiting results for estimators corresponding to the stochastic part of the model (τ̂ ) are
identical to those achieved in the simpler, purely stochastic, setting of Hualde and Robinson
(2011). When the deterministic signal is weak, i.e., γ0 + 1/2 < δ0, γ0 and µ0 cannot be
consistently estimated, but, nicely, τ̂ retains identical limiting properties as when γ0 +1/2 >
δ0.

There are several interesting issues which have not been addressed in the present paper,
but which will the object of future research. First, one could argue that the deterministic
part of our model, which contains a single term, is too simplistic. However, our methods
of proof should be extendable to cover a richer setting, allowing for multiple deterministic
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terms characterized by different power law parameters, such as

xt =
d∑
j=1

µ0jt
γ0j
+ + zt, (18)

where zt is given in (1), (4), and, without loss of generality, we set −1 < γ01 < γ02 < · · · <
γ0d < ∞. Whenever it exists, let † = min{j = 1, . . . , d : γ0j + 1/2 > δ0} and µ0j 6= 0 for
any j ≥ †. Our estimator can be extended to accommodate this greater generality in an
obvious way, and we conjecture that results qualitatively identical to those in Theorem 2
apply. In particular, the estimator of τ 0 would retain identical properties irrespective of the
strength of the deterministic signal(s), and whenever † exists, the estimators of γ0j for j ≥ †
will be T γ0j−δ0+1/2-consistent and asymptotically normal. However, considering formally this
extension would come at the cost of greater complication, and given that our present setting
is already quite involved, we preferred to keep things as simple as possible at this stage,
so the proofs present in a clear way the essence of the problem of the competition between
deterministic and stochastic terms.

Second, a semiparametric approach which focuses on estimating γ0 and δ0 without making
parametric assumptions about the structure of zt seems possible and interesting. Third, the
fractional process which characterizes our model has been termed as “Type II”. Nevertheless,
it seems that our theory could also be developed for the so-called “Type I” fractional process.
Finally, a formal treatment of a testing procedure which, like our heuristic proposal, is
designed to assess the relative strength of deterministic and stochastic components in a
general setting like (18) seems relevant. This is likely possible, but is beyond the scope of
the present paper and it will be the object of future research.
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S.1 Introduction

This supplements Hualde and Nielsen (2018) by providing proofs of all technical results. This
includes the proofs of the main theorems and it also contains some auxiliary and technical
lemmas and their respective proofs. Note that the proofs of the auxiliary lemmas rely on the
technical lemmas, but not vice versa. Equation references (S.n) for n ≥ 1 refer to equations
in this supplement and other equation references are to the main paper, Hualde and Nielsen
(2018).

S.2 Proofs of theorems

S.2.1 Proof of Theorem 1(i): the γ0 + 1/2 > δ0 case

S.2.1.1 Overall design of the proof

Throughout, ε will denote a generic arbitrarily small positive constant, and K a generic
arbitrarily large positive constant. Fix ε > 0 and let Mε = {ϑ ∈ Ξ : ‖τ − τ 0‖ < ε}, M ε =
{ϑ ∈ Ξ : ‖τ − τ 0‖ ≥ ε}, Nε = {ϑ ∈ Ξ : |γ − γ0| < ε} and N ε = {ϑ ∈ Ξ : |γ − γ0| ≥ ε}.
Then Pr(||ϑ̂− ϑ0|| ≥ ε)→ 0 as T →∞, is implied by

Pr(ϑ̂ ∈M ε)→ 0 as T →∞, (S.1)

Pr(ϑ̂ ∈ N ε ∩Mε)→ 0 as T →∞. (S.2)

Strictly, ε should be ε/
√

2 in (S.1) and (S.2), but since ε is arbitrary this is irrelevant and
we continue without the

√
2 factor.

We decompose the objective function as RT (ϑ) = 1
T

∑T
t=1 (dt (ϑ) + st (ϑ))2 with

dt (ϑ) = µ0

(
ct (γ0, δ,ϕ)− ht,T (γ, δ,ϕ)

T∑
j=1

cj (γ0, δ,ϕ)hj,T (γ, δ,ϕ)

)
,

st (ϑ) = εt (τ )− ht,T (γ, δ,ϕ)
T∑
j=1

εj (τ )hj,T (γ, δ,ϕ) ,

where, as in Hualde and Robinson (2011),

εt (τ ) =
t−1∑
j=0

aj (δ0 − δ,ϕ)ut−j,

and where we also defined the coefficient

ht,T (d1, d2,ϕ) =
ct(d1, d2,ϕ)

(
∑T

j=1 c
2
j(d1, d2,ϕ))1/2

, (S.3)

which clearly satisfies
∑T

t=1 h
2
t,T (d1, d2,ϕ) = 1.

The strategy of proof relies on recognizing the competition between the stochastic term
st (ϑ) and deterministic term dt (ϑ) in RT (ϑ), taking into account that when considering
(S.1), just τ is for sure “far” from τ 0, whereas when dealing with (S.2), just γ is “far” from γ0.
As will be seen, an important feature of the problem is that when γ = γ0 we have dt (ϑ) = 0,
which complicates the treatment of (S.1). In any case, as in Hualde and Robinson (2011),
we need to carefully consider the cases where RT (ϑ) shows distinct behaviours, noting that
either the deterministic or the stochastic term might dominate, and below we partition the
parameter space accordingly.
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S.2.1.2 Proof of (S.1)

To prove (S.1) we use

Pr(ϑ̂ ∈M ε) = Pr

(
inf
ϑ∈Mε

RT (ϑ) ≤ inf
ϑ∈Mε

RT (ϑ)

)
≤ Pr

(
inf
ϑ∈Mε

ST (ϑ) ≤ 0

)
, (S.4)

where ST (ϑ) = RT (ϑ)−RT (ϑ0). Fix an arbitrarily small η > 0 such that η < (γ0 − δ0 + 1/2) /2
and suppose that 51 < δ0− 1/2− η and 52 > γ0− η. Our proof will cover trivially the situ-
ation where any of these conditions does not hold, in which case some of the steps below are
superfluous. Let I1 = {δ : 51 ≤ δ ≤ δ0 − 1/2− η}, I2 = {δ : δ0 − 1/2− η ≤ δ ≤ δ0 − 1/2},
I3 = {δ : δ0 − 1/2 ≤ δ ≤ δ0 − 1/2 + η}, I4 = {δ : δ0 − 1/2 + η ≤ δ ≤ γ0 − η}, and I5 =
{δ : γ0 − η ≤ δ ≤ 52}, noting that the upper bound for η guarantees that I4 is non-empty.
Correspondingly define Ti = Ii×Ψ and, fixing ξ > 0 and % > 0, such that % < η/2, also define
Hi = {ϑ ∈ M ε : τ ∈ Ti, |γ − γ0| ≤ ξT−κi}, Hi = {ϑ ∈ M ε : τ ∈ Ti, ξT−κi ≤ |γ − γ0| ≤ %}
and Hi = {ϑ ∈ M ε : τ ∈ Ti, |γ − γ0| ≥ %}, i = 1, . . . , 5, where κi > 0 will be defined
subsequently, noting that Hi is non-empty for any ξ, %, for T large enough . Then, by (S.4),
(S.1) is justified by showing

Pr

(
inf
Hi
ST (ϑ) ≤ 0

)
→ 0 as T →∞ for i = 1, . . . , 5, (S.5)

Pr

(
inf
Hi
ST (ϑ) ≤ 0

)
→ 0 as T →∞ for i = 1, . . . , 5, (S.6)

Pr

(
inf
Hi
ST (ϑ) ≤ 0

)
→ 0 as T →∞ for i = 1, . . . , 5. (S.7)

We note that Hi, Hi, and Hi are designed exactly such that in Hi the stochastic term

dominates ST (ϑ), while in Hi ∪ Hi it is the deterministic term that dominates. As will be

seen, the analysis on Hi is much simpler because γ is “far” from γ0, whereas a much more
delicate treatment is necessary for Hi. This motivates a separate analysis of (S.5), (S.6) and
(S.7), at least for i = 1, . . . , 4.

Proof of (S.5), (S.6), and (S.7) for i = 5 In this case, we give just one proof that covers

the whole set H5 ∪H5 ∪H5, where δ0 − δ ≤ δ0 − γ0 + η < 1/2, so ∆δ−δ0
+ ut is asymptotically

stationary. Let
ST (ϑ) = U (τ )− rT (ϑ) , (S.8)
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where U(τ ) = E((φ(L;ϕ)∆δ−δ0ut)
2)− σ2

0 and

rT (ϑ) =
1

T

T∑
t=1

(
(φ(L;ϕ0){utI((t ≥ 1)})2 − σ2

0

)
− 1

T

T∑
t=1

(
ε2
t (τ )− E

(
(φ(L;ϕ)∆δ−δ0ut)

2
))

− 1

T

(
T∑
t=1

φ(L;ϕ0) {utI(t ≥ 1)}ht,T (γ0, δ0,ϕ0)

)2

+
1

T

(
T∑
t=1

εt (τ )ht,T (γ, δ,ϕ)

)2

− 2

T

T∑
t=1

dt (ϑ) st (ϑ)− 1

T

T∑
t=1

d2
t (ϑ) ,

noting that εt (τ 0) = φ(L;ϕ0) {utI(t ≥ 1)}. It follows that (S.5), (S.6), and (S.7) for i = 5
hold if we show that

inf
‖τ−τ0‖≥ε,τ∈T5

U (τ ) > ε, (S.9)

1

T

T∑
t=1

(
(φ(L;ϕ0) {utI(t ≥ 1)})2 − σ2

0

)
= op (1) , (S.10)

sup
‖τ−τ0‖≥ε,τ∈T5

1

T

T∑
t=1

(
ε2
t (τ )− E

(
(φ(L;ϕ)∆δ−δ0ut)

2
))

= op (1) , (S.11)

sup
H5∪H5∪H5

1

T

∣∣∣∣∣
T∑
t=1

dt (ϑ) st (ϑ)

∣∣∣∣∣ = op (1) , (S.12)

sup
H5∪H5∪H5

1

T

(
T∑
t=1

εt (τ )ht,T (γ, δ,ϕ)

)2

= op (1) . (S.13)

First, (S.9), (S.10), and (S.11) follow by identical arguments to those in the proofs of (2.8)
and (2.9) in Hualde and Robinson (2011). Next, by (S.226) of Lemma S.19 with γ0 − δ ≤ η
and δ0 − δ ≤ δ0 − γ0 + η, the left-hand side of (S.12) is Op(T

max{θ,δ0−γ0+η}+2θ−1/2+η), and by
(S.221) of Lemma S.18, the left-hand side of (S.13) is Op(T

2 max{θ,δ0−γ0+η}−1). Both are op(1)
for θ and η sufficiently small, to conclude the proof of (S.5), (S.6), and (S.7) for i = 5.

Proof of (S.5) for i = 1, . . . , 4 First we show (S.5) which, in view of Lemma S.1 and that
dt (ϑ0) = 0, holds if, for i = 1, . . . , 4,

Pr

(
inf
Hi

1

T

T∑
t=1

(dt (ϑ) + st (ϑ))2 ≤ σ2
0 + ε

)
→ 0 as T →∞.
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For δ ∈ ∪4
i=1Ii it holds that γ0 − δ ≥ η, so the probability above is bounded by

Pr

(
inf
Hi

T 2(γ0−δ)+1

T
inf
Hi

1

T 2(γ0−δ)+1

T∑
t=1

(dt (ϑ) + st (ϑ))2 ≤ σ2
0 + ε

)

= Pr

(
inf
Hi

1

T 2(γ0−δ)+1

T∑
t=1

(dt (ϑ) + st (ϑ))2 ≤ σ2
0 + ε

T 2η

)

≤ Pr

(
inf
Hi

1

T 2(γ0−δ)+1

T∑
t=1

d2
t (ϑ)− sup

Hi

2

T 2(γ0−δ)+1

∣∣∣∣∣
T∑
t=1

dt (ϑ) st (ϑ)

∣∣∣∣∣ ≤ σ2
0 + ε

T 2η

)
.

Thus, (S.5) for i = 1, . . . , 4 follows for θ small enough by (S.228) of Lemma S.19, noting also
that when δ ∈ ∪4

i=1Ii, δ0 − δ ≥ δ0 − γ0 + η, and by Lemma S.2.

Proof of (S.6) and (S.7) for i = 4 Fix ζ such that 0 < ζ < η and let κ4 = γ0 − δ − ζ,
noting that κ4 ≥ η − ζ > 0 when δ ∈ I4. Then, because dt (ϑ0) = 0, (S.6) holds if

Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)+1

(
T∑
t=1

d2
t (ϑ)− 2

∣∣∣∣∣
T∑
t=1

dt (ϑ) st (ϑ)

∣∣∣∣∣−
T∑
t=1

s2
t (ϑ0)

)
≤ 0

)
→ 0 (S.14)

as T → ∞, noting the change in the normalization from (S.6) to (S.14), which is justified
because the right-hand side of the inequality inside the probability in (S.6) is 0, so multiplying
the left- and right-hand sides of the inequality by the same positive number does not alter
the probability. Because

∑T
t=1 dt (ϑ) ct (γ, δ,ϕ) = 0, it holds that

T∑
t=1

dt (ϑ) st (ϑ) =
T∑
t=1

dt (ϑ) εt (τ ) . (S.15)

By the Cauchy-Schwarz inequality and (S.15), the probability in (S.14) is bounded by

Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)+1

(
T∑
t=1

d2
t (ϑ) (1− 2vT (ϑ))−

T∑
t=1

s2
t (ϑ0)

)
≤ 0

)
, (S.16)

where vT (ϑ) = (
∑T

t=1 ε
2
t (τ ) /

∑T
t=1 d

2
t (ϑ))1/2. Then (S.14) holds if

sup
H4

T 2κ4

T 2(γ0−δ)+1

T∑
t=1

s2
t (ϑ0) = op (1) , (S.17)

Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)+1

T∑
t=1

d2
t (ϑ) (1− 2vT (ϑ)) ≤ ε

)
→ 0 as T →∞. (S.18)
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First, given that T 2κ4−2(γ0−δ)−1 = T−1−2ζ , (S.17) follows immediately by Lemma S.1. Next,
fixing c such that 0 < c < 1/2, the probability in (S.18) equals

Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)+1

T∑
t=1

d2
t (ϑ) (1− 2vT (ϑ)) ≤ ε, sup

H4

vT (ϑ) ≤ c

)

+ Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)+1

T∑
t=1

d2
t (ϑ) (1− 2vT (ϑ)) ≤ ε, sup

H4

vT (ϑ) > c

)

≤ Pr

(
inf
H4

T 2κ4

T 2(γ0−δ)+1

T∑
t=1

d2
t (ϑ) (1− 2c) ≤ ε

)
+ Pr

(
sup
H4

vT (ϑ) > c

)
, (S.19)

so (S.18) holds on showing

lim
T→∞

inf
H4

T 2κ4

T 2(γ0−δ)+1

T∑
t=1

d2
t (ϑ) > ε, (S.20)

sup
H4

vT (ϑ) = op (1) . (S.21)

By the Cauchy-Schwarz inequality,
∑T

t=1 d
2
t (ϑ) ≥ T−1d

2

T (ϑ), where dT (ϑ) =
∑T

t=1 dt (ϑ),
so that (S.20) holds by (S.108) of Lemma S.3. To show (S.21), note that

sup
H4

vT (ϑ) ≤

(
supH4

T−1−2ζ
∑T

t=1 ε
2
t (τ )

infH4
T 2κ4−2(γ0−δ)−1

∑T
t=1 d

2
t (ϑ)

)1/2

(S.22)

using κ4 = γ0 − δ − ζ, where supH4
T−1−2ζ

∑T
t=1 ε

2
t (τ ) = op (1) by Lemma S.17 because

δ0− δ ≤ 1/2−η. Then (S.22) is op(1) by (S.20), which concludes the proof of (S.6) for i = 4.
Next we show (S.7) for i = 4. A potential problem here is that γ = γ0 is admissible, so we

cannot directly exploit the lower bound for the normalized
∑T

t=1 d
2
t (ϑ) as in (S.20) because

dt (ϑ) = 0 when γ = γ0. However, we can instead take advantage of |γ − γ0| ≤ ξT−κ4 in H4

and apply the mean value theorem. First note that δ ∈ I4 implies that δ0 − δ ≤ 1/2 − η
and γ0− δ ≥ η, so that ∆δ−δ0

+ ut is asymptotically stationary as in the proof for i = 5. Then,
given (S.8), the result follows by (S.9), (S.10), (S.11) (whose proofs apply also for δ ∈ I4),
and showing also that

sup
H4

1

T

(
T∑
t=1

εt (τ )ht,T (γ, δ,ϕ)

)2

= op (1) , (S.23)

sup
H4

1

T

∣∣∣∣∣
T∑
t=1

dt (ϑ) st (ϑ)

∣∣∣∣∣ = op (1) . (S.24)

From (S.221) of Lemma S.18, the left-hand side of (S.23) is Op(T
−2η) = op (1) by choosing

θ < 1/2− η. Next, because |γ − γ0| < ξT−κ4 in H4, by (S.225) and (S.227) of Lemma S.19
the left-hand side of (S.24) is Op

(
T ζ−η+2θ

)
= op(1) for θ small enough because ζ < η.
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Proof of (S.6) and (S.7) for i = 3 Fix κ3 = γ0 − δ, so noting that δ ∈ I3, κ3 ≥
γ0 − δ0 + 1/2− η > 0. Then, by the Cauchy-Schwarz inequality,

Pr

(
inf
H3

ST (ϑ) ≤ 0

)
≤ Pr

(
inf
H3

1

T 2

(
dT (ϑ) + sT (ϑ)

)2 − 1

T

T∑
t=1

s2
t (ϑ0) ≤ 0

)
, (S.25)

where dt (ϑ) =
∑t

j=1 dj (ϑ) and st (ϑ) =
∑t

j=1 sj (ϑ), so

sT (ϑ) = εT (δ0 − δ + 1,ϕ)−
T∑
t=1

ht,T (γ, δ,ϕ)
T∑
j=1

εj(τ )hj,T (γ, δ,ϕ) , (S.26)

where, denoting εt(δ0 − δ,ϕ) = εt(τ ),

εt(δ0 − δ + 1,ϕ) =
t∑

j=1

εj(τ ) =
t∑

j=1

j−1∑
k=0

ak (δ0 − δ,ϕ)uj−k =
t−1∑
j=0

aj (δ0 − δ + 1,ϕ)ut−j,

(S.27)
because

πj+1 (d)− πj (d) = πj+1 (d− 1) . (S.28)

The right-hand side of (S.25) is thus bounded by

Pr

(
inf
H3

1

T 2
d

2

T (ϑ) (1− 2 |vT (ϑ)|)− 1

T

T∑
t=1

s2
t (ϑ0) ≤ 0

)
, (S.29)

where vT (ϑ) = sT (ϑ) /dT (ϑ). Applying Lemma S.1, (S.6) for i = 3 would then hold if

Pr

(
inf
H3

1

T 2
d

2

T (ϑ) (1− 2 |vT (ϑ)|) ≤ K

)
→ 0 as T →∞, (S.30)

for an arbitrarily large K. As in (S.19), fixing c such that 0 < c < 1/2, the probability in
(S.30) is bounded by

Pr

(
inf
H3

1

T 2
d

2

T (ϑ) (1− 2c) ≤ K

)
+ Pr

(
sup
H3

|vT (ϑ)| > c

)
, (S.31)

so, as in (S.22), (S.30) holds if

sup
H3

1

T
|sT (ϑ)| = Op (1) , (S.32)

lim
T→∞

inf
H3

1

T 2
d

2

T (ϑ) > K. (S.33)

For δ ∈ I3 it holds that δ0 − δ ≤ 1/2, so in view of (S.26) the proof of (S.32) is immediate
using (S.212) in Lemma S.16 together with Lemmas S.17 and S.18 with θ < 1/2. Finally
the proof of (S.33) follows by Lemma S.3, to conclude the proof of (S.6) for i = 3.

