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Abstract

Social networks are an important component in understanding the decision to consume ad-
dictive substances. They capture the role of limited access, peer influence, and social acceptance
and tolerance. However, despite the empirical evidence of their role, they have been absent from
theoretical models. This paper proposes a mechanism through which agents can influence each
other in their decision to consume an addictive good. An agent’s decision is sensitive to her
state of addiction as well as to the composition of her neighbourhood. The model is consistent
with the empirical evidence that peer influence can work in both ways: influencing an individual
to use and helping them to quit. The structure of the network has important implications on
the outcome of agents’ decisions as well as the effectiveness of policies aimed at limiting use of
addictive substances through deterrence. I provide a network-based explanation of why usage
rates can vary across otherwise similar agents and show how in some situations encouraging
network ties can lead to lower use while in others it can have the opposite effect. Furthermore,
I explore the effect of networks on diffusion of addiction and, using simulations, find that addic-
tion spreads faster in an environment where there are few strong links than in one with many
weak links.

JEL Codes: C70, D01, I18.

Keywords: Addiction, dual-self, networks, random utility.

1 Introduction

The National Institute on Drug Abuse defines addiction as “a chronic, often relapsing brain dis-

ease that causes compulsive drug seeking and use, despite harmful consequences to the addicted

individual and to those around him or her.” Although initial use can be voluntary, once consumed,

drugs physically alter the function of the brain, making it easy to slip into a pattern of use despite a

strong desire to stop. As a result, addiction continues to be a major public concern as policy makers

devise plans to stop its devastating consequences without overlooking its inherent complexities.

Although economics has a long history of participating in the policy debate, the focus of the-

oretical models has been on explaining the actions of addicts who prefer to quit but continue to
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use, exhibiting behaviour that is in clear violation of the revealed preference paradigm (see, for

example, Becker and Murphy, 1988, Loewenstein et al., 2003, and O’Donoghue and Rabin, 2002).

By modeling the decision to use as the result of not one rational mind but two competing systems

in the brain, the most recent models overcome this paradox and generate realistic behaviour.

For instance, Bernheim and Rangel (2004) and (2005) draw upon literature from neuroscience,

psychology, and clinical studies to clearly describe how the medical profession identifies it. Setting

three key attributes as behavioural targets, the authors develop a model of cue-triggered addiction

in which agents respond to stimuli, make mistakes, and are able to take actions that limit mistaken

usage. They achieve this using a dual-system approach, where the individual normally operates in

a rational “cold” mode and can enter an impulsive and uncontrollable “hot” mode when triggered

by a stochastic external cue. A clear welfare criterion emerges, namely utility in the cold mode, and

is used to evaluate several government policies from taxation and criminalization to improvement

of rehabilitation facilities and drug subsidization. Loewenstein and O’Donoghue (2004) take a very

similar approach with the exception that both systems are always active and that the influence

of the affective system can be controlled by exerting “will power,” a depletable but replenishable

resource.

One crucial, but imperative, component missing from the models discussed above is the notion

of social interaction. For instance, if a person wants to purchase an illicit drug she cannot just go

to the local supermarket. Instead, access is most often gained through friends or acquaintances.

This mechanism has the potential to be a powerful driving force in initial exposure. Besides

access, incorporating networks can capture other important features such as peer pressure. Peer

influence can be both positive and negative. Gardner and Steinberg (2005) find that individuals are

more likely to engage in risky behaviours when in a group, especially in the case of teenagers and

Maxwell (2002) argues that friends can influence an individual to use drugs but also help them to

quit. Cooperation can also arise in the form of pooling resources to purchase drugs. This happens

either because it is more convenient for one person from a group to meet with a dealer or because

money runs low and users are unable to make the purchase individually (Needle et al., 1995). These

three notions of interaction - access, influence, and resource sharing - can be important channels

in modeling addiction development.

Social networks can also play an important role on the recovery side. For example, Hawkins

and Fraser (1987) find that opiate addicts that return to their social network of users after leav-

ing treatment recommence use rapidly, whereas those that alter their networks to include more

non-users have a higher rate of success. More recently, Wooditch et al. (2013) explore data on

probationers’ neighbourhood in Baltimore and find that higher drug availability is associated with

higher use, emphasizing the role of network effects in addiction recovery.

