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2 LIMITED CAPACITY IN PROJECT SELECTION

1. Introduction

We model the allocation of funding by an organization: an institution funding research
or community improvement grants, a legislature funding earmarks or government pro-
grams, or a firm deciding which R&D projects to pursue, which new products to bring
to market, or which divisions to continue funding during downsizing. Each proposal
is supported by a separate agent, who can produce evidence about the merits of his
proposal. For example, grant applicants may conduct pilot studies; interest groups or
lobbyists sponsor research and conduct constituent polls; and project managers conduct
product testing and market studies for a prototype. The organization prefers to support
only good projects, but agents want to receive funding regardless of their merits.

Within this environment, we consider the impact of organizational resource con-
straints. In a model of two proposals, we compare outcomes when the organization
is unconstrained and can implement both proposals to outcomes when the organization
faces a capacity constraint which restricts the organization to implement at most one of
the two proposals. Straightforward intuition suggests that an unconstrained organiza-
tion should be better off compared to an organization that lacks the resources to fund
all proposals, because it can always choose not to fund a weak proposal if it believes
the costs of implementing the proposal dominate the benefits. This reasoning suggests
that an organization will never gain from capacity constraint on its ability to implement
proposals it believes beneficial.

While this intuition holds when the quality of available evidence fixed, it does not hold
when the quality of evidence is endogenous, determined by the agents’ evidence pro-
duction strategies. When the agents choose the process by which evidence is generated,
their choice depends on the capacity constraints. We show how a capacity constraint
induces competition between agents, and leads them to produce more informative evi-
dence about the merits of their proposals as they compete for the limited resources. This
increase in evidence quality allows the organization to more accurately identify worth-
while projects, but prevents the organization from supporting both projects, even if it
believes both are deserving. The informational benefits can dominate the costs, and can
leave the organization better off.

We model evidence production by the agents as a form of Bayesian persuasion (e.g.
Kamenica and Gentzkow 2011). Consistent with the literature, there is full transparency:
all information available to the agents, including prior information, is also available to
the principal. Agents choose how much evidence to generate prior to knowing the out-
come. Each agent’s evidence production process is modeled as the design of a signal:
a random variable jointly distributed with the true quality of a proposal. The evidence
generated and observed by the funding organization corresponds to a public realization
of this signal. The analysis puts little structure on the type of evidence generation pro-
cess, or signal, that agents may design to produce information about their proposals.
Our main theoretical contribution is to incorporate capacity constraints within such a
persuasion framework, and to show how such constraints change evidence production
strategies.

When resources are unlimited, agents must produce evidence that is just persuasive
enough for the funding organization to believe their proposal has non negative expected
benefits. In equilibrium, any evidence produced by the agents (if they choose to produce
any evidence at all) either confirms the priors or leaves the organization indifferent
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between implementing and not implementing the agent’s proposal. As a consequence,
the organization does not benefit from evidence production in an environment where it
faces no capacity constraint and the agents control the production of the evidence.

In contrast to the unlimited capacity case, when resources are limited, agents not only
need to convince the organization that their proposal is worthwhile, they must also
convince the organization that their proposal is more worthwhile than any alternative
proposal. Capacity constraints induce competition between the agents, who compete
through the provision of more informative evidence (in the sense of Blackwell) than they
do in the absence of these competitive incentives.

This means that limited capacity introduces countervailing effects on the organiza-
tion’s payoffs. The cost of limited capacity comes from the organization only being able
to implement one of the proposals, even in situations where it believes both proposals
are worthwhile. The benefit of limited capacity comes from the fact that a capacity con-
straint effectively commits the organization to requiring stronger evidence in favor of a
proposal before choosing to implement it. This leads agents to produce more informa-
tive evidence, which in turn leads the organization to be better informed and more likely
to implement only beneficial proposals.

When there is a high ex ante probability that all proposals are beneficial, then the
costs of limited capacity dominate the benefits, and the organization is better off when
it can implement all proposals. In other cases, when there is greater uncertainty about
the merits or any or all of the proposals, the information benefits of limited capacity
dominate the costs. In these cases, the organization is better off when it has limited
capacity.

The organization would never be better off under limited capacity if evidence gen-
eration were exogenous. This is because the benefits of limited capacity come from
incentivizing agents to increase the quality of evidence they produce. In the absence of
this effect, the organization prefers the flexibility allotted by having enough funding to
implement all projects it believes are worthwhile.

These results have implications for a number of settings. First, a philanthropist may
prefer to endow his foundation with limited funds in order to ensure the more-careful
allocation of this funding across projects or grant applications. Even if the philanthropist
can easily afford to endow the foundation with enough funding to pursue all beneficial
projects, doing so may not be worthwhile. This has implications for the most effective al-
location of charitable donations, highlighting a benefit of “underfunded” organizations.
Second, voters may be better off when legislatures and bureaucracies are underfunded,
as limited resources lead to more-persuasive lobbying, more-informed decision making,
and the more-efficient allocation of resources. Our results highlight an unrecognized
benefit of potentially underfunded budgets in governments and bureaucracies. Third,
these results extend to the allocation of resource within firms. An executive who faces
resource or budget constraints may become more informed and choose resource alloca-
tions that waste fewer resources than a similar executive who does not face such con-
straints. This suggests a potential benefit to corporate boards or central management of
limiting resources available to decision makers within their organization, of restricting
the number of new products they are willing to bring to market, or of otherwise limiting
the number of projects which may be pursued within their firm. Our results highlight
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previously unrecognized benefits of capacity constraints and underfunding within orga-
nizations.

Section 2 surveys relevant literature. Section 3 presents the model and some pre-
liminary analysis. Section 4 presents results for the unlimited capacity case. Section 5
presents results for the limited capacity case. Section 6 discusses the tradeoff inherent in
limited capacity. Section 7 summarizes and presents some conclusions.

2. Literature

A handful of recent papers consider project review and selection in a principal-agent
framework. Unlike our analysis, which is primarily concerned with the production of
public information, this literature is primarily concerned with incentives for agents to
truthfully reveal private information about project attributes. Che, Dessein and Kartik
(2013), consider strategic communication of project attributes by an informed agent who
shares the principal’s preferences over potential projects but is biased with respect to the
principal’s outside option. Meanwhile Armstrong and Vickers (2010) and Dessein (2002)
consider project selection in a delegation framework, whereby the principal allows a pri-
vately informed agent to choose a project, subject to certain restrictions or rules imposed
by the principal. Bar and Gordon (2014) and Mylovanov and Zapechelnyuk (2013) con-
sider the design of optimal mechanisms–employing either message contingent transfers
or imposing costs on agents ex post—to elicit information about privately known project
attributes. Lewis and Sappington (1997) consider a mechanism design problem in which
the agent must be motivated both to acquire private information and to communicate it
truthfully. Relative to these papers, we weaken the principal’s commitment power: the
organization (the principal in our framework) cannot commit to either a project selection
rule or to transfers. Instead we consider how a limited capacity to approve projects can
substitute for commitment power, improving the principal’s payoff.

In its focus on the generation of public information, our paper is related to a recent
strand of literature on evidence production and persuasion. Brocas and Carrillo (2007),
consider a dynamic model of persuasion in which an agent can allow the realization of
a public signal about an unknown state or can terminate the flow of information in each
period, triggering the principal to select an action. The authors characterize situations in
which the agent benefits from this type of information control. Where Brocas and Car-
rillo (2007) assume a single agent, Brocas, Carrillo and Palfrey (2012) and Gul and Pe-
sendorfer (2012) focus on adversarial evidence production, considering multiple agents
with opposing preferences over a single policy or action. In this strand of literature,
agents produce evidence by drawing (public) realizations from a known signal struc-
ture, choosing when to terminate the information generation process; however, agents
do not have direct control over the design of the signal.1 This aspect is incorporated by
Kamenica and Gentzkow (2011) who consider a general “Bayesian persuasion” frame-
work with a single sender and receiver. The sender can design a signal whose realization

1Austen-Smith and Wright (1992) apply a related model to analyze informational lobbying. ? consider
a setting in which both interest groups and a policymaker may pay costs to produce public information
before the policymaker chooses which policy to implement. They show that interest groups representing
less efficient policies may choose to collect evidence, and that this evidence collection may decrease the
incentives for information collection regarding the more-efficient policy.
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is publicly observed. The receiver (whose preferences may differ from the sender’s) ob-
serves the signal and its realization before selecting an action. With unlimited capacity,
our framework reduces to two copies of the single agent game, and we highlight the
conflict of interest identified by Kamenica and Gentzkow (2011), demonstrating that in-
formation generated by the agent is worthless to the principal.2 Our main contribution,
however, is to analyze the case of limited capacity, which induces competition between
agents and incentivizes more informative evidence production.

There are a number of recent papers building on Kamenica and Gentzkow (2011).
Only a handful of these papers consider competition between agents in a Bayesian per-
suasion environment. Boleslavsky and Cotton (2015) develop a Bayesian persuasion
model of school competition in which schools simultaneously invest in developing grad-
uate ability, and control how information about graduate ability is revealed to employers
by designing grading policies. In work developed independently and concurrently with
ours, Gentzkow and Kamenica (2012a) consider persuasion by multiple agents who can
each produce evidence about the same underlying state in order to influence a decision
by the principal. Their central insight is that no agent can design a signal that reduces the
information available to the principal. Thus, an outcome is an equilibrium if no agent
can benefit by supplying a more-informative signal to the principal. In our framework
each agent produces information about an independent dimension of the state of the
world (their own proposal’s quality), while the assumptions of Gentzkow and Kamenica
(2012a) require that agents produce evidence about all dimensions (the quality of all pro-
posals). This assumption is significant both for the interpretation of the model and the
results. For example, in Gentzkow and Kamenica (2012a), if one agent sends a signal that
perfectly reveals the state of the world, all other agents are indifferent over all possible
signals, and a fully-revealing signal is a best response. Hence, any profile of signals in
which at least two agents send a signal that fully reveals the underlying state constitutes
an equilibrium. In our analysis, agents reveal information about their own proposals,
not all proposals under consideration. Thus, our analysis does not exhibit the strong in-
centives that arise in Gentzkow and Kamenica (2012a), and our results are less extreme.
Gentzkow and Kamenica (2012a)’s assumption that all agents provide information about
a single state is most appropriate for settings such as a criminal trial, in which the court
is interested in determining the guilt or innocence of a defendant, and both prosecutor
and defense attorney reveal public information about this state. In contrast our analysis
is best suited to situations of project selection or review in which agents typically supply
information only about their own proposals. Our framework also allows us to naturally
consider capacity constraints limiting the number of proposals our organization is able
to accept.

Our contribution is also related to the literature on disclosure of verifiable information.
The bulk of the literature focuses on the incentives to truthfully disclose or withhold in-
formation that has already been uncovered (Milgrom 1981, Milgrom and Roberts 1986,
Bull and Watson 2004, Cotton 2012). Cotton (2009) presents a model in which agents pro-
vide payments in competition for access to a time-constrained decision maker. Several
recent papers consider the interaction of the incentive for disclosure and the incentive
to acquire information. Henry (2009) considers the impact that mandatory research

2Kolotilin et al. (2015) considers a Bayesian persuasion model in which the principal is privately
informed.
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disclosure rules have on an agent’s decision to acquire evidence, and Che and Kartik
(2009) consider how differences of opinion between decision makers and agents affect
the agents’ incentives to acquire and transmit evidence. Because we focus on evidence
that cannot be withheld, these considerations are absent from our analysis. 3 Carlin,
Davies and Iannaccone (2012) develop a model of competitive disclosure in a financial
market and show that competition between agents may decrease incentives for agents to
disclose evidence. This contrasts with our analysis of evidence production (rather than
evidence disclosure), in which competition increases evidence production and leads to
more informed decisions by the principal.

3. Model

A funding organization chooses whether to provide funding for or not provide fund-
ing for each of two proposals, i ∈ {H, L}. Each proposal can be either “good” or “bad.”
Denote proposal i’s type by τi ∈ {g, b}. Let γi represent the common prior for both the
organization and the agents about proposal i’s quality: γi = Pr(τi = g). With out loss of
generality, assume γH ≥ γL. Thus, proposal H has more promise ex ante.

The organization prefers to fund good proposals and to not fund bad proposals,
although there is initial uncertainty about each proposal’s type.4 Its total payoff is
Uorg = uH + uL, where

ui =

 1− θ if proposal i is funded and τi = g
−θ if proposal i is funded and τi = b
0 if proposal i is not funded.