Next we show (S.7) for i = 3, which holds if

Pr

(
inf
H3

1

T

(
T∑
t=1

s2
t (ϑ)− 2

∣∣∣∣∣
T∑
t=1

dt (ϑ) st (ϑ)

∣∣∣∣∣−
T∑
t=1

s2
t (ϑ0)

)
≤ 0

)
→ 0 as T →∞,
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where
T∑
t=1

s2
t (ϑ) =

T∑
t=1

ε2
t (τ )−

(
T∑
t=1

εt(τ )ht,T (γ, δ,ϕ)

)2

. (S.34)

In the proof of their (2.7) for i = 3, Hualde and Robinson (2011) showed that

Pr

(
inf

‖τ−τ0‖≥ε,τ∈T3

1

T

T∑
t=1

ε2
t (τ ) > K

)
→ 1 as T →∞ (S.35)

for any arbitrarily large fixed constant K (for small enough η). Thus, noting (S.34), (S.7)
for i = 3 holds by (S.35) and Lemma S.1 on showing

sup
H3

1

T

(
T∑
t=1

εt(τ )ht,T (γ, δ,ϕ)

)2

= Op (1) , (S.36)

sup
H3

1

T

∣∣∣∣∣
T∑
t=1

dt (ϑ) st (ϑ)

∣∣∣∣∣ = Op (1) . (S.37)

In (S.37), the bound will depend on ξ, which had to be set very large in the proof of (S.33) (see
the proof of Lemma S.3). However, this can be dominated by the constant K in (S.35), which
can be chosen arbitrarily large by setting η small enough. First, by (S.221) of Lemma S.18,
the left-hand side of (S.36) holds by choosing θ < 1/2 because δ0 − δ ≤ 1/2 when δ ∈ I3.
Next, noting that supH3

|γ−γ0| ≤ ξT−κ3 and that δ ∈ I3 implies γ0−δ ≥ γ0−δ0+1/2−η > 0
and δ0 − δ ≤ 1/2, it follows by (S.225) and (S.229) of Lemma S.19 (noting that for T large
enough γ − δ > 0) that the left-hand side of (S.37) is Op (1) by choosing θ < 1/2.

Proof of (S.6) and (S.7) for i = 2 Fix κ2 = γ0− δ0 + 1/2 > 0. Changing the normaliza-
tion (T 2(δ0−δ) instead of T ), by the Cauchy-Schwarz inequality as in (S.25), and proceeding
as in (S.29), the left-hand side of (S.6) is bounded by

Pr

(
inf
H2

1

T 2(δ0−δ)+1
d

2

T (ϑ) (1− 2 |vT (ϑ)|)− sup
H2

1

T 2(δ0−δ)

T∑
t=1

s2
t (ϑ0) ≤ 0

)
.

Then, given Lemma S.1,

sup
H2

1

T 2(δ0−δ)

T∑
t=1

s2
t (ϑ0) = sup

H2

T

T 2(δ0−δ)
1

T

T∑
t=1

s2
t (ϑ0) = Op (1) , (S.38)

because when δ ∈ I2, δ0 − δ ≥ 1/2. Thus (S.6) for i = 2 would hold if

Pr

(
inf
H2

1

T 2(δ0−δ)+1
d

2

T (ϑ) (1− 2 |vT (ϑ)|) ≤ K

)
→ 0 as T →∞ (S.39)

for an arbitrarily large K, which, as in (S.31), follows if

sup
H2

1

T δ0−δ+1/2
|sT (ϑ)| = Op (1) , (S.40)

lim
T→∞

inf
H2

1

T 2(δ0−δ)+1
d

2

T (ϑ) > K. (S.41)
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The proof of (S.40) is almost identical to that of (S.32), again applying Lemmas S.16, S.17,
and S.18. Finally (S.41) follows by Lemma S.3, to conclude the proof of (S.6) for i = 2.

Next we show (S.7) for i = 2, which holds if

Pr

(
inf
H2

1

T 2(δ0−δ)

(
T∑
t=1

s2
t (ϑ)− 2

∣∣∣∣∣
T∑
t=1

dt (ϑ) st (ϑ)

∣∣∣∣∣−
T∑
t=1

s2
t (ϑ0)

)
≤ 0

)
→ 0 (S.42)

as T →∞. In the proof of their (2.7) for i = 2, Hualde and Robinson (2011) showed that

Pr

(
inf

‖τ−τ0‖≥ε,τ∈T2

1

T 2(δ0−δ)

T∑
t=1

ε2
t (τ ) > K

)
→ 1 (S.43)

as T →∞ for any arbitrarily large fixed constant K (for small enough η). Thus, in view of
(S.34), (S.38), and (S.43), it follows that (S.42) holds if

sup
H2

1

T 2(δ0−δ)

(
T∑
t=1

εt(τ )ht,T (γ, δ,ϕ)

)2

= Op (1) , (S.44)

sup
H2

1

T 2(δ0−δ)

∣∣∣∣∣
T∑
t=1

dt (ϑ) st (ϑ)

∣∣∣∣∣ = Op (1) . (S.45)

Again, (S.44) holds by (S.222) of Lemma S.18 with θ < 1/2 noting that δ ∈ I2 implies
δ0 − δ ≥ 1/2. Since supH2

|γ − γ0| ≤ ξT−κ2 and δ ∈ I2 implies γ0 − δ ≥ γ0 − δ0 + 1/2 > 0
and δ0 − δ ≥ 1/2, (S.45) follows from (S.225) and (S.230) of Lemma S.19 setting θ < 1/2,
noting that for T large enough γ − δ > 0.

Proof of (S.6) and (S.7) for i = 1 Fix κ1 = γ0 − δ0 + 1/2 > 0. As in the treatment of
(S.14), (S.6) for i = 1 holds if

sup
I1

T 2κ1

T 2(γ0−δ)+1

T∑
t=1

s2
t (ϑ0) = op (1) , (S.46)

Pr

(
inf
H1

T 2κ1

T 2(γ0−δ)+1

T∑
t=1

d2
t (ϑ) (1− 2vT (ϑ)) ≤ ε

)
→ 0 as T →∞, (S.47)

for an arbitrarily small ε. First, (S.46) holds by Lemma S.1, noting that 2κ1−2 (γ0 − δ)−1 =
2 (δ − δ0) and supI1 2 (δ − δ0) = −1 − 2η < −1. Next, as in the proof of (S.39), see also
(S.18) and (S.22), (S.47) follows if

sup
H1

1

T 2(δ0−δ)

T∑
t=1

ε2
t (τ ) = Op (1) , (S.48)

lim
T→∞

inf
H1

1

T 2(δ0−δ)

T∑
t=1

d2
t (ϑ) > K. (S.49)

First, (S.48) follows immediately from (S.218) of Lemma S.17, noting that δ0− δ ≥ 1/2 + η.
Next, by the Cauchy-Schwarz inequality, (S.49) follows by Lemma S.3.
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Finally we show (S.7) for i = 1, which holds if

Pr

(
inf
H1

1

T 2(δ0−δ)

(
T∑
t=1

(dt (ϑ) + st (ϑ))2 −
T∑
t=1

s2
t (ϑ0)

)
≤ 0

)
→ 0 (S.50)

as T → ∞. By (S.46) and Lemma S.12 with Zt = dt (ϑ) + st (ϑ), (S.50) follows if there
exists an ε > 0 such that

Pr

(
inf
H1

1

T

T∑
t=1

(
1

T δ0−δ+1/2
dt (ϑ) +

1

T δ0−δ+1/2
st (ϑ)

)2

> ε

)
→ 1 (S.51)

as T → ∞. Note that in H1, γ0 − δ ≥ η, so there exists α > 0 such that for T sufficiently
large it holds that γ − δ ≥ α. Define the set G1 = {ϑ : τ ∈ T1, γ − δ ≥ α, γ ∈ [�1,�2]}.
Let [·] denote the integer part of the argument and consider ST (r,ϑ) = T δ−δ0−1/2s[Tr] (ϑ) a
process indexed by (r,ϑ) that is càdlàg in r and continuous in ϑ. We next show that

ST (r,ϑ)⇒ S (r,ϑ) =φ (1;ϕ)ω (1;ϕ0)W (r; 1 + δ0 − δ) (S.52)

− φ (1;ϕ)ω (1;ϕ0) (2 (γ − δ) + 1)

γ − δ + 1
rγ−δ+1

×
(
W (1; 1 + δ0 − δ)−

∫ 1

0

uγ−δ−1W (u; 1 + δ0 − δ) du
)
,

where ⇒ means weak convergence in the product space of functions that are càdlàg in
r ∈ [0, 1] and continuous in ϑ ∈ G1 endowed with the Skorokhod topology in r and the
uniform topology in ϑ, and where W (r; d) = Γ (d)−1 ∫ r

0
(1− s)d−1 dB (s) and B (s) denote

fractional (Type II) and regular scalar Brownian motions, respectively, both with variance
σ2

0. Because dt (ϑ) is deterministic and st (ϑ) is stochastic, and in view of the square in
(S.51), (S.51) and hence (S.50) follows from (S.52) (also note Assumption A1(iv) and (7)).
We note that a different approach for the case i = 1 was taken by Hualde and Robinson
(2011) in their eqn. (2.36) based on the Cauchy-Schwarz inequality, but that approach does
not appear sufficient; see Johansen and Nielsen (2018) for details on this point and for an
argument very similar to that for our (S.50)–(S.52). In our (S.125) below, we give the result
of Hualde and Robinson (2011) with an alternative proof based on our Lemma S.12.

We thus need to prove (S.52). Note (S.27) and

ct (d1, d2,ϕ)− ct−1 (d1, d2,ϕ) = ct (d1, d2 + 1,ϕ) . (S.53)

By summation by parts and (S.53) we find

T∑
j=1

cj (γ, δ,ϕ) εj(τ ) =cT (γ, δ,ϕ) εT (δ0 − δ + 1,ϕ)

−
T−1∑
t=1

ct+1 (γ, δ + 1,ϕ) εt(δ0 − δ + 1,ϕ). (S.54)

Also, by summation by parts on (10), noting (S.28),

aj (d,ϕ) = φ (1;ϕ) πj (d)− πj (d)
∞∑

k=j+1

φk (ϕ)−
j−1∑
k=0

πk+1 (d− 1)
k∑
l=0

φj−l (ϕ) , (S.55)
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where for j = 0 the last term on the right-hand side of (S.55) is 0. Thus, noting (S.27),

εt(δ0 − δ + 1,ϕ) =
t−1∑
j=0

aj (δ0 − δ + 1,ϕ)ut−j

= φ (1;ϕ)ω (1;ϕ0)
t−1∑
j=0

πj (δ0 − δ + 1) εt−j +m1t (τ ) , (S.56)

where

m1t (τ ) =φ (1;ϕ)
t−1∑
j=0

πj (δ0 − δ + 1) (ut−j − ω (1;ϕ0) εt−j)

−
t−1∑
j=0

πj (δ0 − δ + 1)
∞∑

k=j+1

φk (ϕ)ut−j −
t−1∑
j=1

j−1∑
k=0

πk+1 (δ0 − δ)
k∑
l=0

φj−l (ϕ)ut−j.

(S.57)

Substituting (S.27), (S.54), (S.56) and (S.199) into sj(ϑ), we get

1

T δ0−δ+1/2

t∑
j=1

sj (ϑ) =
1

T δ0−δ+1/2
εt(δ0 − δ + 1,ϕ)

−
cT (γ, δ,ϕ) εT (δ0 − δ + 1,ϕ)

∑t
j=1 cj (γ, δ,ϕ)

T δ0−δ+1/2
∑T

j=1 c
2
j (γ, δ,ϕ)

+

∑t
j=1 cj (γ, δ,ϕ)

∑T−1
k=1 ck+1 (γ, δ + 1,ϕ) εk (δ0 − δ + 1,ϕ)

T δ0−δ+1/2
∑T

j=1 c
2
j (γ, δ,ϕ)

=φ (1;ϕ)ω (1;ϕ0) Ṽt (γ, δ) +m2t (ϑ) , (S.58)

where

Ṽt (γ, δ) =
1

T δ0−δ+1/2

t−1∑
j=0

πj (δ0 − δ + 1) εt−j

− 1

T δ0−δ+1/2

bT (γ, δ)
∑T−1

k=0 πk (δ0 − δ + 1) εT−k∑T
k=1 b

2
k (γ, δ)

t∑
j=1

bj (γ, δ)

+
1

T δ0−δ+1/2

∑T−1
k=1 bk+1 (γ, δ + 1)

∑k−1
l=0 πl (δ0 − δ + 1) εk−l∑T

k=1 b
2
k (γ, δ)

t∑
j=1

bj (γ, δ) ,

and m2t (ϑ) collects remainder terms arising from (S.56) and (S.199). By relatively straight-
forward arguments, it can be shown that

sup
G1

1

T

T∑
t=1

m2
2t (ϑ) = op (1) , (S.59)

sup
G1

1

T

T∑
t=1

∣∣∣m2t (ϑ) Ṽt (γ, δ)
∣∣∣ = op (1) , (S.60)
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The proofs of (S.59) and (S.60) involve several results. First, in order to deal with the
first term on the right-hand side of (S.57), note that ut = ω (1;ϕ0) εt + ε̃t−1 − ε̃t, where
ε̃t =

∑∞
j=0 ω̃j (ϕ0) εt−j, ω̃j(ϕ0) =

∑∞
k=j+1 ωk (ϕ0). By Assumptions A1 and A2, ε̃t is well

defined in the mean-square sense and |ω̃j(ϕ0)| = O(j−ς). We also apply Lemmas S.9, S.11,
S.13, S.14, S.15, S.16, and S.17.

Because ST (r,ϑ) is defined on a product space, we can prove weak convergence in r ∈
[0, 1] and ϑ ∈ G1 separately. Thus, suppose first that ϑ ∈ G1 is fixed. Letting t = [Tr], weak

convergence of Ṽ[Tr] (γ, δ) as T → ∞ then follows by first applying Theorem 2 of Hosoya
(2005), noting that our Assumption A2 implies conditions A(i), A(ii) and A(iii) in Hosoya
(2005). We then apply Lemmas S.10, S.11, and S.13 and the continuous mapping theorem,
as in Robinson and Marinucci (2000), noting that for fixed ϑ ∈ G1 and in particular γ− δ ≥
α > 0, it holds that

∫ 1

0
uγ−δ−1W (u; 1 + δ0 − δ) du is a well-defined random variable with zero

mean and finite variance (e.g., for δ = δ0 this variance is 2σ2
0((γ − δ + 1)(2(γ − δ) + 1))−1).

To prove weak convergence in ϑ ∈ G1, we note that finite-dimensional convergence follows
by weak convergence in r ∈ [0, 1]. Tightness of the process Ṽ[Tr] (γ, δ) on the compact set
G1 follows from Lemmas A.2 and C.3 of Johansen and Nielsen (2010) noting, in particular,

that Ṽ[Tr] (γ, δ) is continuously differentiable for γ − δ ≥ α > 0. Because ϕ only enters
through the multiplicative function φ (1;ϕ), which is bounded and bounded away from zero
for ϑ ∈ G1, tightness in ϕ follows straightforwardly. This proves (S.52) to conclude the proof
of (S.7) for i = 1 and therefore that of (S.1).

S.2.1.3 Proof of (S.2)

Here, let RT (τ , γ) = RT (ϑ) , dt (τ , γ) = dt (ϑ), and st (τ , γ) = st (ϑ) = s1t (τ ) − s2t (ϑ)
with s1t (τ ) = εt(τ ) and s2t (τ , γ) = s2t (ϑ) = ht,T (γ, δ,ϕ)

∑T
j=1 s1j (τ )hj,T (γ, δ,ϕ), so that,

noting
∑T

t=1 h
2
t,T (γ, δ,ϕ) = 1,

T∑
t=1

s2
2t (ϑ) =

T∑
t=1

s1t (τ ) s2t (ϑ) =

(
T∑
j=1

s1j (τ )hj,T (γ, δ,ϕ)

)2

.

Noting also (S.15),

RT (ϑ) =
1

T

T∑
t=1

d2
t (ϑ) +

1

T

T∑
t=1

s2
1t (τ )

− 1

T

(
T∑
j=1

s1j (τ )hj,T (γ, δ,ϕ)

)2

+
2

T

T∑
t=1

dt (ϑ) s1t (ϑ) . (S.61)

Clearly, if ϑ̂ ∈ N ε ∩Mε, then infNε∩Mε
RT (τ̂ , γ) ≤ RT (τ̂ , γ0), so that

Pr(ϑ̂ ∈ N ε ∩Mε) ≤ Pr

(
ϑ̂ ∈ N ε ∩Mε, inf

Nε∩Mε

RT (τ̂ , γ)−RT (τ̂ , γ0) ≤ 0

)
. (S.62)
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Recalling that dt (τ , γ0) = 0, RT (τ̂ , γ0) = T−1
∑T

t=1 s1t(τ̂ ) and this cancels with the corre-
sponding term in RT (τ̂ , γ), see (S.61). Thus, (S.2) holds if

lim
T→∞

inf
ϑ∈Nε∩Mε

1

T 2(γ0−δ)+1

T∑
t=1

d2
t (ϑ) > ε, (S.63)

sup
ϑ∈Nε∩Mε

1

T 2(γ0−δ)+1

∣∣∣∣∣
T∑
t=1

dt (ϑ) s1t (τ )

∣∣∣∣∣ = op(1), (S.64)

sup
ϑ∈Nε∩Mε

1

T 2(γ0−δ)+1

(
T∑
j=1

s1j (τ )hj,T (γ, δ,ϕ)

)2

= op(1), (S.65)

noting the change in the normalization compared with (S.62) (T 2(γ0−δ0)+1 instead of T ), which
is justified because the right-hand side of the inequality inside the probability in (S.62) is 0,
so multiplying the left- and right-hand sides of the inequality by a positive number does not
alter the probability.