This paper bridges the gap between the empirical findings and the theoretical literature by

explicitly modeling social interaction in the decision to consume an addictive substance. This novel

feature can be interpreted in several ways: social acceptance, peer-influence, prevalence of drugs

in a person’s neighbourhood, etc. I consider a framework that incorporates network effects in a
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dual-self model of addiction and use it to explore the implications on individual behaviour and

policy. Depending on their state of addiction, neighbours can either reinforce or alter an individ-

ual’s likelihood of use. Furthermore, susceptibility to network influence rises with the strength of

network links. This model provides a theoretical explanation of why relocation after rehabilitation

can improve an individual’s probability of success and shows how the effectiveness of a drug-use

deterrent policy can be altered by changes in the network. The structure of the network also has

important implications for how quickly addiction can spread in a population. As the strength of

connections decreases, adding more links actually leads to slower diffusion.

The paper is organized as follows. Section 2 describes the baseline theoretical model in a static

setting with two players and Section 3 uses simulations to extend the analysis to a dynamic setting

with multiple players. Section 4 concludes.

2 Model

Let the economy be populated by a finite set of N individuals i ∈ {1, 2, . . . , N} represented by

nodes on a graph G . Each individual has degree di < N , or di neighbours, represented by links,

kij ∈ {0, 1}, between nodes. Agent i affects agent j’s payoff if kij = 1. Assume that links are

undirected, i.e. kij = kji, and that kii = 0. Let ni represent agent i’s neighbourhood, that is

ni = {j ∈ G |kij = 1}. For example, a network with N = 3 and di = 2 is shown in Figure 1.

a

b c

Figure 1: Example with 3 players (a, b, c), each with 2 links

Each period, agents face a choice of whether or not to consume an addictive good x ∈ {0, 1}.
The good is discrete, so that x = 1 indicates the choice to consume and x = 0 indicates a decision

to abstain. The price of the addictive good is q and it represents the monetary as well as the general

resource cost associated with obtaining x. For instance, if the good is inexpensive but difficult to

obtain then q will be high. Agents have a fixed amount of resources y. There is an additional good

in the economy, c, which is non-addictive and can be thought of as an aggregation of all other goods

available to the consumer. Let c be the numeraire.

As in Bernheim and Rangel (2004), the agent’s behaviour depends on her state of addiction

s ∈ {0, 1, . . . , S}, where S is the maximum state of addiction and 0 is the “virgin” state. If

consumption takes place, the agent’s state of addiction increases by 1 and if consumption does not

take place, the state decreases by 1. However, the agent can never return to s = 0 after having

consumed at least once.

Agents are myopic and choose whether or not to consume x based on current preferences each

period. The decision is determined by two systems as in Loewenstein and O’Donoghue (2004)
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and Bernheim and Rangel (2004), as well as the network effect, which is the novel component

introduced in this paper. The agent receives utility from consumption, u, which is calculated

using the deliberative (“cold”) system and simultaneously faces demands from an affective (“hot”)

system, f . In addition, the payoff is affected by a network effect, h, whose magnitude depends on

the actions of the agent’s neighbours, ni, as well as her own choice.

As in Bernheim and Rangel (2004), the decision-making process is subject to mistakes. In

their model of cue-triggered addiction, a mistake is characterized by entering the “hot” mode and

consuming the addictive good even when the deliberative self prefers to abstain. The probability

of making such a mistake is higher in more advanced states of addiction. A problem with this

approach is that a shock influences behaviour in only one direction: activating the hot mode and

shutting off the cold mode so that a mistake always implies consumption of the addictive good.

Random events, however, can influence people in both directions. For instance, a sudden break-up

or lay-off can make the use of an addictive substance more appealing. But, equally importantly,

witnessing a friend overdose while using drugs can cause an individual to reevaluate her habits

and stop use. Loewenstein and O’Donoghue (2004) propose a more general framework in which

both systems are active at the same time. They explicitly model the interaction between the two

systems as a costly struggle of willpower, but do not introduce a stochastic component. Keeping

with the more general framework, in this model, I introduce a choice specific error term that enters

the utility directly so that individuals calculate payoffs imperfectly. Both systems are always active

and agents can make mistakes in the sense that the (deterministic) utility maximizing action is not

always chosen. In this way, the error component can take on a broader interpretation.

The decision to use is a noisy binary choice problem and, as is common in these kinds of models

(for an overview see McFadden, 1980), it can be framed using a random utility function, v. For

individual i, the random utility function has the following form,

vi(x, c, s, ni) = u(xi, c, s)︸ ︷︷ ︸
1

− f(xi, s)︸ ︷︷ ︸
2

+h(x, ni)︸ ︷︷ ︸
3

+ ex︸︷︷︸
4

, (1)

where each component is described below.