Funding a good proposal increases the organization’s payoff by 1− θ and funding a bad
proposal reduces the organization’s payoff by θ. Parameter θ ∈ (0, 1) represents the
organization’s tradeoff between Type I and Type II errors in its decision.5 The organiza-
tion’s decision directly determines the payoffs of two agents, each of whom is affiliated
with a separate proposal. Agent i receives payoff 1 whenever proposal i is funded and
0 whenever i is not funded, regardless of whether the organization accepts or reject the
other agent’s proposal. There is no private information; agents are unable to withhold
any information, even ex ante information, from the organization, and therefore the
organization and agents share an identical prior over the type of each proposal.

We abstract from collective decision making problems that may arise within the orga-
nization. We assume that the organization’s decision making power is held by a single
individual whose preferences are completely aligned with the organization as a whole.
We also abstract from asymmetry in the size of the proposal, essentially assuming that

3Gentzkow and Kamenica (2012b) identify conditions under which a forced disclosure requirement
does not change the set of equilibrium outcomes of a persuasion game with endogenous information.

4We also use “accept” and ‘reject” as synonyms for “fund” and “not fund.”
5If it rejects a good proposal, the organization’s payoff is zero instead of 1− θ (Type I error), and if it

accepts a bad proposal, the organization’s payoff is −θ instead of zero (Type II error). Provided that the
payoff of rejecting is zero, this payoff specification is equivalent to any other payoff structure in which
the organization benefits from accepting good proposals and is hurt by accepting bad proposals. If the
organization’s payoff from accepting a good proposal is v > 0 while the payoff of accepting a bad proposal
is −c < 0, then dividing both payoffs by v + c gives the specification defined in the text.
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each proposal requires the same commitment of resources from the funding organiza-
tion.

In the first stage of the game, each agent simultaneously and independently generates
evidence about the quality of his own proposal. The agent’s evidence is a publicly
observable realization of a random variable Si that is jointly distributed with the quality
of proposal i. Signal Si represents the process by which evidence is generated, and this
signal is designed by agent i. We represent signal Si as a pair of conditional random
variables (Sg

i , Sb
i ). If τi = g, then random variable Sg

i is realized; if τi = b, then random
variable Sb

i is realized. We focus on univariate random variables (Sg
i , Sb

i ) which have
a finite set of mass points; except at mass points, (Sg

i , Sb
i ) admit continuous densities

( f g
i (·), f b

i (·)) supported on sets (Σg
i , Σb

i ), which can be represented as a countable union
of intervals. We assume that the realizations in the support of Si, Σi ≡ Σg

i ∪ Σb
i , are

ordered in such a way that the likelihood ratio f b
i (·)/ f g

i (·) is monotone decreasing; thus
a higher signal realization is good news about proposal quality. We also assume that
with the exception of mass points, the likelihood ratio is differentiable in the interior of
Σi. Signals with these properties are “valid” for our analysis.

In the second stage of the game, the organization evaluates each proposal. It observes
both the design of each agent’s signal and the realization of each signal, updating its
beliefs about the quality of each proposal according to Bayes’ Rule. In this way, both
the process by which evidence is generated (the signal) and the evidence uncovered (the
signal realization) play a role in the organization’s evaluation of each proposal. The or-
ganization then chooses which proposal(s), if any, to accept. Its ability to fund proposals
may be either limited or unlimited. If capacity is unlimited, the organization can fund
neither, either or both proposals as it sees fit. In this case no link exists between pro-
posals; the decision to fund each proposal is made independently. Alternatively, when
capacity is limited, the organization can accept at most one proposal. This limitation may
arise for a variety of reasons: the organization may be constrained by limited budgets
or limited time, it may also be constrained by procedural or bureaucratic hurdles that
require considerable effort to overcome. When capacity is limited, a decision to accept
one proposal eliminates the possibility of accepting the other proposal. In this case,
acceptance decisions cannot be made in isolation; the signals and realizations for both
proposals influence the organization’s decisions. The organization’s capacity constraint
(if one exists) is common knowledge.

We solve for the Perfect Bayesian Equilibria of this game under the limited and un-
limited capacity systems. In the first stage, agents simultaneously choose their evidence
strategy: signals (SH, SL). Once both agents choose their signals, both the signals and
their realizations (sH, sL) are observed by the organization. In the second stage, the
organization updates its beliefs about the quality of each proposal and decides which
proposals to fund, subject to any capacity constraint.

Preliminary analysis. Bayesian Persuasion Representation of Signals. We present a
representation of signals that considerably simplifies the analysis; this representation
follows the approach of Kamenica and Gentzkow (2011). The organization’s acceptance
decisions in stage two are determined by its posterior beliefs about the quality of each
proposal. These beliefs are generated from Bayes’ Rule and depend on both the signal,
Si, supplied by the agent, and its realization, si: γ̂i(si) = Pr(τi = g|Si = si). Once the
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signal has been designed (the investigative process has been determined) but before the
signal is realized (the evidence has been generated) the organization’s posterior belief is
a random variable: Γi ≡ γ̂i(Si) = Pr(τi = g|Si). This posterior belief random variable
summarizes the informational content of signal Si: any signals generating the same
posterior belief random variable are payoff equivalent for all players.

A posterior belief random variable generated by a valid signal must have certain prop-
erties. First, because it’s realization represents a probability, the support of Γi is a subset
of the unit interval. Under the conditions we impose on signals, Γi is supported on a fi-
nite set of mass points and outside the set of mass points possesses a continuous density
supported on a countable union of intervals. Second, the Law of Iterated Expectations
implies that the expected value of the posterior belief random variable is equal to the
prior: E[Γi] = γi. Following Kamenica and Gentzkow (2011) we refer to a random vari-
able with these properties as Bayes-Plausible. The following lemma establishes that any
Bayes-Plausible random variable is the posterior belief random variable generated by a
valid signal.

Lemma 1. If random variable Γi is Bayes-Plausible, then there exists a valid signal Si for which
the posterior belief random variable is Γi.

Lemma 1 establishes a correspondence between valid signals and Bayes-Plausible pos-
terior belief random variables. As described above, a valid signal generates a posterior
belief random variable that is Bayes-Plausible. The lemma shows that the reverse rela-
tionship also holds: provided a random variable is Bayes-Plausible, a signal exists (in
fact, many) for which it is the posterior belief random variable. Therefore, we focus
our analysis on an agent’s choice of Bayes-Plausible posterior belief random variable Γi,
rather than signal (Sg

i , Sb
i ).In the rest of the paper, we refer to choice of posterior belief

random variable as an “evidence strategy” or “signal,” although it could be generated
by a large set of signals (all of which are payoff equivalent).

Two extreme evidence strategies are always available to an agent. A fully revealing
evidence strategy resolves all uncertainty about proposal quality, generating a Bernoulli
posterior belief random variable: Pr(Γi = 1) = γi and Pr(Γi = 0) = 1− γi. A fully
revealing strategy by the agents is optimal for the organization, as it learns a proposal’s
true quality before making an acceptance decision. An uninformative evidence strategy
conveys no information to the organization about a proposal’s quality, generating a de-
generate posterior belief random variable in which all mass is concentrated on the prior:
Pr(Γi = γi) = 1. An informative evidence strategy conveys some information to the orga-
nization about proposal quality; the posterior belief random variable is not degenerate.

When the realized value of the posterior belief is high, an agent’s proposal “looks
good” to the organization. However, in order to be consistent with the Law of Iterated
Expectations (and Bayesian Rationality), any probability mass on high realizations of the
posterior must be offset by probability mass on low realizations of the posterior, impos-
ing a tradeoff on the agent.

Organization’s Funding Decision. Suppose that in stage two the organization believes
that proposal i is good with probability γ̂i. If it funds proposal i then its expected payoff
is equal to γ̂i(1 − θ) − (1 − γ̂i)θ = γ̂i − θ. With unlimited capacity, the organization
compares the expected payoff of funding with its payoff of rejecting and receiving zero.
Therefore with unlimited capacity, the organization strictly prefers to accept whenever
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γ̂i > θ and is indifferent when γ̂i = θ. It is simple to show that in equilibrium the
organization accepts when it is indifferent between accepting and rejecting.6 Next, con-
sider limited capacity. The organization’s payoff of accepting proposal i is increasing
in γ̂i; thus it will prefer to accept the proposal that it believes is more likely to be high
quality, provided that its belief that the proposal is high quality is no less than θ. If
its belief about the quality of both proposals is the same and no less than θ we assume
that it randomizes fairly between them. In equilibrium this can happen only when the
organization is sure that both proposals are high quality, γ̂L = γ̂H = 1.

4. Unlimited Capacity

With unlimited capacity the organization funds a proposal whenever the posterior
belief that the proposal is good is no less than θ. Anticipating the organization’s fund-
ing strategy, each agent chooses random variable Γi to maximize Pr (Γi ≥ θ) subject to
E [Γi] = γi and Pr (0 ≤ Γi ≤ 1) = 1.

Consider first the case in which the organization is predisposed in favor of accepting
policy i; that is, it would accept based on the prior alone, γi ≥ θ. In this case, agent
i prefers to choose a posterior belief random variable whose support is strictly above
θ. Doing so eliminates the possibility of a realization that could overturn the favorable
prior, and therefore guarantees that the organization accepts proposal i. Although the
agent is indifferent over all posterior belief distributions that place all mass on realiza-
tions greater than θ, one of these stand out as most reasonable: it would be the unique
equilibrium if there were even a very small cost of evidence production. The focal equi-
librium involves agents producing no information (i.e. Γi is completely uninformative).

Next, consider the alternative case in which the organization is predisposed against
accepting proposal i given its prior belief, γi < θ. In this case, agent i never prefers
an uninformative signal, which guarantees that proposal i is rejected. Instead, agent i
prefers a signal that can overturn the prior in the event of a favorable realization. In
this case, signals with non-zero probability mass on posterior beliefs in (θ, 1] or (0, θ)
are strictly dominated by a signal that concentrates probability mass on only two real-
izations: 0 and θ.7 Thus, when γi < θ the optimal signal requires only two realizations.
One realization reveals that the proposal is bad for certain, while the good realization
leaves the organization just indifferent between accepting and rejecting the proposal.

Lemma 2. In equilibrium under unlimited capacity
• If γi ≥ θ, then agent i chooses a signal (evidence strategy) such that always generates

a posterior belief realization above θ. On the equilibrium path, the organization funds
proposal i with probability 1. In the focal equilibrium, Γi = γi with probability 1.

6Assume that in equilibrium an agent sends a signal that leaves the organization indifferent with non-
zero probability. If the organization accepts with probability less than one in this case, the agent could
profitably deviate by shifting probability mass up to θ + ε. This would result in a marginal decrease in the
probability of this realization, but it would cause a jump in the probability of a proposal being accepted.

7Because γi < θ, some mass must be allocated below θ in order to satisfy the constraint on the mean,
E[Γi] = γi. If non-zero mass is allocated in interval (θ, 1] it can be reallocated to a mass point on θ without
reducing the agent’s payoff. This reallocation reduces the mean, allowing some of the mass assigned
below θ to be moved to the mass point on θ, increasing the agent’s payoff. A similar argument rules out
mass inside (0, θ).
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• If γi < θ, then agent i chooses a signal (evidence strategy) such that

Pr(Γi = θ) =
γi

θ
and Pr(Γi = 0) = 1− γi

θ
.

On the equilibrium path, the organization funds proposal i if and only if Γi = θ. This
equilibrium is unique.

This result illustrates a conflict of interest between the organization and the agents it
relies on for the production of information. Although agents have the capacity to choose
signals which fully reveal the quality of their proposals, in equilibrium they never do
so. The organization would obtain the same expected payoff if it did not observe any
signal realization and simply acted according to the priors. These results are consistent
with those derived in Kamenica and Gentzkow (2011) who establish that this conflict of
interest is a common feature of Bayesian persuasion games with a single agent.

5. Limited Capacity

In the first stage of the game with limited capacity, each agent simultaneously chooses
a Bayes-Plausible posterior belief random variable Γi. Once both agents have made their
choices, realizations of each random variable (γ̂H, γ̂L) are publicly observed. The orga-
nization then funds the proposal with the highest realization (i.e. the highest posterior
beliefs about quality), as long as max{γ̂L, γ̂H} ≥ θ. It does not fund any proposal whose
realized posterior is below θ, given that such a proposal has a negative expected payoff.
It randomizes fairly if γ̂L = γ̂H ≥ θ. Given the other agent j’s posterior belief random
variable Γj, agent i’s payoff of choosing a Bayes-Plausible random variable Γj is

EUi(Γi, Γj) = Pr(Γi > Γj ∩ Γi ≥ θ) +
1
2

Pr(Γi = Γj ∩ Γi ≥ θ).