First, (S.63) follows from Lemma S.2, noting that in N ε ∩Mε, γ0 − δ ≥ γ0 − δ0 − ε >
−1/2 setting ε small enough. Next, letting both ε and θ be sufficiently small and noting
that in N ε ∩ Mε, δ0 − δ ≥ −ε, by (S.228) of Lemma S.19 the left-hand side of (S.64)
is Op(T

−1/2+δ0−γ0+3θ+ε) = op(1). Finally, by (S.222) of Lemma S.18 the left-hand side of
(S.65) is Op(T

−2(γ0−δ0+1/2−θ−ε)) = op(1), to conclude the proof of (S.2) and therefore that of

consistency of ϑ̂.

S.2.2 Proof of Theorem 1(ii): the γ0 + 1/2 < δ0 case

Clearly

Pr (‖τ̂ − τ 0‖ ≥ ε) = Pr

(
inf
ϑ∈Mε

RT (ϑ) ≤ inf
ϑ∈Mε

RT (ϑ)

)
,

so, as in the proof for γ0 + 1/2 > δ0, the result follows by showing that the right-hand side
of (S.4) is o (1), which, in view of Lemma S.1, holds if

Pr

(
inf
ϑ∈Mε

RT (ϑ) ≤ σ2
0 + ε

)
→ 0 as T →∞.

This result is given in Lemma S.4, whose proof uses very similar techniques to those employed
in the proof of (S.1). This completes the proof of Theorem 1.

S.2.3 Proof of Theorem 2(i): the γ0 + 1/2 > δ0 case

We first show that
T 1/2M−1

T (ϑ̂− ϑ0)→d N
(
0, σ2

0V
−1
)
. (S.66)

By the mean value theorem,

ϑ̂− ϑ0 = −
(
∂2RT (ϑ)

∂ϑ∂ϑ′

)−1
∂RT (ϑ0)

∂ϑ
, (S.67)

where ϑ represents an intermediate point which is allowed to vary across the different rows
of ∂2RT (·)/∂ϑ∂ϑ′.
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We first analyze the score in (S.67). It can be easily seen that ∂dt (ϑ0) /∂τ = 0 and
∂s1t (τ ) /∂γ = 0, so, recalling that dt (ϑ0) = 0 and the decomposition (S.61),

∂RT (ϑ0)

∂ϑ
=

2

T

T∑
t=1

st (ϑ0)

((
∂s1t(τ0)
∂τ

∂dt(ϑ0)
∂γ

)
− ∂s2t (ϑ0)

∂ϑ

)
.

Then, by Lemma S.5(a) it holds that

T 1/2

2
MT

∂RT (ϑ0)

∂ϑ
=

(
T−1/2Ip+1 0

0 T−1/2−(γ0−δ0)

) T∑
t=1

εt

(
∂s1t(τ0)
∂τ

∂dt(ϑ0)
∂γ

)
+ op (1) . (S.68)

Next, as in (2.54) of Hualde and Robinson (2011),

1

T 1/2

T∑
t=1

εt
∂s1t (τ 0)

∂τ
=

1

T 1/2

T∑
t=2

εt

∞∑
j=1

mj (ϕ0) εt−j + op (1) ,

where mj (ϕ0) = (−j−1, b′j (ϕ0))′. Also,

∂dt (ϑ0)

∂γ
=− µ0c

(1)
t (γ0, δ0,ϕ0)

+ µ0ct (γ0, δ0,ϕ0)

∑T
j=1 cj (γ0, δ0,ϕ0) c

(1)
j (γ0, δ0,ϕ0)∑T

j=1 c
2
j (γ0, δ0,ϕ0)

,

where c
(1)
t (·, ·, ·) is the derivative of ct (·, ·, ·) with respect to the first argument, so that

1

T γ0−δ0+1/2

T∑
t=1

εt
∂dt (ϑ0)

∂γ

=
µ0

T γ0−δ0+1/2

T∑
t=1

εtct (γ0, δ0,ϕ0)

∑T
j=1 cj (γ0, δ0,ϕ0) c

(1)
j (γ0, δ0,ϕ0)∑T

j=1 c
2
j (γ0, δ0,ϕ0)

− µ0

T γ0−δ0+1/2

T∑
t=1

εtc
(1)
t (γ0, δ0,ϕ0) . (S.69)

By (11), c
(1)
t (d1, d2,ϕ) =

∑t−1
j=0 φj(ϕ)b

(1)
t−j(d1, d2), where b

(1)
j (·, ·) is the derivative of bj (·, ·)

with respect to the first argument. Then, noting that γ0 + 1/2 > δ0, by a similar analysis to
that in the proof of Lemma S.15, the right-hand side of (S.69) equals

µ0φ (1;ϕ0)

T γ0−δ0+1/2

∑T
t=1 εtbt (γ0, δ0)

∑T
j=1 bj (γ0, δ0) b

(1)
j (γ0, δ0)∑T

j=1 b
2
j (γ0, δ0)

− µ0φ (1;ϕ0)

T γ0−δ0+1/2

T∑
t=1

εtb
(1)
t (γ0, δ0) + op (1) . (S.70)

Substituting (S.184) (evaluated at (γ0, δ0)) into (S.70), the first two terms of (S.70) become

µ0φ (1;ϕ0)

T γ0−δ0+1/2

∑T
t=1 εtbt (γ0, δ0)

∑T
j=1 log( j

T
)b2
j (γ0, δ0)∑T

j=1 b
2
j (γ0, δ0)

− µ0φ (1;ϕ0)

T γ0−δ0+1/2

T∑
t=1

log(
t

T
)bt (γ0, δ0) εt + op (1) . (S.71)
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Using (S.183) and (S.184), (S.71) equals µ0φ (1;ϕ0) Γ (γ0 + 1)T−1/2+δ0−γ0
∑T

t=1 εtgt,T (γ0 − δ0)+
op (1) with

gt,T (d) =
πt (d)

∑T
j=1 log( j

T
)π2

j (d)− log( t
T

)πt (d)
∑T

j=1 π
2
j (d)∑T

j=1 π
2
j (d)

.

Collecting these terms shows that

T 1/2

2
MT

∂RT (ϑ0)

∂ϑ
=

T∑
t=1

εtηt,T + op (1) , (S.72)

where

ηt,T =

(
1

T 1/2

∑∞
j=1mj (ϕ0) εt−j

1
T γ0−δ0+1/2µ0φ (1;ϕ0) Γ (γ0 + 1) gt,T (γ0 − δ0)

)
.

Defining Ft,T = Ft for any 1 ≤ t ≤ T , Assumption A2 implies that {εtηt,T ,Ft,T , 1 ≤
t ≤ T, T ≥ 1} is a martingale difference array. For any (p+ 2)-dimensional vector ξ, define
ξt,T = εtξ

′ηt,T/σ0(ξ′V ξ)1/2 and B2
T =

∑T
t=2 E(ξ2

t,T |Ft−1,T ). Then, by Corollary 3.1 of Hall
and Heyde (1980), if

B2
T →p 1, (S.73)

and, for all ε > 0,
T∑
t=2

E
(
ξ2
t,T I (|ξt,T | > ε) |Ft−1,T

)
→p 0, (S.74)

it holds that
∑T

t=2 ξt,T →d N (0, 1), and hence

T∑
t=2

εtηt,T →d N
(
0, σ2

0V
)

(S.75)

by direct application of the Cramer-Wold device. First we note that

E
(
ξ2
t,T |Ft−1,T

)
=
ξ′ηt,Tη

′
t,Tξ

ξ′V ξ
,

so that (S.73) holds if
∑T

t=2 ηt,Tη
′
t,T →p V . However, this follows straightforwardly by the

same arguments as in the proof of (2.55) of Hualde and Robinson (2011) and Lemma S.10
because

∑t
l=1

∑∞
j=1mj (ϕ0) εl−j = Op(t

1/2), which implies, by summation by parts, that

1

T γ0−δ0+1

T∑
t=2

gt,T (γ0 − δ0)
∞∑
j=1

mj (ϕ0) εt−j = op (1) . (S.76)

Now (S.74) holds if, e.g.,
∑T

t=2E(ξ4
t,T |Ft−1,T ) →p 0, which, given that the fourth moment

of εt is finite, holds if
∑T

t=2(ξ′ηt,Tη
′
t,Tξ)

2 →p 0, and this can be easily justified by previous
arguments. This completes the proof of (S.75).

Next, noting (S.67), (S.72), and (S.75), the proof of (S.66) is completed by showing

MT

(
∂2RT (ϑ)

∂ϑ∂ϑ′
− ∂2RT (ϑ0)

∂ϑ∂ϑ′

)
MT = op (1) (S.77)
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and
1

2
MT

∂2RT (ϑ0)

∂ϑ∂ϑ′
MT →p V . (S.78)

By Lemma S.6 it holds that, for some fixed κ > 0, T κ(ϑ̂ − ϑ0) →p 0, and in light of
this the proof of (S.77) is relatively straightforward. It consists of deriving all terms in
∂2RT (ϑ)/∂ϑ∂ϑ′ and checking that the differences with respect the corresponding ones in
∂2RT (ϑ0)/∂ϑ∂ϑ′ satisfy (S.77). This requires the use of the mean value theorem and As-
sumption A4(ii), where typically the derivatives involve additional log T factors which are
compensated by the factor T−κ that arises because ϑ− ϑ0 = Op (T−κ).

Now we show (S.78). Recalling dt(ϑ0) = 0 and noting ∂2dt(ϑ0)/∂τ∂τ ′ = 0, Lemma S.5(b)
implies that

1

2
MT

∂2RT (ϑ0)

∂ϑ∂ϑ′
MT = MT

1

T

T∑
t=1

( ∂s1t(τ0)
∂τ

∂s1t(τ0)
∂τ ′

0

0
(
∂dt(ϑ0)
∂γ

)2

)
MT + op (1) , (S.79)

so (S.78) holds by showing that, as T →∞,

1

T

T∑
t=1

∂s1t (τ 0)

∂τ

∂s1t (τ 0)

∂τ ′
→p σ

2
0A, (S.80)

1

T 2(γ0−δ0)+1

T∑
t=1

(
∂dt (ϑ0)

∂γ

)2

→ µ2
0φ

2 (1;ϕ0) Γ2 (γ0 + 1)

Γ2 (γ0 − δ0) (2 (γ0 − δ0)− 1)3 . (S.81)

Here, (S.80) follows from (2.53) of Hualde and Robinson (2011) and (S.81) follows by argu-
ments used in the proof of (S.73).

Next, given (S.66), the remaining part of (15) is justified as follows. Noting

φ (L;ϕ) ∆δ
+xt = µ0ct (γ0, δ,ϕ) + εt (τ ) , (S.82)

it follows from (12) that

µ̂ = µ̂(ϑ̂) = µ0

T∑
t=1

ct(γ0, δ̂, ϕ̂)kt,T (γ̂, δ̂, ϕ̂) +
T∑
t=1

εt(τ̂ )kt,T (γ̂, δ̂, ϕ̂),

where kt,T (γ, δ,ϕ) = ct (γ, δ,ϕ) /
∑T

t=1 c
2
t (γ, δ,ϕ). By straightforward application of the

mean value theorem,

kt,T (γ̂, δ̂, ϕ̂) = kt,T (γ0, δ̂, ϕ̂) + k
(1)
t,T (γ, δ̂, ϕ̂)(γ̂ − γ0),

where k
(1)
t,T (·, ·, ·) is the derivative of kt,T (·, ·, ·) with respect to the first argument and

|γ − γ0| ≤ |γ̂ − γ0|. Thus,

µ̂ = µ0 + µ0(γ̂ − γ0)
T∑
t=1

ct(γ0, δ̂, ϕ̂)k
(1)
t,T (γ, δ̂, ϕ̂) +

T∑
t=1

εt(τ̂ )kt,T (γ̂, δ̂, ϕ̂),

which implies that

T γ0−δ0+1/2

log T
(µ̂− µ0) =µ0T

γ0−δ0+1/2(γ̂ − γ0)
1

log T

T∑
t=1

ct(γ0, δ̂, ϕ̂)k
(1)
t,T (γ, δ̂, ϕ̂) (S.83)

+
T γ0−δ0+1/2

log T

T∑
t=1

εt(τ̂ )kt,T (γ̂, δ̂, ϕ̂).
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Then, the remaining part of (15) holds on showing

1

log T

T∑
t=1

ct(γ0, δ̂, ϕ̂)k
(1)
t,T (γ, δ̂, ϕ̂)→p −1, (S.84)

T γ0−δ0+1/2

log T

T∑
t=1

εt(τ̂ )kt,T (γ̂, δ̂, ϕ̂) = op (1) , (S.85)

noting that joint asymptotic distribution of µ̂ and γ̂ follows easily from (S.83)–(S.85) by the
Cramér-Wold device.

Clearly, (S.84) follows if

T∑
t=1

ct(γ0, δ̂, ϕ̂)k
(1)
t,T (γ, δ̂, ϕ̂)−

T∑
t=1

ct(γ0, δ0,ϕ0)k
(1)
t,T (γ0, δ0,ϕ0) = op (log T ) , (S.86)

1

log T

T∑
t=1

ct(γ0, δ0,ϕ0)k
(1)
t,T (γ0, δ0,ϕ0)→ −1. (S.87)

First, (S.86) can be easily justified by applying Lemmas S.7 and S.14, noting that

k
(1)
t,T (γ, δ,ϕ) =

c
(1)
t (γ, δ,ϕ)∑T
j=1 c

2
j (γ, δ,ϕ)

−
2ct (γ, δ,ϕ)

∑T
j=1 c

(1)
j (γ, δ,ϕ) cj (γ, δ,ϕ)(∑T

j=1 c
2
j (γ, δ,ϕ)

)2 .

Next, the left-hand side of (S.87) is

− 1

log T

∑T
t=1 c

(1)
t (γ0, δ0,ϕ0) ct (γ0, δ0,ϕ0)∑T

t=1 c
2
t (γ0, δ0,ϕ0)

= − 1

log T

∑T
t=1 b

2
t (γ0, δ0) log t∑T

t=1 b
2
t (γ0, δ0)

+ o (1) ,

by (S.184), noting that the remainder is of smaller order. Thus (S.87) follows immediately
using (S.183), Lemma S.11, and noting that by simple application of summation by parts,
the mean value theorem and Lemma S.10 for d > −1/2, it can be easily shown that

1

T 2d+1 log T

T∑
t=1

log (t) t2d → 1

2d+ 1
.

Next, the left-hand side of (S.85) is

T γ0−δ0+1/2

log T

T∑
t=1

φ (L;ϕ0) {utI(t ≥ 1)} kt,T (γ0, δ0,ϕ0) (S.88)

+
T γ0−δ0+1/2

log T

T∑
t=1

(εt(τ̂ )− φ (L;ϕ0) {utI(t ≥ 1)})kt,T (γ0, δ0,ϕ0) (S.89)

+
T γ0−δ0+1/2

log T

T∑
t=1

φ (L;ϕ0) {utI(t ≥ 1)} (kt,T (γ̂, δ̂, ϕ̂)− kt,T (γ0, δ0,ϕ0)) (S.90)

+
T γ0−δ0+1/2

log T

T∑
t=1

(εt(τ̂ )− φ (L;ϕ0) {utI(t ≥ 1)})(kt,T (γ̂, δ̂, ϕ̂)− kt,T (γ0, δ0,ϕ0)). (S.91)
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Note that

φ(L;ϕ0) {utI(t ≥ 1)} = εt −
∞∑
j=t

φj (ϕ0)ut−j, (S.92)

where, by Assumptions A1 and A2, it can be easily shown that

∞∑
j=t

φj (ϕ0)ut−j = Op(t
−1/2−ς). (S.93)

Using summation by parts, (S.92), (S.93) and noting that, as in Lemmas S.14 and S.15,

kt,T (γ0, δ0,ϕ0) = Op(t
γ0−δ0T−1−2(γ0−δ0)), (S.94)

it follows that (S.88) is Op(log−1 T ). Next, by (S.94) and Lemma S.7 with κ = 1/2 (because
τ̂ is T 1/2-consistent), (S.89) is Op(T

1/2−κ log−1 T ) = Op(log−1 T ). Next, by summation by
parts, (S.92), (S.93), the mean value theorem and Lemmas S.7 and S.16, it can be easily
shown that (S.90) is Op(T

θ−1/2−(γ0−δ0)) = op (1), setting θ < γ0−δ0 +1/2. Finally, combining
the arguments for (S.89) and (S.90), it is straightforward to show that (S.91) is op (1), to
conclude the proof of (S.85).

S.2.4 Proof of Theorem 2(ii): the γ0 + 1/2 < δ0 case

First, noting (S.61), the loss function RT (ϑ) can be decomposed in the sum of two terms,
RT (ϑ) = QT (τ ) + ST (ϑ), where QT (τ ) = T−1

∑T
t=1 s

2
1t (τ ) and

ST (ϑ) =
1

T

T∑
t=1

(dt (ϑ)− s2t (ϑ))2 +
2

T

T∑
t=1

s1t (τ ) (dt (ϑ)− s2t (ϑ)) . (S.95)

Thus, QT (τ ) is the loss function in Hualde and Robinson (2011). Now

∂RT (ϑ̂)

∂τ
= 0 =

∂QT (τ̂ )

∂τ
+
∂ST (ϑ̂)

∂τ
, (S.96)

and by the mean value theorem

∂QT (τ̂ )

∂τ
=
∂QT (τ 0)

∂τ
+
∂2QT (τ )

∂τ∂τ ′
(τ̂ − τ 0) , (S.97)

where τ represents an intermediate point between τ̂ and τ 0 which is allowed to vary in the
different rows of ∂2QT (·)/∂τ∂τ ′. Inserting (S.97) in (S.96) we then find

T 1/2 (τ̂ − τ 0) = −
(
∂2QT (τ )

∂τ∂τ ′

)−1

T 1/2∂QT (τ 0)

∂τ
−
(
∂2QT (τ )

∂τ∂τ ′

)−1

T 1/2∂ST (ϑ̂)

∂τ
. (S.98)

Now, by Hualde and Robinson (2011) (see the proof of their Theorem 2.2), the first term
on the right-hand side of (S.98) has a N

(
0,A−1

)
limiting distribution, and ∂2QT (τ )/∂τ∂τ ′

converges in probability to a nonsingular matrix. Thus, in view of (S.98), Theorem 2(ii)

follows because T 1/2∂ST (ϑ̂)/∂τ = op (1) by Lemma S.8.
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S.3 Auxiliary lemmas

Lemma S.1 Under Assumptions A1–A3, T−1
∑T

t=1 s
2
t (ϑ0)→p σ

2
0.