1. u(xi, c, s) is the direct payoff for consuming the bundle (xi, c) in state s. This can be seen

as the deliberative system’s payoff and it is evaluated rationally, fully accounting for the

possible negative effects of consuming the addictive good;

2. f(xi, s) is the mental/physical cost of addiction, e.g. withdrawal. This enters as a cost when

the addictive good is not consumed. It can be seen as the willpower required to control the

impulses of the affective system;

3. h(x, ni) is a payoff determined by the average behaviour in the agent’s neighbourhood ni,

where x = {xi, {xj}j∈ni}. This is the network effect; and,

4. ex is the choice specific error term that captures unobservable shocks which can make an

action seem more or less attractive.
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Although addiction can take on many forms and involve various substances as well as activities,

the focus of this paper is on addiction to drugs, which exhibits declining health and increasing

dependence with continual usage. Consumption of the addictive good provides a hedonic experience,

but it too is declining in the state of addiction due to the build up of tolerance. These effects are

evaluated by the deliberative system. At the same time, as use continues, the pain of withdrawal

and force of neurological dependence drives the impulse to consume the drug. This urge becomes

more difficult to resist and enters the decision-making process via the affective system. These effects

are summarized by the following two assumptions.

Assumption 1 (Declining health and hedonic experience). For individual i, u(xi, c, s
′) < u(xi, c, s)

for s′ > s and xi ∈ {0, 1}.

Assumption 2 (Increasing urge to use). For individual i, f(0, s′) > f(0, s) for s′ > s and f(1, s) =

0.

It is important to note that the cost of the affective system impacts the realized utility only

when the urge to use is not satisfied, i.e. when xi = 0. Otherwise, when the agent chooses xi = 1,

she avoids the painful withdrawal or willpower expenditure.

The next assumption concerns the novel feature introduced in this paper. As suggested by

the empirical findings discussed in Section 1, utility from an action is increasing in the number of

neighbours choosing that action. If the number of neighbours choosing each action is equal then

the network effect has no impact on the decision.

Assumption 3 (Network effect). For individual i,

1. if
∑

j∈ni
xj >

∑
j∈ni

(1− xj), then h ({1, {xj}j∈ni}, ni) > h ({0, {xj}j∈ni}, ni),

2. if
∑

j∈ni
xj =

∑
j∈ni

(1− xj), then h ({1, {xj}j∈ni}, ni) = h ({0, {xj}j∈ni}, ni) = 0, and

3. if
∑

j∈ni
x̃j >

∑
j∈ni

xj , then h({1, {x̃j}j∈ni}, ni) > h({1, {xj}j∈ni}, ni) and h({0, {x̃j}j∈ni}, ni) <
h({0, {xj}j∈ni}, ni).

In words, item 1 says that when there are more users than non-users in i’s neighbourhood, then

the network effect gives a higher payoff when i chooses to use. Next, item 2 says that if the

number of users and non-users in i’s neighbourhood is the same, then the network effect gives no

payoff, regardless of i’s choice. Finally, item 3 says that the higher the number of users in i’s

neighbourhood, the higher the network effect payoff for i choosing to use. Similarly, the higher the

number of users in i’s neighbourhood the lower the network effect payoff for i choosing not to use.

Each period, the agent maximizes expected utility subject to the budget constraint,

max
xi∈{0,1},c∈R+

E[vi(x, c, s, ni)] subject to y ≥ c+ qxi.

To ensure that the budget constraint holds with equality, I make an additional non-satiation as-

sumption:
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Assumption 4 (Non-satiation). ∂vi(x,c,s,ni)
∂c > 0 and ∂2vi(x,c,s,ni)

∂c2
< 0.

With this assumption, the solution to the agent’s choice problem is a simple comparison of

expected payoffs. The agent chooses to consume the drug if the expected marginal benefit from

consuming the addictive good is positive:

E[vi({1, {xj}j∈ni}, y − q, s, ni)] ≥ E[vi({0, {xj}j∈ni}, y, s, ni)]. (2)

Let v̂i1(s, ni) = vi({1, {xj}j∈ni}, y − q, s, ni) − e1 and v̂i0(s, ni) = vi({0, {xj}j∈ni}, y, s, ni) − e0 be

the utility without the error term for choices x = 1 and x = 0, respectively, and define the random

variable ε = e0 − e1, that is, equal to the difference between the two choice specific error terms.