The normal form representation of this game is closely related to the normal form of
a full-information all-pay auction; although important distinctions exist. In the standard
full-information all-pay auction, each agent’s action is a choice of non-negative bid. The
agent who chooses the highest bid wins a prize whose value is common knowledge (but
can differ across players). All participants must pay their bids. A mixed strategy in this
game is a choice of a random variable representing a player’s random bid. The player
whose random variable realization (i.e. bid) is highest wins the prize. In our framework,
agents also design random variables, and the agent whose random variable generates the
highest realization (that meets the minimum threshold θ) has his proposal accepted. The
key difference between our framework and an all pay auction involves the constraints
imposed by Bayes-Plausibility. In our framework, the agent’s strategy Γi represents the
distribution of posterior beliefs generated by his signal. Bayesian rationality therefore
requires that the expected value of an agent’s strategy equal the prior belief (which can
be different for each agent).8 A full information auction with a constraint on the mean
bid is analyzed by Conitzer and Wagman (2011); however, our framework considers a
number of additional significant features absent from the analysis of the standard all-pay

8In the all-pay auction setting, this constraint forces each bidder to adhere to a (potentially different)
budget constraint that holds in expectation only. While in the all pay auction agent i chooses best response
Bi to maximize vPr(Bi > Bj) +

1
2 vPr(Bi = Bj) − E[Bi], in our game player i’s best response maximizes

Pr(Γi > Γj) +
1
2 Pr(Γi = Γj) subject to E[Γi] = γi.
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auction. Because realizations represent probabilities, the maximum possible realization
is γ̂i = 1 (in an all-pay auction, this requirement is effectively a bid cap). The orga-
nization’s decision problem also imposes a minimum realization that is required for a
proposal to be accepted, equivalent to a reservation price. Finally, because priors about
each proposal quality can be different, agents face different constraints on their poste-
rior belief random variables. Despite these important distinctions, our analysis brings to
light an interesting connection between Bayesian persuasion games and all-pay auctions.

In the Appendix, we derive the equilibrium of the signal design game for all possible
(γH, γL) combinations. For generic parameters, the equilibrium is unique. Each possible
equilibrium of the game shares a similar structure. The disadvantaged player, L, chooses
a strategy that consists of some combination of the following: a mass point on zero,
uniform mixing between θ and some value γ̄ < 1, and a mass point on one. The
advantaged player, H, plays a strategy similar in structure to L, expect that H may
additionally concentrate probability mass on realization γ̂H = θ (the realization that is
just persuasive enough to cause the organization to fund its proposal whenever the other
agent’s signal results in ΓL = 0).

Lemma 3. In every equilibrium, agents’ evidence strategies have the following structure:

ΓH =


0 with probability fH0
θ with probability fHθ

U[θ, γ̄] with probability fHU
1 with probability fH1

ΓL =

 0 with probability fL0
U[θ, γ̄] with probability fLU
1 with probability fL1

where γ̄ ∈ (θ, 1) depends on parameters (γH, γL). Agents put no probability mass on realizations
outside of {0, θ, 1} ∪ [θ, γ̄].

Figure 1 divides the parameter space into six regions, each corresponding to a partic-
ular equilibrium structure. Table 1 gives more details about the structure of the unique
equilibrium in each region. The table refers to the following equations involving γ̄.

TL(γ) ≡ γ +
√

γ2 + θ2 and TR(γ) ≡ γ +
√

γ2 − θ2 (1)

The equilibrium has a number of notable features. First, competition through informa-
tion provision can incentivize agents to supply fully-informative signals in equilibrium,
but this is not always the case. This equilibrium exists only when both proposals are
sufficiently likely to be good ex ante (Region A in Figure 1). This result contrasts with
competitive information provision in settings where agents design signals about the en-
tire state (for example, guilt or innocence of a defendant as in Gentzkow and Kamenica
(2012a)), rather than about one dimension of the state (the quality of an agent’s proposal).
With this type of information production, full information from both agents would al-
ways be an equilibrium. Next, consider regions D and F, in which γL is too low to
generate a fully revealing equilibrium, and the ex ante asymmetry between the proposals
is also small. Here, agent L chooses a signal structure that sometimes reveals the true
state of the world, but otherwise produces a noisy realization that leaves the organiza-
tion favorable, but still uncertain about his proposal. Compared with agent L, agent H
shifts mass from posterior realization zero onto realization θ, otherwise generating the
same posterior belief distribution. Thus, agent H takes advantage of a favorable prior
by choosing a signal that is less likely to inform the organization when his proposal is
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Figure 1. Equilibrium Regions

Table 1. Summary of equilibrium structure by region

Region L Strategy H Strategy γ̄

A fL0, fL1 > 0 (FI) fH0, fH1 > 0 (FI) N/A
B fL0, fL1 > 0 (FI) fHθ, fH1 > 0 N/A
C fL0, fLU, fL1 > 0 fHθ, fHU, fH1 > 0 2− TR(γH)

D fL0, fLU, fL1 > 0 fH0, fHθ, fHU, fH1 > 0 2− TL(γL)

E fL0, fLU > 0 fHθ, fHU > 0 TR(γH)

F fL0, fLU > 0 fH0, fHθ, fHU > 0 TL(γL)

All values of f not listed equal 0. (FI) denotes a fully-informative
strategy. Along the diagonal in regions A, D and F where γH = γL,
strategies are given above, except fHθ = 0, and fHi = fLi elsewhere.
TL and TR are given by Eq. (1).

bad. In addition, agent L’s equilibrium posterior belief random variable is the same as
on the diagonal: agent L does not respond to the introduction of small asymmetries in
the prior beliefs. When the asymmetry in priors becomes large enough, parameters cross
into Regions E or C. Here, agent H is no longer able to satisfy the mean requirement by
shifting mass from 0 to θ alone and begins to shift mass to higher realizations. In these
regions agent L’s equilibrium signal does respond to increases in γH (by becoming more
informative, as we discuss below). In Region B, the asymmetry between γH and γL is
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sufficiently large that agent H shifts all probability mass from (θ, 1) to 1, generating a
posterior belief random variable that puts mass only on realization θ and 1, and agent L
adopts a fully revealing strategy .

To develop additional insight into competition through information provision, con-
sider how an increase in the prior for proposal j affects agent i’s posterior belief random
variable. If γj increases, the constraint on the mean of Γj (arising from Bayes-Plausibility)
is relaxed, allowing agent j to concentrate more probability mass on high realizations of
his posterior belief random variable. When this increase is significant, competitive pres-
sure motivates agent i to also reallocate mass onto high realizations. However, because γi
is unchanged, to satisfy his mean constraint, agent i must simultaneously allocate mass
to lower realizations of his posterior. Thus, in response to an increase in γj, player i
shifts mass away from realizations near the prior onto realizations close to zero and one,
while preserving the mean of Γi. In the appendix, we show that the reallocation of mass
generates a posterior belief random variable that is second order stochastic dominated
by the original. Results in Ganuza and Penalva (2010) establish that second order sto-
chastic dominance of posterior belief random variables with the same mean is equivalent
to Blackwell informativeness (in the context of binary states, as in our model).

Proposition 1. In equilibrium, the Blackwell informativeness of agent i’s signal (evidence strat-

egy) is weakly increasing with γj. If γj > γ′j, then in equilibrium either Γ′i
d
= Γi or Γ′i is more

Blackwell informative than Γi.

This proposition reveals a complementarity between an agent’s signal informative-
ness and the competitive pressure that he faces: as his opponent’s proposal looks more
promising ex ante, the agent responds by supplying a more informative signal.

6. The capacity tradeoff

Under limited capacity, agents compete to generate the highest posterior beliefs about
their proposals. Bayes-Plausibility requires that any probability mass on favorable belief
realizations (above the prior) is offset (in a mean preserving way) by probability mass
on unfavorable belief realizations (below the prior). Thus competition to generate higher
beliefs realizations also forces agents to choose evidence strategies which generate lower
belief realizations, spreading mass on posterior belief realizations inside the unit in-
terval. Compared with the equilibrium posterior belief distributions under unlimited
capacity, with limited capacity probability mass is shifted away from the mean, toward
zero and one. Indeed, the posterior belief random variables arising in equilibrium under
limited capacity are second order stochastic dominated by those arising under unlimited
capacity, implying that under limited capacity, signals are more Blackwell informative.

Proposition 2. In the unique equilibrium of the limited capacity game, each agent chooses a
signal (evidence strategy) which is more Blackwell informative than in the unique (for an agent
with γi < θ) or focal (for an agent with γi ≥ θ) equilibrium under unlimited capacity.

Limited capacity thus creates incentives for agents to supply more Blackwell informa-
tive signals, which benefits the organization. However, by restricting its ability to act ex
post, limited capacity also imposes a cost on the organization. Indeed, if both proposals
generate posterior belief realizations strictly greater than θ, then the organization would
strictly benefit by accepting both proposals, but under limited capacity it is constrained
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to accept only one. Next, we argue that unless both proposals are sufficiently likely to
be good ex ante, the benefits dominate the costs of limited capacity.

When the organization is predisposed against both proposals, the result is immediate.
With unlimited capacity, the organization is, at best, indifferent between accepting and
rejecting, giving its payoff zero. In this case, no ex ante cost is associated with limited
capacity. At the same time, limited capacity motivates the agents to supply signals that
are more informative, and a positive probability exists that the organization will accept
one of the two proposals, leaving it with a positive expected payoff. Thus, when it is
predisposed against both proposals, the organization prefers limited capacity.

If it is predisposed against L, but in favor of H, then under unlimited capacity, the
organization always accepts proposal H and expects zero payoff from proposal L, result-
ing in expected payoff γH − θ. In the limited capacity game, if the organization is forced
to accept H and reject L, then its expected payoff will be γH − θ, identical to its payoff
in the unlimited capacity equilibrium. In the limited capacity equilibrium, however, the
organization is not constrained to always accept H and reject L. In fact, the probability
that the organization maximizes its payoff by accepting L or rejecting both proposals is
always non-zero in the limited capacity equilibrium. Its expected payoff in the limited
capacity equilibrium therefore exceeds its payoff when it is constrained (which is iden-
tical to its unlimited capacity payoff). Thus, if the organization is predisposed against
either proposal it strictly prefers limited capacity.

We have therefore demonstrated that the organization strictly prefers the equilibrium
with limited capacity whenever γL ≤ θ, independent of γH. Because the equilibrium
changes in a continuous way as the parameters change, there also exists a region with
γL > θ in which the organization prefers limited capacity.9

Proposition 3. If γL, γH ≤ θ, then the organization’s expected payoff always is strictly higher
under limited capacity compared to unlimited capacity. If γH > θ, then there exists a value
γ̃L ∈ (θ, γH) such that the organization’s expected payoff is strictly higher under limited capacity
for all γL < γ̃L.

In other words, the organization benefits from limited capacity, unless ex ante beliefs
in favor of both proposals are sufficiently strong. In that case, limiting capacity forces the
organization to forgo a proposals that has a high ex ante probability of being beneficial.
In all other parameter cases, the organization is better off under limited capacity. In
these situations, the benefits associated with better information dominate the costs of
potentially forgoing a project that is worthwhile.

7. Conclusion

We model the allocation of limited funding across proposals as a persuasion game with
limited capacity. Agents representing alternative proposals produce evidence regarding
the merits of their proposals, in the hope of persuading a funding organization to allocate
resources to their opportunity.

Not only do the agents choose whether to produce evidence, but they also choose
how informative the evidence is that they collect. That is, they design the polls, research

9Technically, discontinuities occur when crossing into region A from parameters that are not inside
region B. However, in the interior of all equilibrium regions, the equilibrium posterior belief distributions
are continuous in the parameters, so this point is irrelevant for the argument.
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Figure 2. Benefit of limited capacity

In the shaded region, the organization’s payoff is higher under
limited capacity than under unlimited capacity.

methodology, or search for evidence about the merits of their proposals. The funding
organization prefers that the agents produce the most informative evidence possible.
Agents, however, strategically choose to produce less informative evidence, a strategy
which maximizes the probability that they receive funding. We show that the organiza-
tion will be better informed and can be better off when the number of proposals that it
can accept is limited. When the organization is unable to accept all proposals, the agents
respond to the introduction of competitive pressure by producing more Blackwell in-
formative evidence. Except when the priors strongly favor the implementation of both
proposals, the organization is better off when its capacity to fund projects is limited.