Proof. Clearly

1

T

T∑
t=1

s2
t (ϑ0) =

1

T

T∑
t=1

(φ(L;ϕ0) {utI(t ≥ 1)})2

− 1

T

(
T∑
t=1

φ(L;ϕ0) {utI(t ≥ 1)}ht,T (γ0, δ0,ϕ0)

)2

. (S.99)

In view of (S.92), (S.93), by Assumptions A1 and A2 and simple application of Lemma S.16,
the second term on the right-hand side of (S.99) is Op

(
T 2θ−1

)
= op (1) by choosing θ < 1/2.

Then the required result holds by (S.10).

Lemma S.2 Under Assumptions A1 and A3, for any g > 0,

lim
T→∞

inf
γ0−δ≥−1/2+g,|γ−γ0|≥g,ϕ∈Ψ

1

T 2(γ0−δ)+1

T∑
t=1

d2
t (ϑ) > ε.

Proof. Letting α > 0 be arbitrarily small (in particular α < (ς − 1/2) /3, which im-
plies α < 1/2 and also α < g) and defining Φ1 = {ϑ ∈ Ξ : γ − δ ≤ −1/2− α}, Φ2 =
{ϑ ∈ Ξ : −1/2− α ≤ γ − δ ≤ −1/2 + α}, and Φ3 = {ϑ ∈ Ξ : γ − δ ≥ −1/2 + α}, the result
holds on showing

lim
T→∞

inf
{γ0−δ≥−1/2+g,|γ−γ0|≥g}∩Φj

1

T 2(γ0−δ)+1

T∑
t=1

d2
t (ϑ) > ε, (S.100)

for j = 1, 2, 3. We first deal with j = 1, 2. Clearly

1

T 2(γ0−δ)+1

T∑
t=1

d2
t (ϑ) =

µ2
0

T 2(γ0−δ)+1

T∑
t=1

c2
t (γ0, δ,ϕ)

− µ2
0

T 2(γ0−δ)+1

(
T∑
t=1

ct (γ0, δ,ϕ)ht,T (γ, δ,ϕ)

)2

,

so because |γ− γ0| ≥ g and by application of Lemma S.15, noting that γ0− δ ≥ −1/2 + g >
−1/2, µ0 6= 0, and (7), (S.100) for j = 1, 2 holds on showing

lim
T→∞

inf
γ0−δ≥−1/2+g

1

T 2(γ0−δ)+1

T∑
t=1

b2
t (γ0, δ) > ε, (S.101)

sup
{γ0−δ≥−1/2+g}∩Φj

1

T 2(γ0−δ)+1

(
T∑
t=1

ct (γ0, δ,ϕ)ht,T (γ, δ,ϕ)

)2

= o (1) . (S.102)

First, (S.101) follows by almost identical arguments to those in the proof of (S.197).
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Next, we show (S.102) for j = 1. By (S.196) of Lemma S.15, the left-hand side of (S.102)
is bounded by

sup
{γ0−δ≥−1/2+g}∩Φ1

(
T−1/2−(γ0−δ)

T∑
t=1

ct (γ0, δ,ϕ) ct (γ, δ,ϕ)

)2

. (S.103)

By Lemma S.14, (S.103) is O (T−2α) = o (1) to conclude the proof of (S.102), and therefore
that of (S.100), for j = 1. Regarding j = 2, the left-hand side of (S.102) is bounded by(

sup{γ0−δ≥−1/2+g}∩Φ2
T−(γ0−2δ+γ+1)

∑T
t=1 ct (γ0, δ,ϕ) ct (γ, δ,ϕ)

)2

infΦ2 T
−2(γ−δ)−1

∑T
t=1 c

2
t (γ, δ,ϕ)

, (S.104)

where the denominator can be made arbitrarily large by setting α close enough to zero, see
(S.197) of Lemma S.15. By (S.192) of Lemma S.14 the square-root of the numerator of
(S.104) is O(T−g+α

∑T
t=1 t

g−1−α) = O (1). This completes the proof of (S.102), and hence
that of (S.100), for j = 2.

Finally we show (S.100) for j = 3. By very similar steps to those in the proofs of (S.194),
(S.195) in Lemma S.15, noting that γ0 − δ ≥ −1/2 + g, it is straightforward to show that

1

T 2(γ0−δ)+1

T∑
t=1

d2
t (ϑ) =

µ2
0φ

2(1;ϕ)

T 2(γ0−δ)+1

 T∑
t=1

b2
t (γ0, δ)−

(∑T
t=1 bt (γ0, δ) bt (γ, δ)

)2

∑T
t=1 b

2
t (γ, δ)


+ q1T (γ0, γ, δ,ϕ) , (S.105)

where sup{γ0−δ≥−1/2+g}∩Φ3
|q1T (γ0, γ, δ,ϕ)| = o (1). Next, by almost identical steps as in the

proofs of (S.183) and (S.197), it can be easily shown that the first term on the right-hand
side of (S.105) equals

µ2
0φ

2(1;ϕ)Γ2 (γ0 + 1)

T 2(γ0−δ)+1

 T∑
t=1

π2
t (γ0 + 1− δ)−

(∑T
t=1 πt (γ0 + 1− δ) πt (γ + 1− δ)

)2

∑T
t=1 π

2
t (γ + 1− δ)


(S.106)

+ q2T (γ0, γ, δ,ϕ) ,

where sup{γ0−δ≥−1/2+g}∩Φ3
|q2T (γ0, γ, δ,ϕ)| = o (1). Approximating sums by integrals, by (7)

and given that Γ2 (γ0 + 1) > 0, the first term on (S.106) is bounded from below by

ε inf
{γ0−δ≥−1/2+g}∩Φ3

1

Γ2 (γ0 − δ + 1)

 1

T 2(γ0−δ)+1

T∑
t=1

t2(γ0−δ) −

(
1

T γ0+γ−2δ+1

∑T
t=1 t

γ0+γ−2δ
)2

1
T 2(γ−δ)+1

∑T
t=1 t

2(γ−δ)


= ε inf

{γ0−δ≥−1/2+g}∩Φ3

(γ0 − γ)2

Γ2 (γ0 − δ + 1) (2 (γ0 − δ) + 1) (γ0 + γ − 2δ + 1)2 − o (1)

≥ ε inf
γ0−δ≥−1/2+g

g2

Γ2 (γ0 − δ + 1) 2g (α + g)2 − o (1) ,

which is positive and bounded away from zero, to complete the proof of (S.100) for j = 3.
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Lemma S.3 Under Assumptions A1 and A3, for i = 1, . . . , 4,

1

T γ0−δ+1

∂dT (ϑ)

∂γ
=
µ0φ (1;ϕ) Γ (γ0 + 1)

Γ (γ0 − δ + 1)

2 (γ − δ)2 + 2 (γ − δ)− (γ0 − δ)
(γ − δ + 1)2 (γ0 + γ − 2δ + 1)2 + gT (ϑ) , (S.107)

where supHi |gT (ϑ)| = o (1), and for an arbitrarily large K (setting ξ large enough),

lim
T→∞

inf
Hi

T 2κi

T 2(γ0−δ)+2
d

2

T (ϑ) > K. (S.108)

Proof. First, ∂dT (ϑ) /∂γ equals

−
µ0

∑T
t=1 c

(1)
t (γ, δ,ϕ)

∑T
j=1 cj (γ0, δ,ϕ) cj (γ, δ,ϕ)∑T

j=1 c
2
j (γ, δ,ϕ)

−
µ0

∑T
t=1 ct (γ, δ,ϕ)

∑T
j=1 cj (γ0, δ,ϕ) c

(1)
j (γ, δ,ϕ)∑T

j=1 c
2
j (γ, δ,ϕ)

+
2µ0

∑T
t=1 ct (γ, δ,ϕ)

∑T
j=1 cj (γ0, δ,ϕ) cj (γ, δ,ϕ)

∑T
k=1 ck (γ, δ,ϕ) c

(1)
k (γ, δ,ϕ)

(
∑T

j=1 c
2
j(γ, δ,ϕ))

2
.

Noting that in ∪4
i=1Hi, γ0−δ ≥ η and γ−δ ≥ η−%, proceeding as in the proof of Lemma S.15,

1

T γ0−δ+1

∂dT (γ, τ )

∂γ
=− µ0φ (1;ϕ)

T γ0−δ+1

(∑T
t=1 b

(1)
t (γ, δ)

∑T
j=1 bj (γ0, δ) bj (γ, δ)∑T

j=1 b
2
j (γ, δ)

+

∑T
t=1 bt (γ, δ)

∑T
j=1 bj (γ0, δ) b

(1)
j (γ, δ)∑T

j=1 b
2
j (γ, δ)

−
2
∑T

t=1 bt (γ, δ)
∑T

j=1 bj (γ0, δ) bj (γ, δ)
∑T

k=1 bk (γ, δ) b
(1)
k (γ, δ)

(
∑T

j=1 b
2
j(γ, δ))

2

)
+ g1T (ϑ) , (S.109)

where supHi |g1T (ϑ)| = o (1). Now, substituting (S.184) into (S.109),

1

T γ0−δ+1

∂dT (γ, τ )

∂γ
=− µ0φ (1;ϕ)

T γ0−δ+1

(∑T
t=1 log (t/T ) bt (γ, δ)

∑T
j=1 bj (γ0, δ) bj (γ, δ)∑T

j=1 b
2
j (γ, δ)

+

∑T
t=1 bt (γ, δ)

∑T
j=1 log (j/T ) bj (γ0, δ) bj (γ, δ)∑T

j=1 b
2
j (γ, δ)

−
2
∑T

t=1 bt (γ, δ)
∑T

j=1 bj (γ0, δ) bj (γ, δ)
∑T

k=1 log (k/T ) b2
k (γ, δ)

(
∑T

j=1 b
2
j (γ, δ))2

)
+ g2T (ϑ) ,

(S.110)

where supHi |g2T (ϑ)| = o (1), noting that the contribution of the second term on the right
hand side of (S.184) and the log T terms cancel. Hence, using (S.183), it can be easily shown
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that

1

T γ0−δ+1

∂dT (γ, τ )

∂γ
=− µ0φ (1;ϕ) Γ (γ0 + 1)

T γ0−δ+1Γ (γ0 + 1− δ)

(∑T
t=1 log (t/T ) tγ−δ

∑T
j=1 j

γ0+γ−2δ∑T
j=1 j

2γ−2δ

+

∑T
t=1 t

γ−δ∑T
j=1 log (j/T ) jγ0+γ−2δ∑T
j=1 j

2γ−2δ

−
2
∑T

t=1 t
γ−δ∑T

j=1 j
γ0+γ−2δ

∑T
k=1 log (k/T ) k2γ−2δ

(
∑T

j=1 j
2γ−2δ)2

)
+ g3T (ϑ) ,

where supHi |g3T (ϑ)| = o (1). Finally, (S.107) then follows by approximating sums by inte-
grals, see Lemma S.10.

Next, because dT (γ0, τ ) = 0, the mean value theorem yields dT (γ, τ ) = (γ − γ0) ∂dT (γ, τ ) /∂γ,
where |γ − γ0| ≤ |γ − γ0|, so the left-hand side of (S.108) can be bounded from below by

lim
T→∞

inf
Hi
T 2κi (γ − γ0)2

(
1

T γ0−δ+1

∂dT (γ, τ )

∂γ

)2

≥ lim
T→∞

inf
Hi
T 2κi (γ − γ0)2 inf

Hi

(
1

T γ0−δ+1

∂dT (γ, τ )

∂γ

)2

= ξ2 lim
T→∞

inf
Hi

(
1

T γ0−δ+1

∂dT (γ, τ )

∂γ

)2

.

Thus, setting ξ large enough, (S.108) follows if

lim
T→∞

inf
Hi

(
1

T γ0−δ+1

∂dT (τ , γ)

∂γ

)2

> ε, (S.111)

which, noting that γ0 − δ ≥ η, is a consequence of (7) and (S.107) because

inf
Hi

(
2 (γ − δ)2 + 2 (γ − δ)− (γ0 − δ)

)
= inf
Hi

(
2 (γ − δ)2 + (γ − δ)− (γ0 − γ)

)
≥ 2 (η − %)2 + η − 2% > 0.

Lemma S.4 Under the conditions of Theorem 1(ii) it holds that

Pr

(
inf
ϑ∈Mε

RT (ϑ) ≤ σ2
0 + ε

)
→ 0 as T →∞.

Proof. Recall the intervals Ii and define Wi = {ϑ ∈ M ε : δ ∈ Ii} for i = 1, 2, 3, and
W4 = {ϑ ∈M ε : δ ∈ I4 ∪ I5}. Then the result follows on showing

Pr

(
inf
Wi

RT (ϑ) ≤ σ2
0 + ε

)
→ 0 as T →∞ (S.112)
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for i = 1, . . . , 4, noting that

RT (ϑ) =
1

T

 T∑
t=1

(
φ (L;ϕ) ∆δ

+xt
)2 −

(
T∑
t=1

φ (L;ϕ) ∆δ
+xtht,T (γ, δ,ϕ)

)2
 . (S.113)

Proof of (S.112) for i = 4. Given (S.82), we first apply the bound

1

T

T∑
t=1

(
φ (L;ϕ) ∆δ

+xt
)2 ≥ 1

T

T∑
t=1

ε2
t (τ )− 2 |µ0|

T

∣∣∣∣∣
T∑
t=1

εt (τ ) ct (γ0, δ,ϕ)

∣∣∣∣∣ (S.114)

and note that δ0 − δ ≤ 1/2 − η when δ ∈ I4 ∪ I5, so ∆δ−δ0
+ ut is asymptotically stationary.

In view of (S.113) and (S.114), the proof of (S.112) for i = 4 then follows by Hualde and
Robinson (2011) (see the proof of their (2.7) for i = 4) by showing

sup
W4

1

T

∣∣∣∣∣
T∑
t=1

εt (τ ) ct (γ0, δ,ϕ)

∣∣∣∣∣ = op (1) , (S.115)

sup
W4

1

T

(
T∑
t=1

φ (L;ϕ) ∆δ
+xtht,T (γ, δ,ϕ)

)2

= op (1) . (S.116)

First, noting that δ ∈ I4 ∪ I5 implies δ0 − δ ≤ 1/2 − η and γ0 − δ ≤ 1/2 + γ0 − δ0 − η,
(S.234) of Lemma S.21 implies that the left-hand side of (S.115) is Op(T

γ0−δ0+1/2−2η+T−ς−η+
T−1 log T ) = op (1).

Next, using (S.82), (S.116) follows by showing

sup
W4

T−1/2

T∑
t=1

εt (τ )ht,T (γ, δ,ϕ) = op (1) , (S.117)

sup
W4

T−1/2

T∑
t=1

ct (γ0, δ,ϕ)ht,T (γ, δ,ϕ) = o (1) . (S.118)

Here, (S.221) of Lemma S.18 shows that the left-hand side of (S.117) is Op(T
θ−1/2 + T−η) =

op (1) by choosing θ < 1/2, while (S.231) of Lemma S.20 shows that the left-hand side of
(S.118) O(

(
T θ−1/2 + T γ0+1/2−δ0−η

)
log T ) = o (1), to conclude the proof of (S.112) for i = 4.

Proof of (S.112) for i = 3. Noting (S.35), (S.113), and (S.114), the proof follows on
showing

sup
W3

1

T

∣∣∣∣∣
T∑
t=1

εt (τ ) ct (γ0, δ,ϕ)

∣∣∣∣∣ = Op (1) , (S.119)

sup
W3

1

T

(
T∑
t=1

φ (L;ϕ) ∆δ
+xtht,T (γ, δ,ϕ)

)2

= Op (1) . (S.120)

Both (S.119) and (S.120) follow straightforwardly by identical steps as those given in the
proofs of (S.115) and (S.116) just replacing η by 0.
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Proof of (S.112) for i = 2. Clearly,

Pr

(
inf
W2

RT (ϑ) ≤ σ2
0 + ε

)
≤ Pr

(
inf
W2

T 2(δ0−δ)

T
inf
W2

T

T 2(δ0−δ)
RT (ϑ) ≤ σ2

0 + ε

)
= Pr

(
inf
W2

T

T 2(δ0−δ)
RT (ϑ) ≤ σ2

0 + ε

)
. (S.121)

Thus, in view of (S.43), (S.113), and (S.114), (S.112) for i = 2 follows on showing

sup
W2

1

T 2(δ0−δ)

∣∣∣∣∣
T∑
t=1

εt (τ ) ct (γ0, δ,ϕ)

∣∣∣∣∣ = Op (1) , (S.122)

sup
W2

1

T 2(δ0−δ)

(
T∑
t=1

φ (L;ϕ) ∆δ
+xtht,T (γ, δ,ϕ)

)2

= Op (1) . (S.123)

The proofs of (S.122) and (S.123) are almost identical to those of (S.115) and (S.116), taking
into account the different normalization, which implies using (S.232) instead of (S.231) in
Lemma S.20, (S.235) instead of (S.234) in Lemma S.21, and (S.222) instead of (S.221) in
Lemma S.18.
Proof of (S.112) for i = 1. Following identical steps to those given in (S.121),

Pr

(
inf
W1

RT (ϑ) ≤ σ2
0 + ε

)
≤ Pr

(
inf
W1

T

T 2(δ0−δ)
RT (ϑ) ≤ σ2

0 + ε

T 2η

)
.