Then the inequality in (2) can be rewritten as

E[v̂i1(s, ni) + e1]≥E[v̂i0(s, ni) + e0]

⇔ E[v̂i1(s, ni)− v̂i0(s, ni)]≥E[e0 − e1]

⇔ E[M̂B(s, ni)]≥E[ε]

where M̂B(s, ni) is the error-free marginal benefit from choosing to consume the addictive good in

addictive state s and neighbourhood ni. As is common in the binary choice literature, I assume

that these error terms are drawn from a type 1 extreme value distribution.

Assumption 5 (Error component). For each individual, ex is independently drawn from a type

1 extreme value distribution with cumulative distribution function F (ex) = exp(− exp(−λex − γ))

for x ∈ {0, 1}.

A direct consequence of this assumption is that ε is logistically distributed1 Λ(µ, λ), with mean

µ = 0 and scale parameter λ (McFadden, 1980). Thus, the probability of individual i consuming

the addictive good is given by,

P(xi = 1|s, ni)=P(E[v̂1(s, ni)− v̂0(s, ni)] ≥ e0 − e1) = P(ε ≤ E[v̂1(s, ni)− v̂0(s, ni)])

=
exp (E[λ(v̂1(s, ni)− v̂0(s, ni))])

1 + exp (E[λ(v̂1(s, ni)− v̂0(s, ni))])
=

exp (E[λv̂1(s, ni)])

exp (E[λv̂0(s, ni)]) + exp (E[λv̂1(s, ni)])

=
1

1 + exp(−λE[M̂B(s, ni)])
.

The derivation above reveals that the magnitude of the marginal benefit directly affects the prob-

ability of choosing to consume x. In particular, the relative weight of each option determines its

likelihood of being chosen. If the preferences for both options are close, then the agent is suscep-

tible to small shocks. In fact, when E[M̂B(s, ni)] = 0, the agent is equally likely to choose either

option. However, if one action is preferred over the other by a large amount, then the likelihood of

it getting chosen is also much higher.

1with CDF F (ε;µ, λ) = exp(λ(ε−µ))
1+exp(λ(ε−µ))

.
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Before considering interaction, I make an additional assumption that puts some structure on

the individual’s behaviour. The literature in neuroscience and biology identifies several stages

of addiction (for an overview see Koob and Moal, 2006, chapter 1). In general, the user begins

with some infrequent experimentation, moves to regular and risky use, and then graduates to

dependence. In other words, initially the probability of use is low and it increases with continued

usage, reaching a maximum at the highest state of addiction. Say that agent i is likely (unlikely)

to consume x if P(xi = 1|s, ni) > 0.5 (P(xi = 1|s, ni) < 0.5). When the probability of consuming

the addictive good is exactly 0.5, the agent is at her tipping point. In the context of this model, to

fit the stages of addiction, the agent is unlikely to use at the beginning, becomes likely to use as

her state of addiction increases beyond some point, and uses with high probability at state s = S.

The following assumption ensures that this is the case.

Assumption 6 (Stages of addiction). For ni = ∅, v̂i0(0, ni) > v̂i1(0, ni), v̂
i
0(S, ni) < v̂i1(S, ni), and

v̂0(s
′, ni)− v̂0(s, ni) > v̂1(s

′, ni)− v̂1(s, ni) for any s > s′.

The implication of assumption 6 are illustrated in Figure 2 below2. Note that, without network

effects (ni = ∅) the expected value of the network effect is zero and so E[M̂B(s, ni)] = M̂B(s, ni)

because the remaining components are deterministic. Figure 2(a) plots the deterministic utility v̂1

and v̂0 as functions of s and no network influence for choices x = 1 and x = 0 respectively. The

utility v̂0, is decreasing in s in response to growing demands of the affective system spurred by

dependence. As the state of addiction increases, the individual must expend more willpower to

resist consuming the drug and thus faces a growing utility loss. The utility v̂1 is also decreasing

in s. The deliberative system rationally perceives the declining health effects and lowered hedonic

experience. Eventually, the impulse to use becomes so strong that it overcomes the negative health

effects in the individual’s evaluation. This occurs at the tipping point s∗, where marginal benefit of

consumption is exactly zero so that the agent is equally likely to consume the drug or not. Before

the tipping point, the agent is unlikely to use the drug, but can still encounter shocks that push her

to use. This is the “experimentation” stage. Once past the tipping point, the individual enters the

“regular use” stage of addiction and becomes likely to continue to use until “dependence.” In the

final stage of addiction the individual can only return to a low state after a series of large negative

shocks to the marginal benefit of use. Recall that the development of addiction is a gradual process

and the agent only changes one state per period. Thus one large negative shock for someone in an

advanced stage of addiction can result in them not using in a particular period, but it alone will

not be enough for them to escape dependence.