Our analysis highlights a novel benefit of capacity constraints and underfunding in or-
ganizations. Limited capacity incentivizes the provision of more persuasive information
by those vying for funding. This leads to better informed funding allocation decisions
by organizations. An underfunded foundation or charity will be better informed and
able to more efficiently allocate its resources across community projects or individuals,
compared to an foundation or charity that can afford to give money to all community
projects or individuals its sees as deserving. A legislature or government bureaucracy
will be better informed and may more efficiently allocate resources across earmarks,
internal projects, or policy reforms when those resources are limited. A firm manager
will become better informed about the optimal allocation of funding within her divi-
sion if she faces resource constraints than if she does not. These benefits come because
capacity constraints incentivizes those competing for the limited resources to produce
evidence that is more informative about the merits of their proposals. This can benefit
the organization responsible for allocating the funding.
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Appendix A. Appendix

Proof. Lemma 1 As Γi is Bayes-Plausible, its generalized density p(x) can be written as

p(x) = f (x) +
M

∑
k=1

µkδ(x−mk), (2)

where f (x) is continuous in the interior of its support, mk is a mass point of Γi, and µk is the
mass on mk. Define two new random variables, (Sb

i , Sg
i ) by their generalized densities as follows:

pg(x) =
( x

γ

)
p(x) and pb(x) =

( 1− x
1− γ

)
p(x).

Observe that the supports of (Sb
i , Sg

i ) coincide exactly with the support of Γi, which must be inside
the unit interval. If Γi is Bayes-Plausible, E[Γi] = γi and these generalized densities integrate to
one. Also observe also that the likelihood ratio for this signal structure is equal to

pb(x)
pg(x)

=
1− x

x
γ

1− γ
,

which is differentiable for all x in the interior of the support of Γi. Consider the valid signal given
by the pair (Sb

i , Sg
i ). For this signal, the posterior belief associated with a draw of s is

γpg(s)
γpg(s) + (1− γ)pb(s)

=
γ( s

γ )p(s)

γ( s
γ )p(s) + (1− γ)( 1−s

1−γ )p(s)
= s

Thus, for this signal, the posterior belief associated with a draw of s from this signal structure is
simply s itself. Furthermore, the density of the posterior belief is therefore equal to the density
of a draw from this signal structure:

γpg(x) + (1− γ)pb(x) = p(x)

Thus, we have constructed a valid signal for which the ex ante posterior belief is Γi. Note that
other constructions are possible. �

A.1. Derivation of equilibria under limited capacity. Lemma 4 shows that each player’s equi-
librium strategy always takes a certain structure.

Lemma 4. In every equilibrium, Γi takes the following form:

Γi =


0 with probability fi0
θ with probability fiθ
U[θ, γ̄] with probability fiU
1 with probability fi1

where fi0, fiθ , fiU , fi1 ≥ 0 and fi0 + fiθ + fiU + fi1 = 1.

Proof. A strategy for agent i, is a random variable Γi with support contained in the unit interval,
and expectation γi. Because the underlying signal structure is valid, Γi has a finite number of
mass points. Let Mi represent the set of all mass points in Γi, and m denotes an arbitrary mass
point in Mi. Let µi(m) = Pr(Γi = m) for all m ∈ Mi. The cumulative distribution function of Γi,
denoted Pi, is as follows:

Pi(x) = Fi(x) + ∑
m∈Mi

H(x−m)µi(m) (3)

where Fi(x) is a continuous and differentiable function, strictly increasing in the interior of set Ii,
a countable union of closed intervals, and it is neither increasing nor decreasing outside of Ii; H(·)
represents a right-continuous step function. The support of random variable Γi is Ii ∪Mi ≡ S[Γi].
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Let Wi(x) represent the probability proposal i is accepted when signal Γi generates posterior
belief realization x.

Wi(x) =
{

0 if x < θ
Pr(Γj < x) + 1

2 Pr(Γj = x) if x ≥ θ.

Thus, for any point x this function is given by the following expression:

Wi(x) =


0 if x < θ
Pj(x) if x ≥ θ and x ∈ Ij and x /∈ Mj
Pj(x)− 1

2 µi(x) if x ≥ θ and x ∈ Mj.
(4)

Function Pj(x) neither increases nor decreases outside of set S[Γj]. Therefore, function Wi(x)
maintains a constant value in any interval that does not intersect S[Γj].

Consider the best response of agent i to a choice of Γj by agent j. Agent i prefers is a choice of
random variable Γi with generalized density pi to solve the following maximization:

max
pi(·)

∫ 1

0
pi(x)Wi(x)dx

s.t.
∫ 1

0
pi(x)xdx = γi and

∫ 1

0
pi(x)dx = 1 and pi(x) ≥ 0 ∀x ∈ [0, 1].

The first constraint comes from the law of iterated expectations given the ex ante distribution of
proposal type. Consider the Lagrangian for agent i’s maximization problem:

L =
∫ 1

0
pi(x)Wi(x)dx− λ1i

(∫ 1

0
pi(x)xdx− γi

)
− λ2i

(∫ 1

0
pi(x)dx− 1

)
− λ3i(x)pi(x)

where a separate λ3i may apply for each x. Simplifying the expression gives

L =
∫ 1

0
pi(x)(Wi(x)− λ1i(x− γi)− λ2i − λ3i(x))dx− λ2i

The stationarity condition with respect to pi(x) requires that for all x ∈ [0, 1],

Wi(x)− λ1i(x− γi)− λ2i − λ3i(x) = 0

Consider any x for which pi(x) > 0. Complementary slackness requires that λ3i(x) = 0. Further-
more, if pi(x) = 0, then λ3i(x) ≥ 0. Hence, defining

Li(x) ≡Wi(x)− λ1i(x− γi) (5)

we find the following conditions:

x ∈ S[Γi]⇒ Li(x) = λ2i (6)

x /∈ S[Γi]⇒ Li(x) ≤ λ2i,
for some λ2i ≥ 0. To summarize, all values of x ∈ S[Γi] generate the same value of Li(x), which
is at least as large as the value of Li(x) for any x /∈ S[Γi]. Condition (6) implies several properties
of best-responses.

I For any best response Pr(0 < Γi < θ) = 0.
Proof: Indeed inside (0, θ), probability of winning, Wi(x) = 0, but λi(x− γi) is increasing.

Thus, no set of realizations inside (0, θ) could generate the same value of Wi(x)− λi(x− γi).
II If Γi is a best response to Γj, then Ii is a weak subset of Ij:

Proof: Let IC
j represent the complement of set Ij. Because both Ii and Ij are unions of closed

intervals, if Ii ∩ IC
j , is non-empty. If so, it contains an interval. Outside Ij, the only support of

Γj is a finite set of mass points. Hence, exists a subinterval in Ii ∩ IC
j that does not intersect

Gj. On this interval, however, Wi(x) is constant, while λi(x− γi) is increasing.
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III If Γi is a best response to γj, and if Γj has a mass point on mj ∈ Mj, then there exists ε such
that (mj − ε, mj) does not intersect Ii.

Proof: Because Wi(x) jumps up at mj but λix does not, Li(x) jumps up at mj. Hence, any
value of x ≥ mj cannot give the same value of Li(.) as a value of x sufficiently close to mj.

IV If Γj does not have a mass point on 1, then player i best response Γi does not have a mass
point on 1.

Proof: If Γj does not have a mass point on 1, then Li(1− ε) > Li(1).

These properties have significant implications for the structure of possible equilibria.

(i) In no equilibrium does Γi or Γj put positive probability mass on realizations inside (0, θ).
Proof: Direct consequence of property I.

(ii) In equilibrium no mass point inside [θ, 1) can be common to both Γi and Γj.
Proof: Just above the mass point by ε, the probability of winning is discretely higher (by

µ
2 ), but the “cost” λi(x− γi) is only marginally higher. Thus Li(x) is higher just above the
common mass point. Only possible common mass point in equilibrium is 1.

(iii) In equilibrium Ii = Ij ≡ Ī.
Proof: Direct consequence of property II.

(iv) In equilibrium Ī is a single interval.
Proof: Suppose Ī contains more than one interval. In this case there exist {xL, xR} with

xR > xL such that [xL − εL, xL] and [xR, xR + εR] are inside Ī but (xL, xR) is not. Because
[xR, xR + εR] is inside [0, 1], xR < 1. Because no mass point inside (θ, 1) can be common
to Γi and Γj it cannot be that xR is a mass point for both players. Therefore suppose that
xR is not a mass point for j. If xR is not a mass point for j, then Wi(xL) = Wi(xR), but
λi(xR − γi) > λi(xL − γi), contradicting the optimality condition.

(v) In equilibrium, the smallest element of the (identical) interval support Ī, is θ.
Proof: In equilibrium, both random variables are supported on the same interval I. Sup-

pose the smallest element of I, denoted x is strictly above θ. Property IV shows at most
one of Γi and Γj can have a mass point on x. If exactly one has a mass point on x, let Γi be
the random variable with no mass point on x. Besides, I, Γi is supported on a set of mass
points. This implies that for sufficiently small ε, no mass point exists between x− ε and x.
No mass point exists on x, and, because x is the smallest element of I, Fj(x) = 0. Hence
Wi(x) = Wi(x− ε). Thus L(x− ε) > L(x).

(vi) In equilibrium, no mass point exists in (θ, 1) for either player.
Proof: In equilibrium each player’s strategy has the same interval support I = [θ, r]. By

property III, no mass point can exist in interval (θ, r]. If a player has mass point above
r, then it must be shared with the other player. If it is not shared with the other player,
then a point just below generates the same winning probability, but lower λix and hence a
greater value of Li(.). However, property IV implies that only possible common mass point
in equilibrium is 1, ruling out this possibility.

Equilibrium conditions (i) to (vi) allow us to characterize the structure of equilibrium strategies.
An equilibrium strategy for player i ∈ {H, L} must have the following structure:

Γi =


0 with probability ρ0

i
θ with probability ρθ

i
Φi with probability ρΦ

i
1 with probability ρ1

i

where ρ0
i + ρθ

i + ρΦ
i + ρ1

i = 1, and Φi is a random variable with support over an interval I = [θ, r]
with no mass points, and where r ∈ (θ, 1]. The CDF of Φi is given by Fi(x), where Fi(x) is
continuous (and differentiable), Fi(θ) ≥ 0 and Fi(r) = 1. In this case the win-probability for
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player i has the following structure:

Wi(x) =


0 if x ∈ [0, θ)

ρ0
j + ρθ

j
1
2 if x = θ

ρ0
j + ρθ

j + ρΦ
j Fj(x) if x ∈ [θ, r]

1− ρ1
i

1
2 if x = 1.

We make additional observations in terms of the ρ values:
(vi) If ρΦ

j > 0, then ρΦ
i > 0.

Proof: Suppose instead that ρΦ
i > 0 and ρΦ

j = 0. Since ρΦ
j = 0, Wi(x) = p0

j + pθ
j and

Li(x) = p0
j + pθ

j − λ1i(x − γi) for all x ∈ I. (6) establishes that Li(x) = vi for all x ∈ Gi.
However, Li(x) is strictly decreasing in x, contradicting the requirement that it takes on the
same value for all x ∈ [θ, r]. Therefore, if ρΦ

j = 0, then ρΦ
i = 0. This immediately implies

that if ρΦ
j > 0, then ρΦ

i > 0.
(vii) If ρΦ

j > 0, then Fj represents a uniform distribution on [θ, r].
Proof: If ρΦ

j > 0, then by (vii) ρΦ
i > 0. Given ρΦ

i > 0, (6) implies that

ρ0
j + ρθ

j + ρΦ
j Fj(x)− λ1i(x− γi) = vi for all x ∈ [θ, r] (7)

Rearranging the equality gives an expression for Fj(x) which is linear in x:

Fj(x) =
vi − ρ0

j − ρθ
j − λ1iγi

ρΦ
j

+
λ1i

ρΦ
j

x.