Letting α > 0 be arbitrarily small (in particular α < (ς − 1/2) /3) and defining the sets

Φ1 = {ϑ ∈ Ξ : γ − δ ≤ −1/2− α} , Φ2 = {ϑ ∈ Ξ : −1/2− α ≤ γ − δ ≤ −1/2 + α} ,
Φ3 = {ϑ ∈ Ξ : γ − δ ≥ −1/2 + α} ,

the required result follows on showing

Pr

(
inf
W1∩Φj

T

T 2(δ0−δ)
RT (ϑ) > ε

)
→ 1 as T →∞ (S.124)

for j = 1, 2, 3 and ε > 0 arbitrarily small. In the proof of their (2.7) for i = 1, Hualde and
Robinson (2011) showed that

Pr

(
inf

‖τ−τ0‖≥ε,τ∈T1

1

T 2(δ0−δ)

T∑
t=1

ε2
t (τ ) > ε

)
→ 1 as T →∞, (S.125)

although their proof based on the Cauchy-Schwarz inequality does not appear sufficient; see
the discussion just below (S.52). We shortly prove (S.125), so in view of (S.82), (S.113), and
(S.114), (S.124) for j = 1, 2 holds if we also show that

sup
W1

1

T 2(δ0−δ)

T∑
t=1

εt (τ ) ct (γ0, δ,ϕ) = op (1) , (S.126)

sup
W1

1

T δ0−δ

T∑
t=1

ct (γ0, δ,ϕ)ht,T (γ, δ,ϕ) = o (1) , (S.127)

sup
W1∩Φj

1

T 2(δ0−δ)

(
T∑
t=1

εt (τ )ht,T (γ, δ,ϕ)

)2

= op (1) . (S.128)
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First, noting that δ0− δ ≥ 1/2 + η and γ0− δ ≥ 1/2 + η+ γ0− δ0, by (S.235) of Lemma S.21
and (S.232) of Lemma S.20 with θ < 1/2 + η, the left-hand sides of (S.126) and (S.127) are
Op(T

max{γ0−δ0+1/2,−ς−η}+T−1−2η log T ) = op (1) and O(T γ0−δ0+1/2 +T−1/2−η+θ log T ) = o (1),
respectively. Next, for j = 1, by (S.196) of Lemma S.15, the left-hand side of (S.128) is

sup
W1∩Φ1

T 2(δ−δ0)

(
T∑
t=1

εt (τ ) ct (γ, δ,ϕ)

)2

,

which is easily shown to be Op(T
−2α) = op(1) by (S.191) of Lemma S.14 and (S.218) of

Lemma S.17. For j = 2, we use (S.3) to bound the left-hand side of (S.128) by

supW1∩Φ2
T−1

(∑T
t=1 T

−(δ0−δ)εt (τ )T−(γ−δ)ct (γ, δ,ϕ)
)2

infW1∩Φ2 T
−2(γ−δ)−1

∑T
j=1 c

2
j (γ, δ,ϕ)

,

where the denominator can be made arbitrarily large by (S.197) of Lemma S.15 and the
numerator is easily seen to be Op(1) by direct application of (S.192) of Lemma S.14 and
(S.218) of Lemma S.17.

Thus, to prove (S.124) for j = 1, 2 it only remains to prove (S.125). By application of
the bound (S.180) in Lemma S.12,

1

T 2(δ0−δ)

T∑
t=1

ε2
t (τ ) ≥

(
1 +O(T−1)

) π2/4

T 2(δ0−δ)+2

T∑
t=1

ε2
t (δ0 − δ + 1,ϕ) ,

where εt(δ0−δ+1,ϕ) =
∑t

j=1 εt(τ ) is defined in (S.27) and the O(T−1) term does not depend
on the parameters. Proceding as in the proof of (S.52), we obtain the weak convergence

T δ−δ0−1/2ε[Tr] (δ − 1,ϕ)⇒ φ (1;ϕ)ω (1;ϕ0)W (r; 1 + δ0 − δ) , (S.129)

so by the continuous mapping theorem,

π2/4

T 2(δ0−δ)+2

T∑
t=1

ε2
t (δ − 1,ϕ)⇒ π2

4
φ2 (1;ϕ)ω2 (1;ϕ0)

∫ 1

0

W (r; 1 + δ0 − δ)2 dr.

It follows that the probability in (S.125) is bounded from below by

Pr

((
1 +O(T−1)

)
inf

‖τ−τ0‖≥ε,τ∈T1

π2/4

T 2(δ0−δ)+2

T∑
t=1

ε2
t (δ − 1,ϕ) > ε

)

→ Pr

(
inf

‖τ−τ0‖≥ε,τ∈T1

π2

4
φ2 (1;ϕ)ω2 (1;ϕ0)

∫ 1

0

W (r; 1 + δ0 − δ)2 dr > ε

)
,

and (S.125) follows because ε > 0 is arbitrarily small. For additional details, see Lemma 3
of Johansen and Nielsen (2018) for the same argument.

We finally show (S.124) for j = 3. Using (S.15), applying (S.126) and (S.127) together
with Lemmas S.16, S.17, we have

T 1−2(δ0−δ)RT (ϑ) ≥ T−2(δ0−δ)
T∑
t=1

s2
t (ϑ) + q1T (ϑ),
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where supW1∩Φ3
|q1T (ϑ)| = op(1). Thus, (S.124) for j = 3 holds on showing

Pr

(
inf
W1∩Φ3

1

T 2(δ0−δ)

T∑
t=1

s2
t (ϑ) > ε

)
→ 1 as T →∞. (S.130)

The proof of (S.130) is essentially identical to the main steps of the proof of (S.51). The
only relevant difference is that we now need to establish a convergence result on a larger set
where γ − δ ≥ −1/2 +α (instead of γ − δ ≥ α). However, this does not lead to any relevant
changes in the proof because for fixed ϑ such that γ− δ ≥ −1/2 +α and 1 + δ0− δ ≥ 3/2 +η

with α > 0, η > 0, the integral
∫ 1

0
uγ−δ−1W (u; 1 + δ0 − δ)du is well defined. This completes

the proof of (S.124) for j = 3 and therefore that of (S.112) for i = 1.

Lemma S.5 Under the conditions of Theorem 2(i) it holds that:
(a) The first-order derivatives satisfy

1

T 1/2

T∑
t=1

(st (ϑ0)− εt)
∂s1t (τ 0)

∂τ
= op (1) ,

1

T γ0−δ0+1/2

T∑
t=1

(st (ϑ0)− εt)
∂dt (ϑ0)

∂γ
= op (1) ,

(S.131)

1

T 1/2

T∑
t=1

st (ϑ0)
∂s2t (ϑ0)

∂τ
= op (1) ,

1

T γ0−δ0+1/2

T∑
t=1

st (ϑ0)
∂s2t (ϑ0)

∂γ
= op (1) . (S.132)

(b) The second-order derivatives satisfy

1

T

T∑
t=1

∂s1t (τ 0)

∂τ

∂s2t (ϑ0)

∂τ ′
= op (1) ,

1

T γ0−δ0+1

T∑
t=1

∂s1t (τ 0)

∂τ

∂s2t (ϑ0)

∂γ
= op (1) ,

1

T γ0−δ0+1

T∑
t=1

∂s1t (τ 0)

∂τ

∂dt (ϑ0)

∂γ
= op (1) ,

1

T

T∑
t=1

∂s2t (ϑ0)

∂τ

∂s2t (ϑ0)

∂τ ′
= op (1) ,

1

T γ0−δ0+1

T∑
t=1

∂s2t (ϑ0)

∂τ

∂s2t (ϑ0)

∂γ
= op (1) ,

1

T γ0−δ0+1

T∑
t=1

∂s2t (ϑ0)

∂τ

∂dt (ϑ0)

∂γ
= op (1) ,

1

T 2(γ0−δ0)+1

T∑
t=1

(
∂s2t (ϑ0)

∂γ

)2

= op (1) ,
1

T 2(γ0−δ0)+1

T∑
t=1

∂s2t (ϑ0)

∂γ

∂dt (ϑ0)

∂γ
= op (1) ,

1

T

T∑
t=1

st(ϑ0)
∂2st(ϑ0)

∂τ∂τ ′
= op (1) ,

1

T γ0−δ0+1

T∑
t=1

st(ϑ0)
∂2s2t(ϑ0)

∂τ∂γ
= op (1) ,

1

T 2(γ0−δ0)+1

T∑
t=1

st(ϑ0)
∂2s2t(ϑ0)

∂γ2
= op (1) ,

1

T γ0−δ0+1

T∑
t=1

st(ϑ0)
∂2dt(ϑ0)

∂τ∂γ
= op (1) ,

1

T 2(γ0−δ0)+1

T∑
t=1

st(ϑ0)
∂2dt(ϑ0)

∂γ2
= op (1) .

Proof. First we show the first equality in (S.131). By definition of st (ϑ),

st (ϑ0)− εt = −
∞∑
j=t

φj(ϕ0)ut−j − ht,T (γ0, δ0,ϕ0)
T∑
j=1

s1j (τ 0)hj,T (γ0, δ0,ϕ0) , (S.133)
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where s1j (τ 0) = εj −
∑∞

k=j φk(ϕ0)uj−k, so the result holds if

1

T 1/2

T∑
t=1

∞∑
j=t

φj(ϕ0)ut−j
∂s1t (τ 0)

∂τ
= op (1) , (S.134)

1

T 1/2

T∑
t=1

ht,T (γ0, δ0,ϕ0)
∂s1t (τ 0)

∂τ

T∑
j=1

s1j (τ 0)hj,T (γ0, δ0,ϕ0) = op (1) . (S.135)

First, for t ≥ 2,

∂s1t (τ 0)

∂δ
= −

t−1∑
j=1

j−1∑
k=0

φk(ϕ0)(j − k)−1ut−j, (S.136)

so, noting (6) and applying Lemma S.9,

E

∣∣∣∣∂s1t (τ 0)

∂δ

∣∣∣∣ ≤ K
t−1∑
j=1

j−1∑
k=1

k−1−ς(j − k)−1 ≤ K
t−1∑
j=1

j−1 log j ≤ K log2 t.

Similarly, by (14),

E

∥∥∥∥∂s1t (τ 0)

∂ϕ

∥∥∥∥ = E

∥∥∥∥∥
t−1∑
j=1

∂φj(ϕ0)

∂ϕ
ut−j

∥∥∥∥∥ = O (1) , (S.137)

so that

E

∥∥∥∥∂s1t (τ 0)

∂τ

∥∥∥∥ = O
(
log2 t

)
.

Thus, noting (S.93),

E

∥∥∥∥∥ 1

T 1/2

T∑
t=1

∞∑
j=t

φj(ϕ0)ut−j
∂s1t (τ 0)

∂τ

∥∥∥∥∥ ≤ K

T 1/2

T∑
t=1

t−1/2−ς log2 t ≤ KT−1/2 = o (1)

because ς > 1/2, which proves (S.134). Next, by (S.93) and (S.208) of Lemma S.16, it is
straightforward to show that

T∑
j=1

s1j (τ 0)hj,T (γ0, δ0,ϕ0)

=
T∑
j=1

(εj −
∞∑
k=j

φk(ϕ0)uj−k)hj,T (γ0, δ0,ϕ0) = Op(T
θ), (S.138)

so (S.135) holds on showing that

1

T 1/2

T∑
t=1

ht,T (γ0, δ0,ϕ0)
∂s1t (τ 0)

∂τ
= Op

(
T θ−1/2 log T

)
(S.139)

and setting θ < 1/4. Noting (S.136), by simple calculations,

∂s1t (τ 0)

∂δ
= −

t−1∑
j=1

1

j
εt−j +

t−1∑
j=1

1

j

∞∑
k=t−j

φk(ϕ0)ut−j−k. (S.140)
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The contribution of the first term on the right-hand side of (S.140) to the left-hand side of
(S.139) is, by (S.208) of Lemma S.16,

− 1

T 1/2

T∑
t=2

t−1∑
j=1

j−1εt−jht,T (γ0, δ0,ϕ0) = − 1

T 1/2

T∑
t=1

εt

T−t∑
j=1

j−1ht+j,T (γ0, δ0,ϕ0)

= Op

 T θ

T 1/2

 T∑
t=1

(
T−t∑
j=1

1

j
(t+ j)−1/2−θ

)2
1/2


= Op(T

θ−1/2 log T ) (S.141)

because
T−t∑
j=1

j−1 (t+ j)−1/2−θ ≤ t−1/2−θ
T∑
j=1

j−1 ≤ Kt−1/2−θ log T.

Similarly, the contribution of the second term on the right-hand side of (S.140) to the left-
hand side of (S.139) is

1

T 1/2

T∑
t=1

ht,T (γ0, δ0,ϕ0)
t−1∑
j=1

j−1

∞∑
k=t−j

φk(ϕ0)ut−j−k,

which can be easily shown to be Op

(
T θ−1/2 log T

)
by (S.93), Lemma S.9 and (S.208) of

Lemma S.16. Next, the contribution of ∂s1t (τ 0) /∂ϕ to the left-hand side of (S.139) is

1

T 1/2

T∑
t=1

ut

T−t∑
j=1

∂φj(ϕ0)

∂ϕ
ht+j,T (γ0, δ0,ϕ0) ,

which, by very similar arguments to (S.141), can easily be shown to be Op

(
T θ−1/2

)
by (14)

and (S.208) of Lemma S.16, to conclude the proof of (S.139) and hence of the first equality
in (S.131).

Next, because
∑T

t=1 ct (γ0, δ0,ϕ0) ∂dt (ϑ0) /∂γ = 0, the proof of the second equality in
(S.131) follows by showing that

1

T γ0−δ0+1/2

T∑
t=1

∞∑
j=t

φj(ϕ0)ut−j
∂dt (ϑ0)

∂γ
= op (1) ,

which, noting the proof of (S.69) and (S.93), follows easily by previous arguments.
The proofs of the two equalities in (S.132) are almost identical, but the second is simpler,

so we show only the first. By (S.133), the first equality in (S.132) holds if

1

T 1/2

T∑
t=1

s1t (τ 0)
∂s2t (ϑ0)

∂τ
= op (1) , (S.142)

1

T 1/2

T∑
t=1

ht,T (γ0, δ0,ϕ0)
∂s2t (ϑ0)

∂τ

T∑
j=1

s1j (τ 0)hj,T (γ0, δ0,ϕ0) = op (1) . (S.143)
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As defined before, s2t(ϑ) = ht,T (γ, δ,ϕ)
∑T

j=1 s1j(τ )hj,T (γ, δ,ϕ) so that

∂s2t (ϑ)

∂τ
=
∂ht,T (γ, δ,ϕ)

∂τ

T∑
j=1

s1j (τ )hj,T (γ, δ,ϕ)

+ ht,T (γ, δ,ϕ)
T∑
j=1

∂s1j (τ )

∂τ
hj,T (γ, δ,ϕ)

+ ht,T (γ, δ,ϕ)
T∑
j=1

s1j (τ )
∂hj,T (γ, δ,ϕ)

∂τ
. (S.144)

First, given that γ0 + 1/2 > δ0, setting θ < γ0 − δ0 + 1/2, by a simple modification of the
proof of (S.209) of Lemma S.16,∥∥∥∥∂ht,T (γ0, δ0,ϕ0)

∂τ

∥∥∥∥ = O

(
t−1/2

(
T

t

)θ
log T

)
. (S.145)

Then noting (S.138), (S.139), and by application of Lemma S.16, it follows that

∂s2t (ϑ0)

∂τ
= Op(t

−1/2−θT 2θ log T ). (S.146)

By (S.93) and (S.146), it follows that the left-hand side of (S.142) is Op(T
2θ−1/2 log T ) = op(1)

by setting θ < 1/4. Similarly, by (S.138), (S.146) and (S.208) of Lemma S.16, the left-hand
side of (S.143) is Op(T

4θ−1/2 log T ) = op(1) by setting θ < 1/8. This concludes the proof of
the first equality in (S.132).

Finally, the proofs for the results in part (b) are heavily based on the arguments employed
in the proofs of (S.131) and (S.132), and are therefore omitted.

Lemma S.6 Under the conditions of Theorem 2(i), for some fixed κ > 0, T κ(ϑ̂−ϑ0)→p 0.

Proof. As in the proof of Theorem 1(i), noting (S.1), (S.2), (S.4), (S.62), the result holds
on establishing that

Pr

(
inf
ϑ∈M∗ε

ST (ϑ) ≤ 0

)
→ 0 as T →∞, (S.147)

Pr

(
ϑ̂ ∈ N∗ε ∩M∗

ε , inf
N
∗
ε∩M∗ε

RT (τ̂ , γ)−RT (τ̂ , γ0) ≤ 0

)
→ 0 as T →∞, (S.148)

where

M∗
ε =

{
ϑ ∈ Ξ : ‖τ − τ 0‖ < εT−κ

}
, M

∗
ε = {ϑ ∈ Ξ : εT−κ ≤ ‖τ − τ 0‖ < ε},

N∗ε =
{
ϑ ∈ Ξ : |γ − γ0| < εT−κ

}
, N

∗
ε = {ϑ ∈ Ξ : εT−κ ≤ |γ − γ0| < ε}.