Thus, if any mass exists on (θ, r] then it must be uniformly distributed with a possible mass
point on θ. However, any mass point on θ is captured by ρθ

j rather than Fj. Therefore, when
it contains mass, Fj must be a uniform distribution on [θ, r].

�

Next, we characterize the equilibria in the six regions of Figure 1.

Equilibrium in Region A. Claim: If and only if γL ≥ 2−2θ
2−θ (i.e. iff we are in Region A of Figure 1)

is there a Nash Equilibrium in which each agent plays fully revealing strategy:

Γi =

{
0 with prob 1− γi
1 with prob γi.

Proof. In any fully revealing strategy, the constraint that E[Γi] = γi implies the probabilities
fi0 = 1− γi and fi1 = γi.

Suppose that agent j uses a fully revealing strategy. It must be a best response for agent i to
also play a fully revealing strategy. The proof of Lemma 4 establishes that Li(x), defined by (5),
achieves its maximum at each x ∈ Gi (at each potential realization of Γi that occurs with positive
probability in equilibrium).

Let Bi represent agent i’s best response strategy. Claim I in the proof of Lemma 4 establishes
that agent i’s best response does not include any probability in (0, θ). To rule out Bi putting
positive probability on (θ, 1), it is sufficient to show that Li(θ) > Li(x) for all x ∈ (θ, 1):

Li(θ) > Li(x) ⇐⇒
(1− γ)− λ1i(θ − γi) > (1− γi)− λ1i(x− γi) ⇐⇒

θ < x,
which is satisfied given x ∈ (θ, 1). This means that the potential support of Bi is limited to mass
points on realizations 0, θ and 1. Agent i chooses fiθ and fi1 to maximizing the probability of
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having his proposal accepted: (1− γj) fiθ + (1− γj/2) fi1. The constraint on the mean, E[Bi] = γi
implies fiθθ + fi1 = γi. Substituting fi1 = γi − fiθθ into the probability of acceptance gives

EUi = (1− γj) fiθ + (1− γj/2)(γi − fiθθ). (8)

This expression is strictly decreasing in fiθ when γj > 2(1− θ)/(2− θ), strictly decreasing in fiθ
when γj < 2(1− θ)/(2− θ), and independent of fiθ when γj = 2(1− θ)/(2− θ). This means
playing that fiθ = 0 is a best response for player i if and only if

γj ≥
2(1− θ)

2− θ
.

In equilibrium, this inequality must hold for both L and H. Since, γL ≤ γH, this implies the
parameter condition γL ≥ 2(1− θ)/(2− θ). �

Equilibrium in Region B. Claim: If and only if γL ≤ 2−2θ
2−θ and γH ≥ 2−2θ+θ2

2−θ (i.e. iff we are in
Region B of Figure 1) is there a Nash Equilibrium in which agent L plays a fully revealing strategy:

ΓL =

{
0 with prob 1− γL
1 with prob γL

and agent H plays a deflationary strategy:

ΓH =

{
θ with probability 1−γH

1−θ

1 with probability γH−θ
1−θ

We refer to such a ΓH as deflationary because it involves agent H choosing a signal that assigns
only unfavorable realizations to bad proposals, and sometimes assigns favorable and sometimes
unfavorable signals to good proposals. In this sense, the signal sometimes deflates the assess-
ment of good proposals.

Proof. Notice that ΓH is a well defined random variable when γH ≥ θ, a condition which is
always satisfied given that here γH > (2− 2θ + θ2)/(2− θ). The random variale satisfies the
mean constraint:

θ(
1− γH

1− θ
) +

γH − θ

1− θ
= γH.

We first establish that ΓH is a best reply to a fully revealing strategy for player L if and only
if γL ≤ 2(1− θ)/(2− θ) and γH > θ. The proof for Region A established that when γL >
2(1− θ)/(2− θ), player i prefers a fully informative strategy, ruling out the possibility that ΓH
is a best response for sufficiently large values of γL. We must now establish that γL is a best
response for lower values of γL. Note that (8) in the proof for Region A is increasing in fHθ when
this inequality holds. This means that when the inequality holds, i chooses the highest value of
fHθ given the constraints that fHθθ + fH1 = γi and fHθ , fH1 ∈ [0, 1].

When γH < θ, the constraint on the mean implies that fiθ is maximizes by a distribution
in which fi0 = 1− γH/θ, fiθ = γHθ and fi1 = 0. When γH > θ, the constraint on the mean
implies that fiθ is maximized by a distribution in which fi0 = 0, fiθ = (1− γH)/(1− θ) and
fi1 = (γH − θ)/(1− θ). When γH = θ, the deflationary strategy ΓH becomes an uninformative
strategy, and fiθ = 1. Therefore, ΓH requires γH > θ, a condition guaranteed when γH ≥
(2− 2θ + θ2)/(2− θ).

Next, we establish that ΓL is a best reply to ΓH if and only if γH ≥ (2− 2θ + θ2)/(2− θ). Given
the deflationary strategy by agent H, player L’s best response may put mass on realizations 0, 1
or “just above” θ. Let fLε denote the probability mass L concentrates on realizations just above θ.
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Agent L chooses fL0, fLε and fL1 to maximize the probability of having his proposal accepted,
EUi = fHθ fLε + ( fHθ + fH1/2) fL1, subject to the constraint on the mean which requires fLεθ +
fL1 = γL given the mass point just above θ is arbitrarily close to θ. Substituting into EUi for fL1
and substituting in for fHθ and fH1 from ΓH gives

EUi =
1− γH

1− θ
fLε + (

1− γH

1− θ
+

γH − θ

2(1− θ)
)(γL − fLεθ).

Agent L must have no incentive to choose fLε > 0. Therefore, this expression for EUi must be
decreasing in fLε. This is the case when,

1− γH

1− θ
− (

1− γH

1− θ
+

γH − θ

2(1− θ)
)θ ≤ 0 ⇐⇒

2(1− γH)(1− θ)− (γH − θ)θ ≤ 0 ⇐⇒

2− 2θ + θ2

2− θ
≤ γH.

If and only if this condition holds, it is a best response for agent L to play a fully revealing
strategy when H plays the deflationary strategy. �

Equilibrium in Region C. Claim: If and only if θ ≤
√

γ2
H − γ2

L and 1
2 (1 + θ2) ≤ γH ≤ 2−2θ+θ2

2−θ (i.e.
iff we are in Region C of Figure 1) is there a Nash Equilibrium in which agent L plays

ΓL =


0 with probability 1− fLU − fL1

U[θ, γ̄] with probability fLU = 2γL(γ̄−θ)
(2−γ̄)2−θ2

1 with probability fL1 = 4γL(1−γ̄)
(2−γ̄)2−θ2

and agent H plays

ΓH =


θ with probability θ

2−γ̄

U[θ, γ̄] with probability γ̄−θ
2−γ̄

1 with probability 2−2γ̄
2−γ̄

where

γ̄ = 2− γH −
√

γ2
H − θ2.

Proof. We first demonstrate that the strategies of both players are feasible. As θ ≤
√

γ2
H − γ2

L ≤
γH, γ̄ is a real number. Observe that 1

2 (1 + θ2) ≤ γH ≤ 2−2θ+θ2

2−θ ⇔ θ ≤ γ̄ ≤ 1. Under these
conditions, clearly both fHθ , fHU are positive. Furthermore, fHθ + fHU − 1 = − θ

2−γ̄ < 0. Observe
next that,

θ ≤
√

γ2
H − γ2

L ⇔ γ̄ ≤ 2− γL −
√

γ2
L + θ2

This inequality will be both necessary and sufficient later in the proof. For now, note that

2− γL −
√

γ2
L + θ2 − (θ + 2(1− γL)) = γL − θ −

√
γ2

L + θ2 < 0

The right hand side equals zero when θ = 0 and has a negative derivative in θ. Thus,

γ̄ ≤ 2− γL −
√

γ2
L + θ2 → γ̄ ≤ θ + 2(1− γL)
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Observe that θ ≤ γH → 2− γ̄ = γH +
√

γ2
H − θ2 ≥ θ. Hence fLU , fL1 ≥ 0. Next, observe that

fLU + fL1 − 1 = γ̄−(θ+2(1−γL))
2−γ̄−θ ≤ 0 as described above. Therefore ΓH, ΓL are random variables.

They are feasible if they satisfy the constraints on the expected values.

E[ΓH ] = (1− fHθ + fHU)θ + fHθ
θ + γ̄

2
+ fHU =

θ2 + (2− γ̄)2

2(2− γ̄)
= γH

E[ΓL] = fLU
θ + γ̄

2
+ fL1 = γL

Note also that θ ≤
√

γ2
H − γ2

L and 1
2 (1 + θ2) ≤ γH ≤ 2−2θ+θ2

2−θ means that γL ≤ 2−2θ
2−θ .

Next, we establish that the proposed strategies are mutual best responses. According to
Lemma 1, any possible best response to ΓH, denoted Γ̂L must have the following structure:

Γ̂L =


0 with probability 1− φM − φH − φHθ

GM with probability φM
GH with probability φH
1 with probability φHθ

Where GM is a random variable with support contained in [θ, γ̄], E[GM] = ḡM, and density
gM(x), while GH is a random variable with support contained in [γ̄, 1] and E[GH ] = ḡH and
density gH(x). If a mass point exists at γ̄ then it is part of GM, and if a mass point exists at 1,
it is not part of GH (no mass point exists at endpoints of GH). Furthermore, no mass point at θ
exists in GM. Such mass point leads to ties with positive probability; using a mass point of θ + ε
leads to all ties at θ breaking in favor of player L. In order for this strategy to be feasible, it must
be that

φM ḡM + φH ḡH + φHθ = γL ⇐⇒ ḡM =
γL − φH ḡH − φHθ

φM
.

The expected payoff of using such a strategy against ΓH is given by:

φM(1− fHθ − fHU + fHθ

∫ γ̄

θ

x− θ

γ̄− θ
gM(x) dx) + φH(1− fHU) + φHθ(1−

fHU

2
)

= φM(1− fHθ − fHU + fHθ
ḡM − θ

γ̄− θ
) + φH(1− fHU) + φHθ(1−

fHU

2
)

= φM(1− fHθ − fHU + fHθ

γL−φH ḡH−φHθ

φM
− θ

γ̄− θ
) + φH(1− fHU) + φHθ(1−

fHU

2
)

= φM
(γ̄− θ)(1− fHU)− γ̄ fHθ

(γ̄− θ)
+ φHθ

(2− fHU)(γ̄− θ)− 2 fHθ

2(γ̄− θ)

+ φH(
(2− fHU)(γ̄− θ)− 2 fHθ

2(γ̄− θ)
− fHθ(ḡH − γ̄)

γ̄− θ
) +

γL fHθ

γ̄− θ
.

Clearly, the coefficient on φH is less than the coefficient on φHθ . Thus, in any best response,
φH = 0. It is also easy to check that the coefficient on φM, φHθ are equal to zero. Thus the payoff
to using a strategy of type Γ̂L is independent of φM, φHθ , GM. Thus any random variable in class
Γ̂L is a best response, provided φH = 0. As ΓL satisfies these criteria, it is a best response.

Next, we show that ΓH is a best response to ΓL. According to Lemma 1, any admissible best
response to ΓL, denoted Γ̂H must have the following structure:

Γ̂H =


0 with probability 1− φM − φH − φHθ

GM with probability φM
GH with probability φH
1 with probability φHθ
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Where GM is a random variable with support contained in [θ, γ̄], E[GM] = ḡM, and density
gM(x), while GH is a random variable with support contained in [γ̄, 1] and E[GH ] = ḡH and
density gH(x). If a mass point exists at γ̄ then it is part of GM, and if a mass point exists at 1, it
is not part of GH (no mass point exists in GH). In order for this strategy to be admissible, it must
be that

φM ḡM + φH ḡH + φHθ = γH ⇐⇒ ḡM =
γH − φH ḡH − φHθ

φM

The expected payoff of using such a strategy against ΓL is given by:

φM(1− fLU − fL1 + fLU

∫ γ̄

θ

x− θ

γ̄− θ
gM(x) dx) + φH(1− fL1) + φHθ(1−

fL1

2
)

By symmetry with the previous calculations this simplifies to:

φM
(γ̄− θ)(1− fL1)− γ̄ fLU

(γ̄− θ)
+ φHθ

(2− fL1)(γ̄− θ)− 2 fLU

2(γ̄− θ)

+φH(
(2− fL1)(γ̄− θ)− 2 fLU

2(γ̄− θ)
− fLU(ḡH − γ̄)

γ̄− θ
) +

γH fLU

γ̄− θ

As in the previous calculation, φHθ = 0 for any best response. Next observe that

2((γ̄− θ)(1− fL1)− γ̄ fLU) = (2− fL1)(γ̄− θ)− 2 fLU =
2(γ̄− θ)

(2− γ̄)2 − θ2

=
2(γ̄− θ)

(2− γ̄)2 − θ2 (−γ̄2 + (4− 2γL) + θ2 + 4γL − 4)

This is larger than zero, provided γ̄ ≤ 2− γL −
√

γ2
L + θ2, which was demonstrated previously

and is equivalent to If θ ≤
√

γ2
H − γ2

L. Hence, any random variable in class Γ̂H is a best response,
provided φH = 0. As the strategy ΓH satisfies these criteria, it is a best response. �

Equilibrium in Region D. Claim: If and only if
√

γ2
H − γ2

L ≤ θ and 1
2 (1− θ2) ≤ γL ≤ 2−2θ

2−θ (i.e. iff
we are in Region D of Figure 1) is there a Nash Equilibrium in which agent L plays

ΓL =


0 with probability θ

2−γ̄

U[θ, γ̄] with probability γ̄−θ
2−γ̄

1 with probability 2−2γ̄
2−γ̄

and agent H plays

ΓH =


0 with probability θ

2−γ̄ −
γH−γL

θ

θ with probability γH−γL
θ

U[θ, γ̄] with probability γ̄−θ
2−γ̄

1 with probability 2−2γ̄
2−γ̄

where

γ̄ = 2− γL −
√

γ2
L + θ2.

Proof. We first demonstrate that the strategies of both players have support inside the unit interval
and satisfy the mean constraint. First, observe that 1

2 (1− θ2) ≤ γL ≤ 2−2θ
2−θ ⇔ θ ≤ γ̄ ≤ 1, that is,

the second group of inequalities is necessary for either strategy to be feasible. These inequalities
also imply that fHU = fLU ≥ 0 and fH1 = fL1 ≥ 0. It is also obvious that fHθ ≥ 0. To prove that
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all probabilities are less than 1, we establish that fHθ + fHU + fH1 ≤ 1. This inequality implies
that fLU + fL1 ≤ 1.

fHθ + fHU + fH1 − 1 =
γH −

√
γ2

L + θ2

θ
≤ 0⇔ θ ≥

√
γ2

H − γ2
L

Thus the second inequality is necessary for H’s strategy to be a random variable. The inequalities
defined in the proposition are therefore necessary and sufficient for ΓH, ΓL to be well defined.
Finally, we demonstrate that both random variables have the correct expected values.

E[ΓL] = fLU
θ + γ̄

2
+ fL1 =

γ̄− θ

2− γ̄
(

θ + γ̄

2
) +

2− 2γ̄

2− γ̄
= γL

E[ΓH ] = fHθθ + E[ΓL] = γH

Next, we establish that the proposed strategies are mutual best responses. According to
Lemma 1, any admissible best response to ΓH, denoted Γ̂L must have the following structure:

Γ̂L =


0 with probability 1− φM − φH − φHθ

GM with probability φM
GH with probability φH
1 with probability φHθ

Where GM is a random variable with support contained in [θ, γ̄], E[GM] = ḡM, and density
gM(x), while GH is a random variable with support contained in [γ̄, 1] and E[GH ] = ḡH and
density gH(x). If a mass point exists at γ̄ then it is part of GM, and if a mass point exists at 1, it is
not part of GH (no mass point exists at endpoints of GH). Furthermore, no mass point at θ exists
in GM. Such mass point leads to ties with positive probability; using a mass point of θ + ε leads
to all ties at θ breaking in favor of player L. In order for this strategy to be admissible, it must be
that

φM ḡM + φH ḡH + φHθ = γL ⇐⇒ ḡM =
γL − φH ḡH − φHθ

φM

The expected payoff of using such a strategy against ΓH is given by:

φM(1− fHU − fH1 + fHU

∫ γ̄

θ

x− θ

γ̄− θ
gM(x) dx) + φH(1− fH1) + φHθ(1−

fH1

2
)

= φM(1− fHU − fH1 + fHU
ḡM − θ

γ̄− θ
) + φH(1− fH1) + φHθ(1−

fH1

2
)

= φM(1− fHU − fH1 + fHU

γL−φH ḡH−φHθ

φM
− θ

γ̄− θ
) + φH(1− fH1) + φHθ(1−

fH1

2
)

= φM
2(γ̄− θ)(1− fH1)− 2γ̄ fHU

2(γ̄− θ)
+ φH

2(γ̄− θ)(1− fH1)− 2γ̄ fHU − 2 fHU(ḡH − γ̄)

2(γ̄− θ)

+ φHθ
2(γ̄− θ)(1− fH1)− 2γ̄ fHU

2(γ̄− θ)
+

2γL fHU

2(γ̄− θ)
.

Observe first that the coefficient on φH is less than the coefficient on either φM or φH, hence, for
any best response, φH = 0. Furthermore,

2(γ̄− θ)(1− fH1)− 2γ̄ fHU = 2(γ̄− θ)(1− 2− 2γ̄

2− γ̄
)− 2γ̄

γ̄− θ

2− γ̄
= 0.

Thus, the payoff of any admissible random variable does not depends on φHθ , φM, GM. Thus any
random variable with the structure Γ̂L and φH = 0 is a best response to ΓH. In particular, ΓL is a
best response to ΓH.
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Next, we show that ΓH is a best response to ΓL. According to Lemma 1, any admissible best
response to ΓL, denoted Γ̂H must have the following structure:

Γ̂H =


0 with probability 1− φM − φH − φHθ

GM with probability φM
GH with probability φH
1 with probability φHθ

Where GM is a random variable with support contained in [θ, γ̄], E[GM] = ḡM, and density
gM(x), while GH is a random variable with support contained in [γ̄, 1] and E[GH ] = ḡH and
density gH(x). If a mass point exists at γ̄ then it is part of GM, and if a mass point exists at 1, it
is not part of GH (no mass point exists in GH). In order for this strategy to be admissible, it must
be that

φM ḡM + φH ḡH + φHθ = γH ⇐⇒ ḡM =
γH − φH ḡH − φHθ

φM
.

The expected payoff of using such a strategy against ΓL is given by:

φM(1− fLU − fL1 + fLU

∫ γ̄

θ

x− θ

γ̄− θ
gM(x) dx) + φH(1− fL1) + φHθ(1−

fL1

2
)

Because of the equalities fLU = fHU , fL1 = fH1 this equation becomes

φM(1− fHU − fH1 + fHU
ḡM − θ

γ̄− θ
) + φH(1− fH1) + φHθ(1−

fH1

2
)

= φM(1− fHU − fH1 + fHU

γL−φH ḡH−φHθ

φM
− θ

γ̄− θ
) + φH(1− fH1) + φHθ(1−

fH1

2
)

= φM
2(γ̄− θ)(1− fH1)− 2γ̄ fHU

2(γ̄− θ)
+ φH

2(γ̄− θ)(1− fH1)− 2γ̄ fHU − 2 fHU(ḡH − γ̄)

2(γ̄− θ)

+ φHθ
2(γ̄− θ)(1− fH1)− 2γ̄ fHU

2(γ̄− θ)
+

2γH fHU

2(γ̄− θ)
.

Thus, from the previous equation, it follows that in any best response φH = 0. Furthermore, the
payoff of any admissible strategy is independent of φM, φHθ , GM, thus any admissible strategy
with φH = 0 is a best response. As ΓH satisfies these criteria it is a best response. �

Equilibrium in Region E. Claim: If and only if θ ≤
√

γ2
H − γ2

L and γH ≤ 1
2 (1 + θ2) (i.e. iff we are

in Region E of Figure 1) is there a Nash Equilibrium in which agent L plays

ΓL =

{
0 with probability 1− 2γL

γ̄+θ = 1− fL

U[θ, γ̄] with probability 2γL
γ̄+θ = fL

and agent H plays

ΓH =

{
θ with probability 1− 2(γH−θ)

γ̄−θ = 1− fH

U[θ, γ̄] with probability 2(γH−θ)
γ̄−θ = fH

where
γ̄ = γH +

√
γ2

H − θ2.

Proof. First we establish that the proposed strategies are admissible.

By assumption θ ≤
√

γ2
H − γ2

L ≤ γH, therefore γ̄ is a real number. These same conditions

imply that γ̄ ≥ θ. Furthermore, θ ≤
√

γ2
H − γ2

L ⇔ fH ≥ fL (this condition is not necessary for
the random variables to be well defined but it will be both necessary and sufficient later in the
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proof). As θ ≤ γH, fH ≥ 0, fL is obviously positive. Finally, substituting and simplifying gives

fH − 1 = −γH−
√

γ2
H−θ2

θ < 0; fL ≤ fH ≤ 1. If γH ≤ 1
2 (1 + θ2) then γ̄ ≤ 1. Finally, we check that

both random variables have the required expectations.

E[ΓL] =
2γL

γ̄ + θ

γ̄ + θ

2
= γL

E[ΓH ] = (1− 2(γH − θ)

γ̄− θ
)θ +

2(γH − θ)

γ̄− θ

γ̄ + θ

2
= γH

We now show that the proposed strategies are mutual best responses. According to Lemma 1,
any best reply to ΓH has the following structure:

Γ̂L =

 0 with probability 1− φM − φH
GM with probability φM
GH with probability φH

Where GM is a random variable with support contained in [θ, γ̄], E[GM] = ḡM, and density
gM(x), while GH is a random variable with support contained in [γ̄, 1] and E[GH ] = ḡH and
density gH(x). If a mass point exists at γ̄ then it is part of GM (no mass point at left endpoint
exists in GH). Furthermore, no mass point at θ exists in GM. Such mass point leads to ties with
positive probability; using a mass point of θ + ε leads to all ties at θ breaking in favor of player
L.

In order for Γ̂L to be admissible, it must be that φM ḡM + φH ḡH = γL, which implies

ḡM =
γL − φH ḡH

φM

Consider the expected payoff of playing Γ̂L against ΓH:

φM(1− fH + fH

∫ γ̄

θ

x− θ

γ̄− θ
gM(x) dx) + φH

= φM(1− fH + fH
ḡM − θ

γ̄− θ
) + φH

= φM(1− fH + fH

γL−φH ḡH
φM

− θ

γ̄− θ
) + φH

= φH
γ̄− θ − fH ḡH

γ̄− θ
+ φM

γ̄− θ − fHγ̄

γ̄− θ
+

γL fH

γ̄− θ
.

Observe that the coefficient on φM is equal to 0:

γ̄− θ − fHγ̄ = γ̄− θ − 2(γH − θ)

γ̄− θ
γ̄

=
γ2

H − θ2 − (γ̄− γH)
2

γ̄− θ
=

γ2
H − θ2 − (

√
γ2

H − θ2)2

γ̄− θ
= 0.

Thus, the payoff of any admissible best response Γ̂L does not depend on the value of φM or on
the random variable GM. Moreover, as no mass point exists in GH at the left endpoint, ḡH > γ̄.
Therefore γ̄− θ − fHγ̄ = 0 → γ̄− θ − fH ḡH < 0. Hence, in any best response, it must be that
φH = 0. Therefore, a random variable is a best response to ΓH if and only if it has the structure
of ΓL, with φH = 0. As the strategy ΓL proposed in the proposition, satisfies these criteria, ΓL is
a best reply to ΓH.
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As we have already shown, any best reply to ΓL has the following structure:

Γ̂H =


0 with probability 1− φL − φM − φH
θ with probability φL
GM with probability φM
GH with probability φH

Where GM is a random variable with support contained in [θ, γ̄], E[GM] = ḡM, and density
gM(x), while GH is a random variable with support contained in [γ̄, 1] and E[GH ] = ḡH and
density gH(x). If a mass point exists at γ̄ then it is part of GM (no mass point at left endpoint
exists in GH). Also, GM has no mass point at θ.

In order for Γ̂H to be admissible, it must be that φLθ + φM ḡM + φH ḡH = γH, which implies

ḡM =
γH − φH ḡH − φLθ

φM
.