We first prove (S.147), which, defining Ji = {ϑ ∈M∗
ε : δ ∈ Ii}, i = 4, 5, holds if

Pr

(
inf
Ji
ST (ϑ) ≤ 0

)
→ 0 as T →∞ (S.149)
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for i = 4, 5. Note here that ϑ ∈ M∗
ε implies ‖τ − τ 0‖ < ε, so necessarily δ ∈ I4 ∪ I5 and

there is no need to consider the intervals I1, I2, I3. Clearly, (S.149) for i = 5 would hold if

Pr

(
inf
J5
T 2κST (ϑ) ≤ 0

)
→ 0 as T →∞. (S.150)

Proceeding as in the proof of (S.5)–(S.7) for i = 5, (S.150) holds if

inf
J5
T 2κU (τ ) > ε, (S.151)

1

T 1−2κ

T∑
t=1

(
(φ(L;ϕ0) {utI(t ≥ 1)})2 − σ2

0

)
= op (1) , (S.152)

sup
J5

1

T 1−2κ

T∑
t=1

(
ε2
t (τ )− E

((
φ(L;ϕ)∆δ−δ0ut

)2
))

= op (1) , (S.153)

sup
J5

1

T 1−2κ

∣∣∣∣∣
T∑
t=1

dt (ϑ) st (ϑ)

∣∣∣∣∣ = op (1) , (S.154)

sup
J5

1

T 1−2κ

(
T∑
t=1

εt (τ )ht,T (γ, δ,ϕ)

)2

= op (1) . (S.155)

First, we justify (S.151). Clearly

U (τ ) = σ2
0

(
1

2π

∫ π

−π

∣∣φ (eiλ;ϕ)∣∣2
|φ (eiλ;ϕ0)|2

∣∣1− eiλ∣∣2(δ−δ0)
dλ− 1

)
,

and we show that U (τ ) is a strictly convex function at τ 0 with a strict local minimum at
τ = τ 0. Noting that ∫ π

−π

eiqλ

φ (eiλ;ϕ0)
dλ = 0 for any q = ±1,±2, . . . , (S.156)

and
∫ π
−π log (2− 2 cosλ) dλ = 0, it is straightforward to show that ∂U (τ 0) /∂τ = 0. Simi-

larly, using again (S.156),

∂2U (τ 0)

∂τ∂τ ′
=

 ∫ π
−π log2 (2− 2 cosλ) dλ 2

∫ π
−π

∂φ(eiλ;ϕ0)/∂ϕ′

φ(eiλ;ϕ0)
log (2− 2 cosλ) dλ

2
∫ π
−π

∂φ(eiλ;ϕ0)/∂ϕ
φ(eiλ;ϕ0)

log (2− 2 cosλ) dλ 2
∫ π
−π

∂φ(eiλ;ϕ0)/∂ϕ∂φ(eiλ;ϕ0)/∂ϕ′

|φ(eiλ;ϕ0)|2 dλ


=

(
2π3/3 −4π

∑∞
j=1 b

′
j (ϕ0) /j

−4π
∑∞

j=1 bj (ϕ0) /j 4π
∑∞

j=1 bj (ϕ0) b′j (ϕ0)

)
,

which by A4(iii) is positive definite, to complete the proof of strict convexity of U (τ ) at τ 0.
Thus, by continuity there exists a point τ ∗ such that ‖τ 0−τ ∗‖ = εT−κ and infJ5 U (τ ) =
U (τ ∗). Then, noting that U (τ 0) = 0 and ∂U (τ 0) /∂τ = 0, by Taylor’s expansion,

U (τ ∗) ≥ 1

2
(τ ∗ − τ 0)′

∂2U (τ 0)

∂τ∂τ ′
(τ ∗ − τ 0)− |wT | , (S.157)
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where it can be shown that wT = O (T−3κ). Here, the main issue is to justify that the third
derivative of U (τ ) evaluated at an arbitrarily small neighborhood of τ 0 is bounded, but this
follows straightforwardly from A4(ii). Additionally,

(τ ∗ − τ 0)′
∂2U (τ 0)

∂τ∂τ ′
(τ ∗ − τ 0) ≥ λ ‖τ ∗ − τ 0‖2 ,

where λ denotes the minimum eigenvalue of the matrix ∂2U (τ 0) /∂τ∂τ ′, so by (S.157) and
noting that λ is strictly positive, for a sufficiently small ε > 0,

U (τ ∗) >
ε

ε2
‖τ ∗ − τ 0‖2 ,

which justifies (S.151). The proofs of (S.152)–(S.155) are omitted as, for small enough κ,
they follow by almost identical arguments to those of (S.10)–(S.13).

Next, the proof of (S.149) for i = 4 is omitted because it is basically identical to those
of (S.5)–(S.7) for i = 4. The only difference is that now εT−κ ≤ ‖τ − τ 0‖ ≤ ε instead of
‖τ − τ 0‖ ≥ ε, but this does not make any difference. This completes the justification of
(S.147).

Finally, we prove (S.148). For the same reason as in the proof of (S.62), we need to prove
that

lim
T→∞

inf
ϑ∈N∗ε∩M∗ε

T 2κ

T 2(γ0−δ)+1

T∑
t=1

d2
t (ϑ) > ε, (S.158)

sup
ϑ∈N∗ε∩M∗ε

T 2κ

T 2(γ0−δ)+1

∣∣∣∣∣
T∑
t=1

dt (ϑ) s1t (τ )

∣∣∣∣∣ = op(1), (S.159)

sup
ϑ∈N∗ε∩M∗ε

T 2κ

T 2(γ0−δ)+1

(
T∑
j=1

s1j (τ )hj,T (γ, δ,ϕ)

)2

= op(1). (S.160)

As in (S.20), the proof of (S.158) follows by Lemma S.3, whereas the proofs of (S.159) and
(S.160) hold as in (S.64) and (S.65) for κ > 0 sufficiently small.

Lemma S.7 Let τ̂−τ 0 = Op (T−κ), γ̂−γ0 = Op (T−κ) for κ > 0. Then, under Assumptions
A1–A4,

ct(γ̂, δ̂, ϕ̂) = ct(γ0, δ0,ϕ0) +Op

(
T−κtmax{γ0−δ0,−1−ς} log2 t

)
, (S.161)

c
(1)
t (γ̂, δ̂, ϕ̂) = c

(1)
t (γ0, δ0,ϕ0) +Op

(
T−κtmax{γ0−δ0,−1−ς} log3 t

)
, (S.162)

and, uniformly in t = 1, . . . , T ,

εt (τ̂ ) =
t−1∑
j=0

aj

(
δ0 − δ̂, ϕ̂

)
ut−j =

t−1∑
j=0

φj (ϕ0)ut−j +Op

(
T−κ

)
. (S.163)
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Proof. First we show (S.161). Clearly

ct(γ̂, δ̂, ϕ̂)− ct(γ0, δ0,ϕ0) =
t∑

j=1

bj (γ0, δ0) (φt−j (ϕ̂)− φt−j (ϕ0))

+
t∑

j=1

(bj

(
γ̂, δ̂
)
− bj (γ0, δ0))φt−j (ϕ0)

+
t∑

j=1

(bj

(
γ̂, δ̂
)
− bj (γ0, δ0)) (φt−j (ϕ̂)− φt−j (ϕ0)) . (S.164)

Fix ε < 1/2. Then

φj (ϕ̂)− φj (ϕ0) = (φj (ϕ̂)− φj (ϕ0)) (I (‖ϕ̂−ϕ0‖ < ε) + I (‖ϕ̂−ϕ0‖ ≥ ε)) , (S.165)

so by the mean value theorem the left-hand side of (S.165) is bounded by

sup
‖ϕ−ϕ0‖<ε

∥∥∥∥∂φj (ϕ)

∂ϕ

∥∥∥∥ ‖ϕ̂−ϕ0‖+K sup
ϕ∈Ψ
|φj (ϕ)| ‖ϕ̂−ϕ0‖

N

εN
, (S.166)

for any arbitrarily large fixed number N . Then by (6) and the T−κ-consistency of τ̂ , the sec-
ond term in (S.166) is of smaller order, whereas by (14), the first one is Op(T

−κj−1−ς). This
implies that the first term on the right-hand side of (S.164) is Op(T

−κtmax{γ0−δ0,−1−ς} log t)
by (S.183) of Lemma S.13, using also Lemmas S.9 and S.11.

Next, we show that

bj(γ̂, δ̂) = bj (γ0, δ0) +Op(T
−κjγ0−δ0 log j). (S.167)

Using a N ’th-order Taylor expansion,

bj(γ̂, δ̂) = bj (γ0, δ0) + (γ̂ − γ0, δ̂ − δ0)(b
(1)
j (γ0, δ0) , b

(2)
j (γ0, δ0))′ + pj,N(γ̂, δ̂, γ0, δ0),

where b
(i)
j (·, ·) denotes derivative of bj (·, ·) with respect to the i’th argument and pj,N(γ̂, δ̂, γ0, δ0)

collects derivatives of bj (·, ·) evaluated at (γ0, δ0) (whose order of magnitude is given by

(S.185)), powers of (γ̂ − γ0), (δ̂ − δ0), and a last term which involves, (γ̂ − γ0)N , (δ̂ − δ0)N

and N ’th derivatives of bj (·, ·) evaluated at intermediate points. This last term is bounded
by KT−Nκ logN T supγ∈[�1,�2],δ∈[∇1,∇2]

∑j−1
k=1 j

−δ−1 (j − k)γ, which can be easily shown to be

op(T
−κjγ0−δ0 log j) for N large enough. Then, (S.167) follows by (S.185), and using also (6),

Lemma S.9 and (S.183), the second term on the right-hand side of (S.164) is

Op(T
−κtmax{γ0−δ0,−1−ς} log2 t).

Finally, combining the arguments for the first two terms, the third term on the right-hand
side of (S.164) is of smaller order, to conclude the proof of (S.161).

The proof of (S.162) is omitted because it is almost identical to that of (S.161) with the

only difference that the coefficients b
(1)
j (·, ·) instead of bj(·, ·) lead to an extra log t factor, see

Lemma S.13.
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Finally, we show (S.163). Clearly

aj(δ0 − δ̂, ϕ̂) =φj (ϕ0) +

j∑
k=0

(φk(ϕ̂)− φk(ϕ0))πj−k(0) +

j∑
k=0

φk(ϕ0)(πj−k(δ0 − δ̂)− πj−k(0))

+

j∑
k=0

(φk(ϕ̂)− φk(ϕ0))(πj−k(δ0 − δ̂)− πj−k(0)),

so that

εt (τ̂ ) =
t−1∑
j=0

φj(ϕ0)ut−j +
t−1∑
j=0

(φj(ϕ̂)− φj(ϕ0))ut−j

+
t−1∑
j=0

j∑
k=0

φk(ϕ0)(πj−k(δ0 − δ̂)− πj−k(0))ut−j

+
t−1∑
j=0

j∑
k=0

(φk(ϕ̂)− φk(ϕ0))(πj−k(δ0 − δ̂)− πj−k(0))ut−j. (S.168)

Using the mean value theorem as in (S.165) and (S.166) and summation by parts, it can
be shown that the second term on the right-hand side of (S.168) is Op (T−κ). Similarly,
by Lemma C.5 of Robinson and Hualde (2003) and (6), the third and fourth terms on the
right-hand side of (S.168) are also Op (T−κ), to conclude the proof of (S.163).

Lemma S.8 Under the conditions of Theorem 2(ii), T 1/2∂ST (ϑ̂)/∂τ = op (1).

Proof. First, for any ε > 0, clearly

Pr
(∥∥∥T 1/2∂ST (ϑ̂)/∂τ

∥∥∥ ≥ ε
)

= Pr
(∥∥∥T 1/2∂ST (ϑ̂)/∂τ

∥∥∥ ≥ ε, ‖τ̂ − τ 0‖ < ε
)

+ Pr
(∥∥∥T 1/2∂ST (ϑ̂)/∂τ

∥∥∥ ≥ ε, ‖τ̂ − τ 0‖ ≥ ε
)

≤Pr
(∥∥∥T 1/2∂ST (ϑ̂)/∂τ

∥∥∥ ≥ ε, ‖τ̂ − τ 0‖ < ε
)

+ Pr (‖τ̂ − τ 0‖ ≥ ε) ,

so, in view of Theorem 1(ii) and (S.95), the result holds on showing

sup
ϑ∈Mε

1

T 1/2

T∑
t=1

(dt(ϑ)− s2t(ϑ))

(
∂dt(ϑ)

∂τ
− ∂s2t(ϑ)

∂τ

)
= op (1) , (S.169)

sup
ϑ∈Mε

1

T 1/2

T∑
t=1

s1t(τ )

(
∂dt(ϑ)

∂τ
− ∂s2t(ϑ)

∂τ

)
= op (1) , (S.170)

sup
ϑ∈Mε

1

T 1/2

T∑
t=1

∂s1t(τ )

∂τ
(dt(ϑ)− s2t(ϑ)) = op (1) . (S.171)
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The proof of (S.169) follows upon showing that, for any θ > 0 and ε such that 0 < ε < θ,

sup
ϑ∈Mε

|dt(ϑ)| = O(tmax{γ0−δ0+ε,−1−ς} + T 2θt−1/2−θ), (S.172)

sup
ϑ∈Mε

|s2t(ϑ)| = Op(T
2θt−1/2−θ), (S.173)

sup
ϑ∈Mε

∥∥∥∥∂dt(ϑ)

∂τ

∥∥∥∥ = O(tmax{γ0−δ0+ε,−1−ς} log t+ T 4θt−1/2−θ), (S.174)

sup
ϑ∈Mε

∥∥∥∥∂s2t(ϑ)

∂τ

∥∥∥∥ = Op(T
4θt−1/2−θ), (S.175)

and then letting θ be sufficiently small. We only show (S.174) and (S.175) because the proofs
for (S.172) and (S.173) are very similar but simpler. First, by (S.191) of Lemma S.14,

sup
ϑ∈Mε

|ct (γ0, δ,ϕ)| = O(tmax{γ0−δ0+ε,−1−ς}), (S.176)

and by a simple modification of that result,

sup
ϑ∈Mε

∥∥∥∥∂ct (γ0, δ,ϕ)

∂τ

∥∥∥∥ = O(tmax{γ0−δ0+ε,−1−ς} log t). (S.177)

Then (S.174) follows by direct application of (S.176) and (S.177) and (S.208) of Lemma S.16,
noting that the bound in (S.208) also applies if the derivative is taken with respect to τ .

To prove (S.175) we apply (S.144), where the supϑ∈Mε
of the absolute values of the first

and third terms on the right-hand side are Op(T
4θt−1/2−θ) by direct application of (S.208) of

Lemma S.16 and (S.221) of Lemma S.18, noting that δ0 − δ ≤ ε and that these bounds also
apply if the derivatives are taken with respect to τ . For the second term on the right-hand
side of (S.144), noting that

∑t
l=1 s1l(τ ) =

∑t−1
j=0 aj (δ0 − δ,ϕ)

∑t−j
l=1 ul, it is straightforward

to show that, by (S.191) of Lemma S.14,

sup
ϑ∈Mε

∥∥∥∥∥
t∑

j=1

∂s1j(τ )

∂τ

∥∥∥∥∥ = Op(t
1/2+ε log t). (S.178)

Therefore, by (S.208) of Lemma S.16 and using summation by parts as in the proof of
Lemma S.18, the supϑ∈Mε

of the absolute value of the second term on the right-hand side of
(S.144) is Op(T

2θt−1/2−θ), to justify (S.175) and hence (S.169).
Finally, (S.170) and (S.171) can be established by using summation by parts followed by

direct application of the results in (S.172), (S.174), (S.178), and Lemma S.17, noting also
that by previous arguments it can be easily shown that

sup
ϑ∈Mε

|dt+1(ϑ)− dt(ϑ)| = O(tmax{γ0−δ0+ε−1,−1−ς} + T 2θt−3/2−θ),

sup
ϑ∈Mε

∥∥∥∥∂dt+1(ϑ)

∂τ
− ∂dt(ϑ)

∂τ

∥∥∥∥ = O(tmax{γ0−δ0+ε−1,−1−ς} log t+ T 4θt−3/2−θ),

sup
ϑ∈Mε

|s2t+1(ϑ)− s2t(ϑ)| = Op(T
2θt−3/2−θ),

sup
ϑ∈Mε

∥∥∥∥∂s2t+1(ϑ)

∂τ
− ∂s2t(ϑ)

∂τ

∥∥∥∥ = Op(T
4θt−3/2−θ).
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S.4 Technical lemmas

Lemma S.9 Uniformly for max{|α|, |β|} ≤ a0,
∑t−1

j=1 j
α−1(t−j)β−1 ≤ K(log t)tmax{α+β−1,α−1,β−1}.

Proof. The proof of Lemma S.9 is given in Lemma B.4 of Johansen and Nielsen (2010).

Lemma S.10 For any d > −1 and any fixed a ≥ 0, as T →∞,

1

T d+1

T∑
t=1

td → 1

d+ 1
,

1

T d+1

T∑
t=1

log

(
t+ a

T

)
td → − 1

(d+ 1)2 ,

1

T d+1

T∑
t=1

log2

(
t+ a

T

)
td → 2

(d+ 1)3 .

Proof. The proof of the first result is straightforward by approximating the sum by an
integral. Next, by the mean value theorem, it is simple to show that

1

T d+1

T∑
t=1

log

(
t+ a

T

)
td =

1

T d+1

T∑
t=1

log

(
t

T

)
td + o (1) .

Approximating the sum by an integral we find

1

T

T∑
t=1

log

(
t

T

)(
t

T

)d
∼
∫ 1

0

log (x)xddx = B (d+ 1, 1) (ψ (d+ 1)− ψ (d+ 2)) ,

see p. 535 of Gradshteyn and Ryzhik (2000), where B (x, y) = Γ (x) Γ (y) /Γ (x+ y) is the
Beta function and ψ(·) is the digamma function. Thus, the second result follows by the re-
currence formulae for the gamma and digamma functions, see pp. 256 and 258 of Abramowitz
and Stegun (1970). Similarly, T−d−1

∑T
t=1 log2((t+ a) /T )td can be approximated by

1

T

T∑
t=1

log2

(
t

T

)(
t

T

)d
∼
∫ 1

0

log2 (x)xddx

= B (d+ 1, 1)
(
(ψ (d+ 1)− ψ (d+ 2))2 + ψ′ (d+ 1)− ψ′ (d+ 2)

)
,

see p. 538 of Gradshteyn and Ryzhik (2000), where ψ′ (·) is the trigamma function. Then
the third result follows by the recurrence formulae for the gamma, digamma, and trigamma
functions, see pp. 256, 258, and 260 of Abramowitz and Stegun (1970).

Lemma S.11 Let j ≥ 1 and K denote any compact subset of R\N0. Then

πj(−v) =
1

Γ(−v)
j−v−1(1 + εj(v)), (S.179)

where maxv∈K |εj(v)| → 0 as j →∞. Thus, uniformly in j ≥ 1,m ≥ 0,

(i) πj(−v) ≥ Kj−v−1 uniformly in v ∈ K,

(ii) | ∂m
∂um

πj(u)| ≤ K(1 + log j)mju−1 uniformly in |u| ≤ u0,
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(iii) | ∂m
∂um

T−uπj(u)| ≤ KT−u(1 + | log(j/T )|)mju−1 uniformly in |u| ≤ u0.

Proof. The proof of Lemma S.11 is given in Lemma B.3 of Johansen and Nielsen (2010)
and Lemma A.5 of Johansen and Nielsen (2012).

Lemma S.12 Let Zt, t = 1, . . . , T, be arbitrary. Then

T∑
t=1

Z2
t ≥

(
π2

4
T−2 +O(T−3)

) T∑
t=1

(
∆−1

+ Zt
)2
, (S.180)

where the O(T−3) term does not depend on any parameters.

Proof. Following the proof of Lemma 2 of Johansen and Nielsen (2018), we let Z =
(Z1, . . . , ZT )′ and define the cumulation matrix

C =


1 0 · · · 0

1 1
. . .

...
...

. . . . . . 0
1 · · · 1 1


such that (∆−1

+ Z1, . . . ,∆
−1
+ ZT )′ = CZ. Then, using X = CZ,∑T

t=1 Z
2
t∑T

t=1

(
∆−1

+ Zt
)2 =

Z ′Z

Z ′C ′CZ
=
X ′C ′−1C−1X

X ′X
≥ λmin

(
C ′−1C−1

)
, (S.181)

where the inequality follows from, e.g., Horn and Johnson (2013, p. 258). From Rutherford
(1948), see also Tanaka (1996, eqn. (1.4)), we find the eigenvalues

λt
(
C ′−1C−1

)
= 4 sin2

(
π

2

2t− 1

2T + 1

)
, t = 1, . . . , T,

such that, in particular,

λmin

(
C ′−1C−1

)
= 4 sin2

(
π

2

1

2T + 1

)
=
π2

4
T−2 +O(T−3). (S.182)

The bound (S.180) follows by combining (S.181) and (S.182).

Lemma S.13 For any real numbers ♦ > −1, d1, d2, d2, and ♦ ≤ d1 ≤ d1, d2 ≤ d2 ≤ d2,
m ≥ 1, 0 ≤ p ≤ m, denoting by ψ (·) the digamma function,

bt (d1, d2) =Γ (d1 + 1) πt (d1 + 1− d2) + s1t (d1, d2) , (S.183)

∂bt (d1, d2)

∂d1

= log (t) bt (d1, d2)

+ (ψ (d1 + 1)− ψ (d1 + 1− d2)) Γ (d1 + 1) πt (d1 + 1− d2) + s2t (d1, d2) ,
(S.184)

∂mbt (d1, d2)

∂dp1∂d
m−p
2

=O
(
td1−d2 (log t)m

)
, (S.185)

where |s1t(d1, d2)| ≤ K(td1−d2−1 + t−d2−1) and |s2t(d1, d2)| ≤ K((td1−d2−1 + t−d2−1) log t).
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Proof. First we show (S.183). For integer d2, it can be easily shown that (S.183) holds with
|r1t (d1, d2)| ≤ Ktd1−d2−1 using standard results for summations and the Taylor’s theorem.
Next, when d1 is integer and d2 is noninteger, by (3) and standard properties of the gamma
function, it is simple to show that for integer k ≥ 1,

jkπj (−d2) =
Γ (k − d2)

Γ (−d2)
πj−1 (k − d2) +

k−1∑
l=1

gl (d2) πj−1 (l − d2) , (S.186)

where gl (·) are polynomials and the second term on the right-hand side of (S.186) is 0 when
k = 1. Then

t−1∑
j=0

jkπj (−d2) =
Γ (k − d2)

Γ (−d2)
πt−2 (k + 1− d2) +O

(
tk−d2−1

)
using Lemma S.11. Then, by (11) it is simple, but tedious, to show that (S.183) holds with
|r1t (d1, d2)| ≤ Ktd1−d2−1.

Next, we deal with the case where neither d1 nor d2 are integers. From Abramowitz and
Stegun (1970, p. 257, eqn. 6.1.47), for a fixed integer p ≥ 1 and any k = −1, 0, 1, . . . , p− 1,

Γ (t+ d1 − k)

Γ (t+ 1)
= td1−k−1 +λ1 (d1 − k) td1−k−2 + · · ·+λp−k−1 (d1 − k) td1−p + rp−k−1,t (d1 − k) ,

for t 6= k − d1, k − d1 − 1, k − d1 − 2, . . . , (which does not hold because d1 is not integer),
where for any l, k, sup♦≤d1≤d1 |λl (d1 − k)| ≤ K and |rp−k−1,t (d1 − k)| ≤ Ktd1−p−1. Then by
recursive substitution it can be easily shown that

td1 =
Γ (t+ d1 + 1)

Γ (t+ 1)
+ ν1 (d1)

Γ (t+ d1)

Γ (t+ 1)
+ · · ·+ νp (d1)

Γ (t+ d1 − p+ 1)

Γ (t+ 1)
+ qp,t (d1) ,

where the νl (d1)’s are complicated combinations of the λl (·)’s, and qp,t (d1) is a weighted
sum of the rp−k−1,t (·)’s with coefficients which depend on a complicated manner on the
λl (·)’s. Given that p is fixed it can be shown that for any l, sup♦≤d1≤d1 |νl (d1)| ≤ K and
|qp,t (d1)| ≤ Ktd1−p−1. Therefore, noting (3), it is immediate to show that

td1 = Γ (d1 + 1) πt (d1 + 1) + ν1 (d1) πt (d1) + · · ·+ νp (d1)πt (d1 − p+ 1) + qp,t (d1) ,

where νk (d1) = Γ (d1 + 1) Γ (d1 − k + 1) νk (d1), qp,t (d1) = Γ (d1 + 1) qp,t (d1). Then, given
that ∆dπt(c) = πt(c− d),

bt (d1, d2) =Γ (d1 + 1) πt (d1 + 1− d2) + ν1 (d1) πt (d1 − d2) + · · ·+ νp (d1) πt (d1 − p+ 1− d2)

+
t−1∑
j=0

πj (−d2) qp,t−j (d1) . (S.187)

Clearly, by Lemma S.11,∣∣∣∣∣
t−1∑
j=0

πj (−d2) qp,t−j (d1)

∣∣∣∣∣ ≤ K

t−1∑
j=1

j−d2−1 (t− j)d1−p−1 ≤ Kt−d2−1,
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for p large enough, so (S.183) immediately follows by Lemma S.11.
Next we show (S.184). When d1 and/or d2 are integers the proof follows from relatively

simple (but cumbersome) arguments very similar to those employed in the proof of (S.183).
Thus we focus on the case where d1 and d2 are not integers. By (S.187),

∂bt (d1, d2)

∂d1

=Γ(1) (d1 + 1) πt (d1 + 1− d2) + Γ (d1 + 1) π
(1)
t (d1 + 1− d2)

+

p∑
k=1

(
ν

(1)
k (d1) πt (d1 − d2 − k + 1) + νk (d1) π

(1)
t (d1 − d2 − k + 1)

)
+

t−1∑
j=0

πj (−d2) q
(1)
p,t−j (d1) , (S.188)

where superscript (1) denotes first derivative. Noting that

π
(1)
j (d) = (ψ (d+ j)− ψ (d))πj (d) (S.189)

and that for a fixed a,
ψ (t+ a) = log t+O

(
t−1
)
, (S.190)

see Abramowitz and Stegun (1970, p. 259, eqn. 6.3.18), it can be easily shown that |q(1)
p,j (d1) | ≤

Kjd1−p−1 log j, so, for p large enough, the last term on the right-hand side of (S.188) is
O
(
t−d2−1

)
. Then by (S.183), (S.188), and noting that Γ(1) (d1 + 1) = Γ (d1 + 1)ψ (d1 + 1),

∂bt (d1, d2)

∂d1

= log (t) Γ (d1 + 1) πt (d1 + 1− d2)

+ Γ (d1 + 1) (ψ (t+ d1 + 1− d2)− ψ (d1 + 1− d2) + ψ (d1 + 1)− log t) πt (d1 + 1− d2)

+O
(
td1−d2−1 log t+ t−d2−1

)
,

so (S.184) is justified by (S.183) and (S.190).
Finally, the proof of (S.185) follows by taking appropriate derivatives on bt (d1, d2), as in

(S.188), and using standard bounds for the derivatives of the digamma function given by∣∣∣∣∂lψ (z)

∂zl

∣∣∣∣ ≤ Kz−l, l = 1, 2, 3, . . .

Lemma S.14 Under Assumptions A1, A3, uniformly in t = 1, . . . , T and T ≥ 1, for any
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real numbers ♦ > −1, d1, d2, d2, and ♦ ≤ d1 ≤ d1, d2 ≤ d2 ≤ d2, m ≥ 0, 0 ≤ p ≤ m,

sup
d1≥♦,d1−d2≤g,ϕ∈Ψ

∣∣∣∣∂mct (d1, d2,ϕ)

∂dp1∂d
m−p
2

∣∣∣∣ = O(tmax{g,−1−ς} (log t)m), (S.191)

sup
d1≥♦,d1−d2≥g,ϕ∈Ψ

∣∣∣∣ ∂m

∂dp1∂d
m−p
2

T−(d1−d2)ct (d1, d2,ϕ)

∣∣∣∣ = O(T−gtmax{g,−1−ς}(1 + |log (t/T )|)m).

(S.192)

sup
d≤g,ϕ∈Ψ

∣∣∣∣∂mat (d,ϕ)

∂dm

∣∣∣∣ = O(tmax{g−1,−1−ς} (log t)m), (S.193)

sup
d≥g,ϕ∈Ψ

∣∣∣∣ ∂m∂dmT−dat (d,ϕ)

∣∣∣∣ = O(T−gtmax{g−1,−1−ς}(1 + |log (t/T )|)m).

Proof. Using Lemma S.13, the proof of Lemma S.14 is almost identical to that of Lemma 1
of Hualde and Robinson (2011) and is therefore omitted.

Lemma S.15 Under Assumptions A1 and A3, for any real numbers ♦ > −1, d1, d2, d2,
and ♦ ≤ d1 ≤ d1, d2 ≤ d2 ≤ d2,

1

T 2(d1−d2)+1

T∑
t=1

c2
t (d1, d2,ϕ) ≥ φ2 (1;ϕ)

T 2(d1−d2)+1

T∑
t=1

b2
t (d1, d2)− |r1T (d1, d2,ϕ)| , (S.194)

1

T 2(d1−d2)+1

T∑
t=1

c2
t (d1, d2,ϕ) ≤ φ2 (1;ϕ)

T 2(d1−d2)+1

T∑
t=1

b2
t (d1, d2) + |r2T (d1, d2,ϕ)| , (S.195)

where, for any η > 0, supd1≥♦,d1−d2≥−1/2+η,ϕ∈Ψ |riT (d1, d2,ϕ)| = o (1) , i = 1, 2. Furthermore,
for any α such that 0 < α < min {(ς − 1/2) /3, (1 + ♦) /2},

inf
d1,d2,ϕ∈Ψ

T∑
t=1

c2
t (d1, d2,ϕ) ≥ 1, (S.196)

inf
d1≥♦,−1/2−α≤d1−d2≤−1/2+α,ϕ∈Ψ

1

T 2(d1−d2)+1

T∑
t=1

c2
t (d1, d2,ϕ) ≥ ε

α
+ o(1), (S.197)

inf
d1≥♦,d1−d2≥−1/2−α,ϕ∈Ψ

1

T 2(d1−d2)+1

T∑
t=1

c2
t (d1, d2,ϕ) ≥ ε, (S.198)

for some ε > 0, which does not depend on α or T .

Proof. First we show (S.194). By summation by parts

ct (d1, d2,ϕ) =
t∑

j=1

bj (d1, d2)φt−j (ϕ) = bt (d1, d2)
t−1∑
j=0

φj (ϕ)

−
t−1∑
j=1

(bj+1 (d1, d2)− bj (d1, d2))

j∑
l=1

φt−l (ϕ) .
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Using (S.28),

bj+1 (d1, d2)− bj (d1, d2) =

j∑
k=0

πk (−d2 − 1) (j + 1− k)d1 = bj+1 (d1, d2 + 1)

and

ct (d1, d2,ϕ) =φ (1;ϕ) bt (d1, d2)− bt (d1, d2)
∞∑
k=t

φk (ϕ)

−
t−1∑
j=1

bj+1 (d1, d2 + 1)

j∑
l=1

φt−l (ϕ) . (S.199)

Then

T∑
t=1

c2
t (d1, d2,ϕ) ≥φ2 (1;ϕ)

T∑
t=1

b2
t (d1, d2)− 2φ (1;ϕ)

T∑
t=1

b2
t (d1, d2)

∞∑
j=t

φj (ϕ)

− 2φ (1;ϕ)
T∑
t=1

bt (d1, d2)
t−1∑
j=1

bj+1 (d1, d2 + 1)

j∑
l=1

φt−l (ϕ)

+ 2
T∑
t=1

bt (d1, d2)
∞∑
j=t

φj (ϕ)
t−1∑
k=1

bk+1 (d1, d2 + 1)
k∑
l=1

φt−l (ϕ) . (S.200)

Noting (6), the fourth term on the right-hand side of (S.200) is of smaller order than the
third term. Then the proof of (S.194) follows on showing

sup
d1≥♦,d1−d2≥−1/2+η,ϕ∈Ψ

1

T 2(d1−d2)+1

∣∣∣∣∣
T∑
t=1

b2
t (d1, d2)

∞∑
j=t

φj (ϕ)

∣∣∣∣∣ = o (1) ,

(S.201)

sup
d1≥♦,d1−d2≥−1/2+η,ϕ∈Ψ

1

T 2(d1−d2)+1

∣∣∣∣∣
T∑
t=1

bt (d1, d2)
t−1∑
j=1

bj+1 (d1, d2 + 1)

j∑
l=1

φt−l (ϕ)

∣∣∣∣∣ = o (1) .

(S.202)

First, by (6), Lemma S.9 and (S.183) of Lemma S.13, the left-hand side of (S.201) is bounded
by

K sup
d1−d2≥−1/2+η

1

T

T∑
t=1

(
t

T

)2(d1−d2)

t−ς ≤ K
1

T

T∑
t=1

(
t

T

)−1+2η

t−ς

≤ K
1

T 2η

T∑
t=1

t−1+2η−ς = o (1) ,
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so (S.201) holds. Similarly, the left-hand side of (S.202) is bounded by

K sup
d1−d2≥−1/2+η

1

T

T∑
t=1

(
t

T

)d1−d2 t−1∑
j=1

(
j

T

)d1−d2
j−1 (t− j)−ς

≤ K
1

T

T∑
t=1

(
t

T

)−1/2+η t−1∑
j=1

(
j

T

)−1/2+η

j−1 (t− j)−ς

≤ K
1

T 2η

T∑
t=1

t−1/2+η

t−1∑
j=1

j−3/2+η (t− j)−ς

≤ K
1

T 2η

T∑
t=1

(
t−1/2+η−ς + t−1+2η−ς) (1 + log t) = o (1) ,

noting that ς > 1/2, where the third inequality is due to Lemma S.9, to conclude the proof
of (S.194).

Next, in view of (S.199), the proof of (S.195) follows by (S.201), (S.202) and

sup
d1≥♦,d1−d2≥−1/2+η,ϕ∈Ψ

1

T 2(d1−d2)+1

T∑
t=1

b2
t (d1, d2)

(
∞∑
j=t

φj (ϕ)

)2

= o (1) ,

sup
d1≥♦,d1−d2≥−1/2+η,ϕ∈Ψ

1

T 2(d1−d2)+1

T∑
t=1

(
t−1∑
j=1

bj+1 (d1, d2 + 1)

j∑
l=1

φt−l (ϕ)

)2

= o (1) ,

which follow by straightforward arguments using (6), Lemma S.9 and (S.183).
The proof of (S.196) is immediate because

inf
d1,d2,ϕ∈Ψ

T∑
t=1

c2
t (d1, d2,ϕ) ≥ inf

d1,d2,ϕ∈Ψ
c2

1 (d1, d2,ϕ) = 1.

For the proof of (S.197), denoting by [·] the integer part of the argument and given that

1

T 2(d1−d2)+1

T∑
t=1

c2
t (d1, d2,ϕ) ≥ 1

T 2(d1−d2)+1

T∑
t=[T 1/2]

c2
t (d1, d2,ϕ) , (S.203)

as in the proof of (S.194), the right-hand side of (S.203) is bounded from below by

ε inf
d1≥♦,−1/2−α≤d1−d2≤−1/2+α

1

T 2(d1−d2)+1

T∑
t=[T 1/2]

b2
t (d1, d2) (S.204)

− sup
d1≥♦,−1/2−α≤d1−d2≤−1/2+α,ϕ∈Ψ

K

T 2(d1−d2)+1

∣∣∣∣∣∣
T∑

t=[T 1/2]

b2
t (d1, d2)

∞∑
j=t

φj (ϕ)

∣∣∣∣∣∣ (S.205)

− sup
d1≥♦,−1/2−α≤d1−d2≤−1/2+α,ϕ∈Ψ

K

T 2(d1−d2)+1

∣∣∣∣∣∣
T∑

t=[T 1/2]

bt (d1, d2)
t−1∑
j=1

bj+1 (d1, d2 + 1)

j∑
l=1

φt−l (ϕ)

∣∣∣∣∣∣ .
(S.206)
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First, by (6) and (S.183), (S.205) is bounded by

sup
−1/2−α≤d1−d2≤−1/2+α

K

T

T∑
t=[T 1/2]

(
t

T

)2(d1−d2)

t−ς ≤ K

T

T∑
t=[T 1/2]

(
t

T

)−1−2α

t−ς = O
(
Tα−ς/2

)
= o (1) ,

because α < (ς − 1/2) /3 < ς/2. Similarly, (S.206) is bounded by

KT 2α

T∑
t=[T 1/2]

t−1/2−α
t−1∑
j=1

j−3/2−α (t− j)−ς ≤ KT 2α log T
T∑

t=[T 1/2]

t−1/2−α−ς

≤ KT 3α/2+1/4−ς/2 log T,

which is o (1) because α < (ς − 1/2) /3.
Finally, by (S.183), (S.204) is bounded from below by

ε inf
d1≥♦,−1/2−α≤d1−d2≤−1/2+α

Γ2 (d1 + 1)

T 2(d1−d2)+1

T∑
t=[T 1/2]

π2
t (d1 + 1− d2)

−K sup
d1≥♦,−1/2−α≤d1−d2≤−1/2+α

1

T 2(d1−d2)+1

T∑
t=[T 1/2]

|πt (d1 + 1− d2)| |s1t (d1, d2)| . (S.207)

By (S.183) and Lemma S.11 the second term on (S.207) is bounded by

K sup
d1≥♦,−1/2−α≤d1−d2≤−1/2+α

1

T

T∑
t=[T 1/2]

(
t

T

)2(d1−d2) (
t−1 + t−d1−1

)

≤ KT 2α

T∑
t=[T 1/2]

t−1−2α
(
t−1 + t−♦−1

)
≤ K

(
Tα−1/2 + Tα−1/2−♦/2) = o (1) ,

because α < min {(ς − 1/2) /3, (1 + ♦) /2}. Next using Lemma S.11 the first term on (S.207)
is bounded from below by

ε inf
−1/2−α≤d1−d2≤−1/2+α

1

T

T∑
t=[T 1/2]

(
t

T

)2(d1−d2)

≥ ε
1

T

T∑
t=[T 1/2]

(
t

T

)−1+2α

≥ ε

1∫
[T 1/2]/T

x2α−1dx

= ε
1− ([T 1/2]/T )2α

2α
=

ε

2α
−O

(
T−α

)
In view of (S.203), (S.205), and (S.206), this proves (S.197).