Consider the expected payoff of playing Γ̂H against ΓL:

φL(1− fL) + φM(1− fL + fL

∫ γ̄

θ

x− θ

γ̄− θ
gM(x) dx) + φH

= φL(1− fL) + φM(1− fL + fL
ḡM − θ

γ̄− θ
) + φH

= φL(1− fL) + φM(1− fL + fL

γL−φH ḡH−φLθ
φM

− θ

γ̄− θ
) + φH

= φH
γ̄− θ − fL ḡH

γ̄− θ
+ (φL + φM)

γ̄− θ − fLγ̄

γ̄− θ
+

γH fL

γ̄− θ
.

Observe that the coefficient on (φL + φM) is positive, if and only if fH ≥ fL ⇔ θ ≤
√

γ2
H − γ2

L.
Moreover, because ḡH > γ̄ the coefficient on φH is strictly less than the one on (φL + φM).
Therefore, in the best response, φH = 0 and φL + φM = 1. As the strategy in the proposition
satisfies these criteria, it is a best response. �

Equilibrium in Region F. Claim: If and only if
√

γ2
H − γ2

L ≤ θ and γL ≤ 1
2 (1− θ2) (i.e. iff we are

in Region F of Figure 1) is there a Nash Equilibrium in which agent L plays

ΓL =

{
0 with probability γ̄−2γL

θ

U[θ, γ̄] with probability 1− γ̄−2γL
θ

and agent H plays

ΓH =


0 with probability γ̄−γH−γL

θ

θ with probability γH−γL
θ

U[θ, γ̄] with probability 1− γ̄−2γL
θ

where
γ̄ = γL +

√
γ2

L + θ2.

Proof. First, we establish that the proposed strategies are random variables with support in the
unit interval that satisfy the mean constraint. Obviously, γ̄ ≥ θ, fHθ ≥ 0. A simple calculation

shows that
√

γ2
L + θ2 − γL ≤ θ, and therefore, fHU = fL ≥ 0. Furthermore, fHθ + fHU − 1 =

γH−
√

γ2
L+θ2

θ . This difference is negative if and only if θ ≥
√

γ2
H − γ2

L. Thus, all probabilities
are in the unit interval if and only if the first required inequality is satisfied. Observe that
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γL ≤ 1
2 (1− θ2) ⇔ γ̄ ≤ 1, thus the second required inequality ensures that γ̄ is less than 1. Next

we demonstrate that the expected values are correct:

E[ΓL] = fL(
θ + γ̄

2
) = (1−

√
γ2

L + θ2 − γL

θ
)(

θ + γL +
√

γ2
L + θ2

2
) = γL

E[ΓH ] = fHθθ + fHU(
θ + γ̄

2
) = θ

γH − γL

θ
+ γL = γH

Next, we demonstrate that the strategies are mutual best replies. According to Lemma 1, any
admissible best reply to ΓH, denoted Γ̂L must have the following structure:

Γ̂L =

 0 with probability 1− φM − φH
GM with probability φM
GH with probability φH

Where GM is a random variable with support contained in [θ, γ̄], E[GM] = ḡM, and density
gM(x), while GH is a random variable with support contained in [γ̄, 1] and E[GH ] = ḡH and
density gH(x). If a mass point exists at γ̄ then it is part of GM (no mass point at left endpoint
exists in GH). Furthermore, no mass point at θ exists in GM. Such mass point leads to ties with
positive probability; using a mass point of θ + ε leads to all ties at θ breaking in favor of player
L. In order for this strategy to be admissible, it must be that

φM ḡM + φH ḡH = γL ⇐⇒ ḡM =
γL − φH ḡH

φM

The expected payoff of using such a strategy against ΓH is given by:

φM(1− fHU + fHU

∫ γ̄

θ

x− θ

γ̄− θ
gM(x) dx) + φH

= φM(1− fHU + fHU
ḡM − θ

γ̄− θ
) + φH

= φM(1− fHU + fHU

γL−φH ḡH
φM

− θ

γ̄− θ
) + φH

= φH
γ̄− θ − fHU ḡH

γ̄− θ
+ φM

γ̄− θ − fHUγ̄

γ̄− θ
+

γL fHU

γ̄− θ
.

Observe that the coefficient on φH is always less than the coefficient on φM, hence, for a best
response it must be that φH = 0. Furthermore, observe that the coefficient on φM = 0. To see
this, note

γ̄(1− fHU) = (γL +
√

γ2
L + θ2)

(−γL +
√

γ2
L + θ2

θ
=

γ2
L − γ2

L + θ2

θ
= θ.

Thus, the payoff of any strategy of the type Γ̂L is independent of φM and GM. Therefore, any
admissible random variable of structure Γ̂Lis a best response, provided φH = 0. As the strategy
ΓL is consistent with these requirements, it is a best response.

We now consider the best response to ΓL. According to Lemma 1, any best reply to ΓL has the
following structure:

Γ̂H =


0 with probability 1− φL − φM − φH
θ with probability φL
GM with probability φM
GH with probability φH
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Where GM is a random variable with support contained in [θ, γ̄], E[GM] = ḡM, and density
gM(x), while GH is a random variable with support contained in [γ̄, 1] and E[GH ] = ḡH and
density gH(x). If a mass point exists at γ̄ then it is part of GM (no mass point at left endpoint
exists in GH). Also, GM has no mass point at θ.

In order for Γ̂H to be admissible, it must be that φLθ + φM ḡM + φH ḡH = γH, which implies

ḡM =
γH − φH ḡH − φLθ

φM
.

Consider the expected payoff of playing Γ̂H against ΓL:

φL(1− fL) + φM(1− fL + fL

∫ γ̄

θ

x− θ

γ̄− θ
gM(x) dx) + φH

= φL(1− fL) + φM(1− fL + fL
ḡM − θ

γ̄− θ
) + φH

= φL(1− fL) + φM(1− fL + fL

γH−φH ḡH−φLθ
φM

− θ

γ̄− θ
) + φH

= φH
γ̄− θ − fL ḡH

γ̄− θ
+ (φL + φM)

γ̄− θ − fLγ̄

γ̄− θ
+

γH fL

γ̄− θ
.

Observe that the coefficient on (φL + φM) = 0 because, fL = fHU and, as demonstrated previ-
ously γ̄(1− fHU)− θ = 0. Thus, the payoff to any admissible Γ̂L is independent of φL, φM, GM.
However, because ḡH > γ̄ the coefficient on φH is negative. Thus, in a best response, it must be
that φH = 0. Hence, any random variable of the structure Γ̂H is a best response, provided φH = 0.
As the strategy in the proposition satisfies these criteria, it is a best response. �

A.2. Establishing uniqueness of equilibria. We continue to narrow down the characteristics of
potential equilibrium strategies which we began in the proof to Lemma 4.

(viii) If ρθ
j > 0, then ρθ

i = 0.
Proof: Follows from condition (ii) and the structure of equilibrium established in the

restatement of Γi above.
(ix) If either ρ1

i > 0 or ρ1
j > 0 or both, then r < 1 when ρΦ

i , ρΦ
j > 0.

Proof: Alternatively, suppose that ρ1
j > 0, and ρΦ

i , ρΦ
j > 0 with I = [θ, 1] (i.e. r = 1). For

each x ∈ I, (6) requires that Li(x) = Li(1) if ρ1
i > 0 and Li(x) ≥ Li(1) if ρ1

i = 0. We show
that these requirements fail to hold for x close enough to 1. Consider the requirement that
for all x ∈ I, Li(x) ≥ Li(1), and substitute in for the expressions:

ρ0
j + ρθ

j + ρΦ
j Fj(x)− λi(x− γi) ≥ ρ0

j + ρθ
j + ρΦ

j +
ρ1

j

2
− λi(1− γi).

Simplifying this expression gives the inequality

λi(1− x) ≥ ρΦ
j (1− Fj(x)) +

ρ1
j

2
.

Further, considering the case of x = r gives

λi(1− r) ≥
ρ1

j

2
.

For r approaching 1, this inequality clearly fails, contradicting the initial assumption that
r = 1.
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(x) If ρ1
j > 0, then ρ1

i > 0.
Proof: If i has a mass point on 1, then there exists an interval (1− ε, 1) outside of the

support of Γj (this follows from equilibrium condition (viii)). If Γj does not include a mass
point on 1, then Li(1− ε) > Li(1) because the probability of i winning is constant outside
of Gj.

(xi) No equilibrium exists in which ρ0
i = ρ0

j = 0.
Proof: Suppose that neither player’s equilibrium strategy has a mass point on 0. It cannot

be the case that both Γi and Γj have mass points on θ since equilibrium property (ii) estab-
lished that there could be no common mass points in [θ, 1). Suppose therefore that Γi does
not have a mass point on θ. The probability that player j wins with realization θ therefore
equals 0, i.e. Wj(θ) = ρ0

i + ρθ
i = 0. However, Wj(0) = 0. Thus, Lj(θ) < Lj(0), and 0 is

outside of the support of Γj, which contradicts (6).

We proceed by considering two possible cases. First, we consider the possibility that ρΦ
i =

ρΦ
j = 0. Second, we consider the possibility that ρΦ

i , ρΦ
j > 0. Equilibrium condition (vii) above

rules out the possibility that ρΦ
i > 0 and ρΦ

j = 0.

A.2.1. Possibility 1: æΦ
i = æΦ

j = 0. In this case, the only possible elements of the support of each
random variable are {0, θ, 1}. However, equilibrium condition vi. shows that at most one player’s
strategy can have a mass point on θ. Without loss of generality, let j be the player that potentially
puts mass on θ. Therefore, Γi is confined to support {0, 1}. Hence,

Γi =

{
0 with probability ρ0

i
1 with probability ρ1

i

and10

Γj =


0 with probability ρ0

j
θ with probability ρθ

j
1 with probability ρ1

j .

Given that the law of iterated expectations requires that the expected realization of Γi and Γj
equal γi and γj, respectively, it follows that

ρ1
i = γi and θρθ

j + ρ1
j = γj.

Given that ρ1
i = γi > 0, equilibrium condition (vi) guarantees that ρ1

i > 0. Therefore, three
possibilities exist: (1) ρ0

j > 0 and ρθ
j = 0, (2) ρ0

j = 0 and ρθ
j > 0, and (3) ρ0

j > 0 and ρθ
j > 0. In each

of these cases, ρ1
j > 0, ρ0

i = 1− γi and ρ1
i = γi.

Equation (6) requires that Li(x) = vi for each x ∈ Gi = {0, 1}, and thatLj(x) = vj for each
x ∈ Gj = {0, θ, 1}. Applying (6) to Γi gives the following conditions:

Li(0) = vi ⇐⇒ λiγi = vi (9)

Li(1) = vi ⇐⇒ 1−
ρ1

j

2
− λi(1− γi) = vi

Applying (6) to Γj gives the following conditions:

Lj(0) ≥ vj ⇐⇒ λjγj ≥ vj [with equality if ρ0
j > 0]

Lj(θ) ≥ vj ⇐⇒ 1− γi − λj(θ − γj) ≥ vj [with equality if ρθ
j > 0]

10Because all realizations inside (θ, 1) generate the same win-probability for j, no best response Γj can
have positive mass inside this interval.
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Lj(1) = vj ⇐⇒ 1− γi

2
− λj(1− γj) = vj

Case I: zj > 0 and mj = 0 and nj > 0
The mean constraint therefore implies that nj = γj and the constraint on probabilities implies
that zj = 1− γj. Thus, the fully-revealing equilibrium is the only equilibrium with this structure.
In the analysis of Region A in the appendix we show that the combination of fully-revealing
signals is an equilibrium if and only if γL ≥ 2−2θ

2−θ . This analysis shows that no other equilibrium
with this structure exists.

Case II: zj = 0 and mj > 0 and nj > 0
Here the equilibrium must satisfy the following system of equations:

λiγi = vi (10)

1−
nj

2
− λi(1− γi) = vi

1− γi − λj(θ − γj) = vj

1− γi

2
− λj(1− γj) = vj

mj + nj = 1

θmj + nj = γi

λjγj ≤ vj

mj − λi(θ − γi) ≤ vi

The solution of the system of equation has mj =
1−γj
1−θ . In order for the inequalities to be satisfied,

it must be that γi ≤ 2−2θ
2−θ and γj ≥ 2−2θ+θ2

2−θ , and hence, γi < γj. Therefore in this case, L must be
labelled i and H must be labelled j. Thus, the quasi-revealing equilibrium identified in the ap-
pendix is the only equilibrium with this structure, and exists if and only if these two inequalities
are satisfied.