Finally, the proof for (S.198) is almost identical to that for (S.197) with the only difference
of the treatment of the first term on (S.207). Here, noting that d1 − d2 ≤ d1 − d2, defining

gT = T−
1
2(2(d1−d2)+1)I

(
d1 − d2 < −1/2

)
+ log T I

(
d1 − d2 = −1/2

)
+ I
(
d1 − d2 > −1/2

)
,

ε inf
d1−d2≥−1/2−α

1

T

T∑
t=[T 1/2]

(
t

T

)2(d1−d2)

≥ ε
1

T

T∑
t=[T 1/2]

(
t

T

)2(d1−d2)
≥ εgT ≥ ε,

to conclude the proof of Lemma S.15.
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Lemma S.16 Let θ be an arbitrary number such that 0 < θ < ς − 1/2. Then, under
Assumptions A1 and A3, for any real numbers ♦ > −1, D1 < −1/2− θ and D2 > −1/2 + θ,
m = 0, 1, 0 ≤ p ≤ m, uniformly in t = 1, . . . , T and T ≥ 1,

sup
d1≥♦,d1−d2∈[D1,D2],ϕ∈Ψ

∣∣∣∣∂mht,T (d1, d2,ϕ)

∂dp1∂d
m−p
2

∣∣∣∣ = O(t−1/2−θT θ+2θm), (S.208)

sup
d1≥♦,d1−d2≥−1/2+θ,ϕ∈Ψ

∣∣∣∣∂ht,T (d1, d2,ϕ)

∂d1

∣∣∣∣ = O
(
t−1/2+θT−θ (1 + |log (t/T )|)

)
,

(S.209)

sup
d1≥♦,d1−d2∈[D1,D2],ϕ∈Ψ

∣∣∣∣∂m(ht+1,T (d1, d2,ϕ)− ht,T (d1, d2,ϕ))

∂dp1∂d
m−p
2

∣∣∣∣ = O(t−3/2−θT θ+2θm), (S.210)

sup
d1≥♦,d1−d2≥−1/2+θ,ϕ∈Ψ

∣∣∣∣∂(ht+1,T (d1, d2,ϕ)− ht,T (d1, d2,ϕ))

∂d1

∣∣∣∣ = O
(
t−3/2+θT−θ (1 + |log (t/T )|)

)
,

(S.211)

sup
d1≥♦,d1−d2∈[D1,D2],ϕ∈Ψ

∣∣∣∣∣
T∑
t=1

ht,T (d1, d2,ϕ)

∣∣∣∣∣ = O(T 1/2). (S.212)

Proof. The left-hand side of (S.208) is bounded by

sup
d1≥♦,D1≤d1−d2≤−1/2−θ,ϕ∈Ψ

∣∣∣∣ ∂m

∂dp1∂d
m−p
2

ht,T (d1, d2,ϕ)

∣∣∣∣
+ sup

d1≥♦,−1/2−θ≤d1−d2≤D2,ϕ∈Ψ

∣∣∣∣ ∂m

∂dp1∂d
m−p
2

ht,T (d1, d2,ϕ)

∣∣∣∣ . (S.213)

Suppose first that m = 0. Using the definition (S.3) and applying (S.191) of Lemma S.14
and (S.196) of Lemma S.15, the first term of (S.213) is bounded by

supd1≥♦,D1≤d1−d2≤−1/2−θ,ϕ∈Ψ |ct (d1, d2,ϕ)|

infd1≥♦,D1≤d1−d2≤−1/2−θ,ϕ∈Ψ

(∑T
j=1 c

2
j (d1, d2,ϕ)

)1/2
≤ sup

d1≥♦,D1≤d1−d2≤−1/2−θ,ϕ∈Ψ

|ct (d1, d2,ϕ)|

= O(t−1/2−θ),

so the bound in (S.208) applies to the first term of (S.213) (although it is not tight). Next,
the second term of (S.213) is bounded by

supd1≥♦,−1/2−θ≤d1−d2≤D2,ϕ∈Ψ T
−(d1−d2) |ct (d1, d2,ϕ)|

infd1≥♦,−1/2−θ≤d1−d2≤D2,ϕ∈Ψ

(
T−2(d1−d2)

∑T
j=1 c

2
j (d1, d2,ϕ)

)1/2
.

By (S.192) of Lemma S.14 the numerator is O(t−1/2−θT 1/2+θ) and by (S.198) of Lemma S.15
the denominator is bounded from below by εT 1/2. Thus (S.208) for m = 0 follows.
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Next, for the derivative we find

∂

∂dp1∂d
1−p
2

ht,T (d1, d2,ϕ) =
∂ct (d1, d2,ϕ) /∂dp1∂d

1−p
2(∑T

j=1 c
2
j (d1, d2,ϕ)

)1/2

−
ht,T (d1, d2,ϕ)

∑T
j=1 cj (d1, d2,ϕ) ∂cj (d1, d2,ϕ) /∂dp1∂d

1−p
2∑T

j=1 c
2
j (d1, d2,ϕ)

.

(S.214)

First we show (S.208). Proceeding as in the proof for m = 0, taking into account the extra
log-term arising from (S.191) in Lemma S.14, the first term of (S.214) is O(t−1/2 (T/t)θ log T ),
so the bound in (S.208) applies. Next, using again (S.191) in Lemma S.14 and also (S.208)
for m = 0, the second term of (S.214) is O(t−1/2 (T/t)θ T 2θ

∑T
j=1 j

−1−2θ log j), so the bound
in (S.208) applies for m = 1.

Next we show (S.209). Clearly

∂ht,T (d1, d2,ϕ)

∂d1

=
∂T−(d1−d2)ct (d1, d2,ϕ) /∂d1(∑T
j=1 T

−2(d1−d2)c2
j (d1, d2,ϕ)

)1/2

−
T−(d1−d2)ct (d1, d2,ϕ)

∑T
j=1 T

−(d1−d2)cj (d1, d2,ϕ) ∂T−(d1−d2)cj (d1, d2,ϕ) /∂d1(∑T
j=1 T

−2(d1−d2)c2
j (d1, d2,ϕ)

)3/2
.

First,

sup
d1≥♦,d1−d2≥−1/2+θ,ϕ∈Ψ

∣∣∣∣∣∣∣
∂T−(d1−d2)ct (d1, d2,ϕ) /∂d1(∑T
j=1 T

−2(d1−d2)c2
j (d1, d2,ϕ)

)1/2

∣∣∣∣∣∣∣
≤

supd1≥♦,d1−d2≥−1/2+θ,ϕ∈Ψ

∣∣∂T−(d1−d2)ct (d1, d2,ϕ) /∂d1

∣∣(
infd1≥♦,d1−d2≥−1/2+θ,ϕ∈Ψ

∑T
j=1 T

−2(d1−d2)c2
j (d1, d2,ϕ)

)1/2

= O
(
t−1/2 (t/T )θ (1 + |log (t/T )|)

)
(S.215)

by (S.192) of Lemma S.14 and (S.198) of Lemma S.15. Similarly, like in (S.215),

sup
d1≥♦,d1−d2≥−1/2+θ,ϕ∈Ψ

∣∣∣∣∣∣∣
T−(d1−d2)ct (d1, d2,ϕ)(∑T

j=1 T
−2(d1−d2)c2

j (d1, d2,ϕ)
)1/2

∣∣∣∣∣∣∣ = O
(
t−1/2 (t/T )θ

)
, (S.216)

so, by (S.215) and (S.216), it is straightforward to show that

sup
d1≥♦,d1−d2≥−1/2+θ,ϕ∈Ψ

∣∣∣∣∣∣∣
1

T d1−d2
ct (d1, d2,ϕ)

∑T
j=1

1
T d1−d2

cj (d1, d2,ϕ) ∂ 1
T d1−d2

cj (d1, d2,ϕ) /∂d1(∑T
j=1 T

−2(d1−d2)c2
j (d1, d2,ϕ)

)3/2

∣∣∣∣∣∣∣
= O

(
t−1/2 (t/T )θ

)
,
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to conclude the proof of (S.209).
The proofs of (S.210)–(S.212) are omitted because they follow by identical arguments,

noting that

ht,T (d1, d2,ϕ)− ht−1,T (d1, d2,ϕ) =
ct (d1, d2 + 1,ϕ)(∑T
j=1 c

2
j (d1, d2,ϕ)

)1/2
.

Lemma S.17 Under Assumptions A1–A3, uniformly in t = 1, . . . , T , T ≥ 1, and ϕ ∈ Ψ,

sup
d≤g
|φ (L;ϕ) ∆−d {utI (t ≥ 1)} | = Op(t

g−1/2 + log tI (g = 1/2) + I (g < 1/2)), (S.217)

sup
d≥g
|T−dφ (L;ϕ) ∆−d {utI (t ≥ 1)} | = Op(T

−g(tg−1/2 + log tI (g = 1/2) + I (g < 1/2))).

(S.218)

Proof. First we show (S.217). Write φ (L;ϕ) ∆−d {utI (t ≥ 1)} =
∑t−1

j=0 aj (d,ϕ)ut−j and
apply summation by parts,

t−1∑
j=0

aj (d,ϕ)ut−j = at−1 (d,ϕ)
t−1∑
j=0

ut−j −
t−2∑
j=0

(aj+1 (d,ϕ)− aj (d,ϕ))

j∑
l=0

ut−l. (S.219)

Noting that aj+1 (d,ϕ)−aj (d,ϕ) = aj+1 (d− 1,ϕ), the right-hand side of (S.219) is bounded
by

|at−1 (d,ϕ)|

∣∣∣∣∣
t−1∑
j=0

ut−j

∣∣∣∣∣+
t−2∑
j=0

|aj+1 (d− 1,ϕ)|

∣∣∣∣∣
j∑
l=0

ut−l

∣∣∣∣∣ . (S.220)

Under our conditions, E
∣∣∑t

l=1 ul
∣∣ = O

(
t1/2
)
, so, in view of (S.193) of Lemma S.14, the

expectation of the left-hand side of (S.217) is bounded by

Ktmax{g−1/2,−1/2−ς} +K
t∑

j=1

jmax{g−3/2,−1/2−ς} ≤ K(tg−1/2 + log tI (g = 1/2) + I (g < 1/2))

to conclude the proof of (S.217). The proof of (S.218) is omitted because it is almost identical
to that for (S.217).

Lemma S.18 Let θ be an arbitrary number such that 0 < θ < ς − 1/2. Then, under
Assumptions A1–A3, for m = 0, 1, and uniformly in ϑ ∈ Ξ,

sup
ϑ∈Ξ,δ0−δ≤g

∣∣∣∣∣
T∑
t=1

εt(τ )
∂m

∂γm
ht,T (γ, δ,ϕ)

∣∣∣∣∣ = Op(T
max{θ,g}+2θm), (S.221)

sup
ϑ∈Ξ,δ0−δ≥g

1

T δ0−δ

∣∣∣∣∣
T∑
t=1

εt(τ )
∂m

∂γm
ht,T (γ, δ,ϕ)

∣∣∣∣∣ = Op(T
max{θ,g}−g+2θm), (S.222)

sup
ϑ∈Ξ,δ0−δ≤g,γ−δ≥−1/2+θ

∣∣∣∣∣
T∑
t=1

εt(τ )
∂

∂γ
ht,T (γ, δ,ϕ)

∣∣∣∣∣ = Op(T
max{θ,g}), (S.223)

sup
ϑ∈Ξ,δ0−δ≥g,γ−δ≥−1/2+θ

1

T δ0−δ

∣∣∣∣∣
T∑
t=1

εt(τ )
∂

∂γ
ht,T (γ, δ,ϕ)

∣∣∣∣∣ = Op(T
max{θ,g}−g). (S.224)
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Proof. By summation by parts as in (S.236), we find∣∣∣∣∣
T∑
t=1

εt(τ )ht,T (γ, δ,ϕ)

∣∣∣∣∣ ≤ |hT,T (γ, δ,ϕ)| |εT (δ0 − δ + 1,ϕ)|

+
T−1∑
t=1

|ht+1,T (γ, δ,ϕ)− ht,T (γ, δ,ϕ)| |εt(δ0 − δ + 1,ϕ)| ,

noting (S.27). First, application of (S.208), (S.210) of Lemma S.16 together with (S.217),
(S.218) of Lemma S.17 implies (S.221) and (S.222). Next, (S.223) and (S.224) follow from
(S.209), (S.211) of Lemma S.16 and (S.217), (S.218) of Lemma S.17.

Lemma S.19 Under Assumptions A1–A3, for any g2 > −1/2 and for any arbitrary θ such
that 0 < θ < min{ς − 1/2, g2 + 1/2},∣∣∣∣∣

T∑
t=1

dt (ϑ) st (ϑ)

∣∣∣∣∣ ≤ |γ − γ0| |MT (ϑ)| , (S.225)

where, uniformly in ϑ ∈ Ξ,

sup
ϑ∈Ξ,δ0−δ≤g1,γ0−δ≤g2

|MT (ϑ)| = Op(T
max{θ,g1}+2θ+g2+1/2), (S.226)

sup
ϑ∈Ξ,δ0−δ≤g1,γ0−δ≥g2

T δ−γ0 |MT (ϑ)| = Op(T
max{θ,g1}+2θ+1/2), (S.227)

sup
ϑ∈Ξ,δ0−δ≥g1,γ0−δ≥g2

T 2δ−δ0−γ0 |MT (ϑ)| = Op(T
max{θ,g1}+2θ−g1+1/2), (S.228)

sup
ϑ∈Ξ,δ0−δ≤g1,γ0−δ≥g2,γ−δ≥−1/2+θ

T δ−γ0 |MT (ϑ)| = Op(T
max{θ,g1}+1/2), (S.229)

sup
ϑ∈Ξ,δ0−δ≥g1,γ0−δ≥g2,γ−δ≥−1/2+θ

T 2δ−δ0−γ0 |MT (ϑ)| = Op(T
max{θ,g1}−g1+1/2). (S.230)

Proof. Letting dt (τ , γ) = dt (ϑ), noting (S.15) and that dt (τ , γ0) = 0, by the mean value
theorem, ∣∣∣∣∣

T∑
t=1

dt (ϑ) st (ϑ)

∣∣∣∣∣ ≤ |γ − γ0|

∣∣∣∣∣ ∂∂γ
T∑
t=1

dt (τ , γ) εt(τ )

∣∣∣∣∣ ,
where |γ − γ0| ≤ |γ − γ0|. Then we find the bound∣∣∣∣∣ ∂∂γ

T∑
t=1

dt (τ , γ) εt(τ )

∣∣∣∣∣ ≤
∣∣∣∣∣
T∑
t=1

εt(τ )
∂ht,T (γ, δ,ϕ)

∂γ

T∑
j=1

cj (γ0, δ,ϕ)hj,T (γ, δ,ϕ)

∣∣∣∣∣
+

∣∣∣∣∣
T∑
t=1

εt(τ )ht,T (γ, δ,ϕ)
T∑
j=1

cj (γ0, δ,ϕ)
∂hj,T (γ, δ,ϕ)

∂γ

∣∣∣∣∣ .
The results (S.226)–(S.228) now all follow by direct application of (S.231), (S.232) of Lemma S.20
with θ < g+1/2 and (S.221), (S.222) of Lemma S.18. Results (S.229) and (S.230) are derived
straightforwardly from (S.223), (S.224) of Lemma S.18 and (S.233) of Lemma S.20.



J. Hualde and M.Ø. Nielsen: Estimation of fractional time series with trends 47

Lemma S.20 Let θ be an arbitrary number such that 0 < θ < ς − 1/2. Then, under
Assumptions A1 and A3, for m = 0, 1 and uniformly in ϑ ∈ Ξ,

sup
ϑ∈Ξ,γ0−δ≤g

∣∣∣∣∣
T∑
t=1

ct (γ0, δ,ϕ)
∂m

∂γm
ht,T (γ, δ,ϕ)

∣∣∣∣∣ = O(Tmax{θ,g+1/2}+2θm log T ), (S.231)

sup
ϑ∈Ξ,γ0−δ≥g

1

T γ0−δ

∣∣∣∣∣
T∑
t=1

ct (γ0, δ,ϕ)
∂m

∂γm
ht,T (γ, δ,ϕ)

∣∣∣∣∣ = O(Tmax{θ,g+1/2}−g+2θm log T ), (S.232)

and for g > −1/2, uniformly in ϑ ∈ Ξ,

sup
ϑ∈Ξ,γ0−δ≥g,γ−δ≥−1/2+θ

1

T γ0−δ

∣∣∣∣∣
T∑
t=1

ct (γ0, δ,ϕ)
∂

∂γ
ht,T (γ, δ,ϕ)

∣∣∣∣∣ = O(T 1/2). (S.233)

Proof. The results follow by direct application of (S.208), (S.209) in Lemma S.16 and
(S.191), (S.192) of Lemma S.14.

Lemma S.21 Under Assumptions A1–A3, uniformly in ϑ ∈ Ξ,

sup
ϑ∈Ξ,δ0−δ≤g1,γ0−δ≤g2

1

T

∣∣∣∣∣
T∑
t=1

εt(τ )ct (γ0, δ,ϕ)

∣∣∣∣∣
= Op(T

g1+g2−1/2 + T−1 log T + T g1−1/2−ς + T g2−1 log2 T I (g1 ≤ −1/2)),
(S.234)

sup
ϑ∈Ξ,δ0−δ≥g1,γ0−δ≥g2

1

T γ0+δ0−2δ

∣∣∣∣∣
T∑
t=1

εt(τ )ct (γ0, δ,ϕ)

∣∣∣∣∣
= Op(T

1/2 + T 1/2−g2−ς + T−g1−g2 log T + T−g1 log2 T I (g1 ≤ −1/2)).
(S.235)

Proof. By summation by parts and (S.53) we find∣∣∣∣∣
T∑
t=1

εt(τ )ct (γ0, δ,ϕ)

∣∣∣∣∣ ≤ |cT (γ0, δ,ϕ)| |εT (δ0 − δ + 1,ϕ)|

+

∣∣∣∣∣
T−1∑
t=1

ct+1 (γ0, δ + 1,ϕ) εt(δ0 − δ + 1,ϕ)

∣∣∣∣∣ , (S.236)

see (S.27). The result (S.234) then follows by application of (S.217) of Lemma S.17 and
(S.191) of Lemma S.14, while the result (S.235) follows by application of (S.218) of Lemma S.17
and (S.192) of Lemma S.14.
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