Case III: zj > 0 and mj > 0 and nj > 0
In this case the equilibrium would need to satisfy the following three conditions

λjγj = vj

1− γi − λj(θ − γj) = vj

1− γi

2
− λj(1− γj) = vj

This system is inconsistent, except for the knife-edge case in which γi =
2−2θ
2−θ .

Thus, the only possible equilibria in which Φi and Φj are degenerate are the equilibria iden-
tified in the appendix.
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A.2.2. Φk is non-degenerate. Now consider the case in which ρΦ
i , ρΦ

j > 0. Given ρΦ
i > 0, (6) implies

that
ρ0

j + ρθ
j + ρΦ

j Fj(x)− λi(x− γi) = vi for all x ∈ [θ, r] (11)

Rearranging the equality gives

Fj(x) =
vi − ρ0

j − ρθ
j − λiγi

ρΦ
j

+
λi

ρΦ
j

x

Thus, if any mass exists inside (θ, 1) then it must be uniformly distributed with a possible mass
point on θ. However, because it can not be that both i, j have a mass point on θ (No common
mass points in [θ, 1)) then at most one player has a mass point on θ. Let this be player j.

zi > 0⇒ λiγi = vi

ni > 0⇒ 1−
nj

2
− λi(1− γi) = vi

Fi(θ) = 0 and Fj(θ) ≥ 0⇔
vj − λjγj

mi
+

λj

mi
θ = 0 and

vi − λiγi

mj
+

λi

mj
θ ≥ 0

If r > θ, then neither player can have a mass point at r. Therefore,

Fi(r) = Fj(r) = 1⇔
vj − λjγj

mi
+

λj

mi
r = 1 and

vi − λiγi

mj
+

λi

mj
r = 1

In addition each strategy must satisfy the appropriate mean constraint. Given the above condi-
tions,

E[Φi] =
λj

mi
(

r2 − θ2

2
) and E[Φj] = (

vi − λiγi

mj
+

λi

mj
θ)θ +

λi

mj
(

r2 − θ2

2
)

Therefore the mean constraints are:

miE[Φi] + ni = γi ⇔ λj(
r2 − θ2

2
) + ni = γi

mjE[Φj] + nj = γj ⇔ (
vi − λiγi

mj
+

λi

mj
θ)θ + λi(

r2 − θ2

2
) + nj = γj

Thus every equilibrium must satisfy the following conditions (SC) (collected from above):

vj − λjγj

mi
+

λj

mi
θ = 0 and

vi − λiγi

mj
+

λi

mj
θ ≥ 0

vj − λjγj

mi
+

λj

mi
r = 1 and

vi − λiγi

mj
+

λi

mj
r = 1

λj(
r2 − θ2

2
) + ni = γi

(
vi − λiγi

mj
+

λi

mj
θ)θ + λi(

r2 − θ2

2
) + nj = γj

zi + mi + ni = 1
zj + mj + nj = 1

Given a particular equilibrium structure, additional conditions also arise from the remaining
indifference conditions.



xviii LIMITED CAPACITY IN PROJECT SELECTION

Case I: zi > 0, zj > 0, ni = nj = 0.
In this case, both equilibrium random variables have mass points on 0, but no mass points on 1.
In addition to conditions (SC), the indifference conditions in (6,11) require that

λiγi = vi and λjγj = vj

1− λi(1− γi) ≤ vi and 1− λj(1− γj) ≤ vj

Solving the equations gives two solutions. In one of these solutions, the value of r is negative,
ruling it out. Furthermore, in order for Fj(θ) ≥ 0 it must be that γj ≥ γi; thus it must be that
player H is labelled j, and L is labelled i. With this identification, the equilibrium is identical
to the one presented in the analysis of Region F in the appendix. This solutions has admissible

probabilities and r ∈ (θ, 1) if and only if
√

γ2
H − γ2

L ≤ θ and γL ≤ 1
2 (1− θ2). Under the same con-

ditions the required inequalities 1− λi(1− γi) ≤ vi and 1− λj(1− γj) ≤ vj are satisfied. Thus,
the equilibrium presented in the analysis of Region F is the only equilibrium for which zi > 0,

zj > 0, ni = nj = 0, and it exists if and only if
√

γ2
H − γ2

L ≤ θ and γL ≤ 1
2 (1− θ2).

Case II: zi > 0, zj > 0, ni > 0, nj > 0.
In this case, both equilibrium random variables have mass points on 0 and1. In addition to
conditions (SC), the indifference conditions in (6,11) require that

λiγi = vi and λjγj = vj

1− λi(1− γi) = vi and 1− λj(1− γj) = vj

Solving the equations gives two solutions. In one of these solutions, the value of r is greater than
2, ruling it out. Furthermore, in order for Fj(θ) ≥ 0 it must be that γj ≥ γi; thus it must be that
player H is labelled j, and L is labelled i. With this identification, the equilibrium is identical
to the one presented in the analysis of Region D in the appendix. This solutions has admissible

probabilities and r ∈ (θ, 1) if and only if
√

γ2
H − γ2

L ≤ θ and 1
2 (1 − θ2) ≤ γL ≤ 2−2θ

2−θ . Thus,
the equilibrium presented in the analysis of Region D is the only equilibrium for which zi > 0,

zj > 0, ni > 0 and nj > 0, and it exists if and only if
√

γ2
H − γ2

L ≤ θ and 1
2 (1− θ2) ≤ γL ≤ 2−2θ

2−θ .

Case III: zi > 0, zj = 0, ni = 0, nj = 0
In this case, Γi has a mass point on 0, but neither equilibrium random variable has a mass points
on 1. This immediately implies that mj = 1. In addition to conditions (SC), the indifference
conditions in (6,11) require that

λiγi = vi and λjγj ≤ vj

1− λi(1− γi) ≤ vi and 1− λj(1− γj) ≤ vj

Solving the equations gives two solutions. In either solution, γj ≥ r in order for r to be real. In
this case, however, one solution has a value of r ≤ θ, ruling it out. The remaining solution satis-
fies λjγj ≤ vj if and only if

√
γ2

j − γ2
i ≥ θ, which implies that γj ≥ γi. Hence, player i is labelled

L and j is labelled H. With these identifications, the solution reduces to the one identified for
Region E in the appendix, which satisfies constraints on probabilities and r ∈ (θ, 1) if and only if√

γ2
H − γ2

L ≥ θ and γH ≤ 1
2 (1 + θ2). The equilibrium identified for Region E exists if and only if

these conditions are satisfied and is the only equilibrium for which zi > 0, zj = 0, ni = 0, nj = 0.

Case IV: zi > 0, zj = 0, ni = 1, nj = 1
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In this case, player Γi has a mass point on 0, and both equilibrium random variables have a mass
point on 1. In addition to conditions (SC), the indifference conditions in (6,11) require that

λiγi = vi and λjγj ≤ vj

1− λi(1− γi) = vi and 1− λj(1− γj) = vj

Solving the equations gives two solutions. In either solution, γj ≥ r in order for r to be real.
In this case, however, one solution has a value of r ≥ 1, ruling it out. The remaining solution
satisfy λjγj ≤ vj if and only if

√
γ2

j − γ2
i ≥ θ, which implies that γj ≥ γi. Hence, player i is

identified with L and j is identified with H. With these identifications, the solution reduces to
the one identified for Region C in the appendix, which satisfies constraints on probabilities and

r ∈ (θ, 1) if and only if
√

γ2
H − γ2

L ≥ θ and 1
2 (1 + θ2) ≤ γH ≤ 2−2θ+θ2

2−θ . The equilibrium identified
for Region C exists if and only if these conditions are satisfied and is the only equilibrium for
which zi > 0, zj = 0, ni = 1, nj = 1.

The above analysis shows that each equilibrium identified in the appendix is the only equilibrium
that exists with the structure of the support. In addition, the regions in which each equilibrium
exists are non-overlapping, and their union (along with the regions A and B) exhaust the pa-
rameter space. By ruling out equilibria with the remaining possible equilibrium structures, we
establish uniqueness of our characterization. We do this below.

Case III-E zi = 0, zj > 0, ni = 0, nj = 0
Recall that Γi has no mass point on zero. In case III we consider Γi with a mass point on zero.
Here we consider the case in which j has a mass point on zero, but i does not. Because zi = 0
and ni = 0, it must be that mi = 1. In addition, because zj > 0 it must be that vj = λjγj. Consider
then two equations that must hold simultaneously, Fi(θ) = 0 and Fi(r) = 1.

vj − λjγj

mi
+

λj

mi
θ = 0 and

vj − λjγj

mi
+

λj

mi
r = 1

Using mi = 1 and vj = λjγj in these equations gives

λjθ = 0 and λjr = 1

Which gives an immediate contradiction because the Lagrange multiplier is non-zero: λi 6= 0.

Case IV-E zi = 0, zj > 0, ni > 0, nj > 0
Recall that Γi has no mass point on zero. In case IV we consider Γi with a mass point on zero and
one. Here we consider the case in which j has a mass point on zero and one, but i has a mass
point on one, but not on zero. . As above, because zj > 0 it must be that vj = λjγj. Consider, as
above, two equations that must hold simultaneously, Fi(θ) = 0 and Fi(r) = 1.

vj − λjγj

mi
+

λj

mi
θ = 0 and

vj − λjγj

mi
+

λj

mi
r = 1

Using vj = λjγj in these equations gives

λj

mi
θ = 0 and

λj

mi
r = 1

Again, an immediate contradiction arises because the Lagrange multiplier is non-zero: λi 6= 0.
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A.3. Proofs for Blackwell Informativeness. Both proofs follow results that establish that for the
case of binary states, if posterior belief random variables Γ and Γ′ have the same mean and Γ
second order stochastic dominates Γ′, then Γ′ is more informative, see Ganuza and Penalva (2010)
Theorem 2, and the accompanying discussion.
Proof of Proposition 1: Establishing the second order stochastic relationship between player i’s
posterior belief random variable before and after an increase in proposal j’s prior γj, requires an
integration of the CDFs. We omit the details in the interest of brevity; these are available upon
request.
Proof of Proposition 2: First consider the case where γi ≥ θ. Here, agent i provides an un-
informative signal in the case of unlimited capacity. In the case of limited capacity, each agent
chooses a signal in accordance with Lemma 3. Both the unlimited and limited capacity signals
have expected value equal to the prior, γi, for each agent. The signal in the unlimited capacity
environment returns posterior belief γi with probability 1, where as the signal in the limited
capacity environment returns a range of posterior beliefs, but in expectation returns a posterior
belief equal to γi. Therefore, the signal in the game with unlimited capacity represents a garbling
of the signal in the game with limited capacity, and as such, the signal in the limited capacity
game is more Blackwell informative.

Next consider the case where γi < θ. In the case of unlimited capacity, agent i provides a sig-
nal that returns posterior belief realization 0 with probability (θ − γi)/θ and 1 with probability
γi/θ. Call this posterior belief distribution Γi; let its CDF be F(·). In the case of limited capacity,
depending on parameter values, agent i chooses a posterior belief random variable with support
confined to {0, θ, 1} ∪ [θ, γ̄]. Call the limited capacity posterior belief random variable Γ′i; let its
CDF be F′(·). Both Γi and Γ′i have expected value γi. We will argue that x ∈ [θ, 1]⇒ F(x) ≥ F′(x)
and that x ∈ [0, θ)⇒ F(x) < F′(x), with equality only at x = 1. This single crossing condition of
the CDFs implies that Γi second order stochastic dominates Γ′i.

To argue that x ∈ [θ, 1] ⇒ F(x) ≥ F′(x), observe that F(x) = 1 in this interval, as the support
of Γi is the set {0, θ}. Furthermore, in every possible equilibrium configuration under limited
capacity, Pr Γi > θ > 0, and therefore, for some set of x ∈ [θ, 1], the inequality is strict.

Next we argue that x ∈ [0, θ) ⇒ F(x) < F′(x). Observe first that both F(x) and F′(x) are
constant over this interval, F(x) = F(0) and F′(x) = F′(0), as the only realization in this interval
in the support of either random variable is 0. Suppose that F(0) ≥ F′(0). Combined with the
previous point, this supposition implies that for all x ∈ [0, 1], F(x) ≥ F′(x), and for some values
of x (see previous point) the inequality is strict. Thus Γ′i first order stochastic dominates Γi, which
immediately implies E[Γ′i] > E[γi], a contradiction. Therefore, we must have F(0) < F′(0).