Before discussing the network effect note that, for the individual, this model is consistent with

several features of addiction. In particular, addicts often continue to use despite a rational awareness

of decreasing utility (decreasing v̂1). Furthermore, they can express a desire to quit but be unable

to do so (v̂0 decreasing faster than v̂1). Also, the model captures the stages of addiction.

To introduce influence, let the network effect depend on the average number of users in an

2Although utility is discrete in s and it could take on many shapes, it is plotted linearly here for simplicity.
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s

v̂
S

v̂0

v̂1

0

x = 0 x = 1

s∗

(a) Deterministic utility

s

M̂B

S

0
s∗

M̂B > 0

M̂B < 0

(b) Marginal Benefit: v̂1 − v̂0

M̂B

P (x)
1

0.5

Experimentation

Regular Use

Dependence

(c) Probability of use

Figure 2: Stages of addiction for individual i with ni = ∅

agent’s neighbourhood ni (as in Jackson and Yariv, 2007), so that

h(x, ni) = g

[
xi

1

di

∑
j∈ni

xj + (1− xi)
1

di

∑
j∈ni

(1− xj)

]
.

The network effects work in both directions. If the majority of neighbours are using, then the

network effect rewards use in the sense that h(0, ni) < h(1, ni). If, however, the majority of

neighbours are not using, then h(0, ni) > h(1, ni). The parameter g captures the magnitude of the

network effect. For simplicity, I assume that g is equal across agents.

Since individuals have a random utility function, the equilibrium definition is non-standard.

The following discussion draws heavily on McKelvey and Palfrey (1995) who define the equivalent

of a Nash equilibrium for a game with players that calculate payoffs with a random utility function.

Let ∆i = {pi ∈ R+|pi ∈ [0, 1]} be the set of all possible probabilities of choosing to consume the

addictive substance for individual i and ∆ =
∏N

i=1∆i be the set of possible probability measures

for all N agents. Also, let p−i = {pj}j ̸=i be a strategy profile and v̂i1(p−i) and v̂
i
0(p−i) the expected

error-free utility (conditional on p−i) for choices xi = 1 and xi = 0, respectively. Define agent
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i’s response set as Ri(p−i) = {(ei0, ei1) ∈ R2|v̂i1(p−i) + ei1 ≥ v̂i0(p−i) + ei0}. Thus, for a given

strategy profile, individual i’s statistical reaction function or quantal response function, is given

by σi(p−i) =
∫
Ri(p−i)

dF (ei). In other words, σi(p−i) is the utility-maximizing probability that

individual i chooses to consume the addictive good given the strategy profile p−i.

Definition 1 (Quantal Response Equilibrium). A quantal response equilibrium is a mixed strategy

π∗ ∈ ∆ such that π∗i = σi(π
∗
−i) for all i ∈ {1, . . . , N}.3

Furthermore, under the assumption that errors are independent across actions and individuals

and drawn from the type 1 extreme value distribution described in Assumption 5, the probability

of use depends on the relative weights of the expected utility from using and not using. Letting

vi0 = v̂i0 − h(x, ni), v
i
1 = v̂i1 − h(x, ni), and MBi = vi1 − vi0, the probability of use for individual i is

given by,

π∗i=
exp

[
λ
(
vi1 +

1
di

∑
j∈ni

π∗j g
)]

exp
[
λ
(
vi1 +

1
di

∑
j∈ni

π∗j g
)]

+ exp
[
λ
(
vi0 +

1
di

∑
j∈ni

(1− π∗j )g
)] . (3)

To understand the equilibrium and explore the implications of network effects, consider an

example with two players i and j. The coordination game is shown in Figure 3 below. This is a

simultaneous move game where player j does not know the choice (use (U) or do not use (D)) of

player i when picking her own strategy. Since there are only two players, h(x, ni) = 0 if they do

not coordinate and h(x, ni) = g if they choose the same action.

DU

i

D

(vi1, v
j
0)

U

(vi1 + g, vj1 + g)

j

D

(vi0 + g, vj0 + g)

U

(vi0, v
j
1)

jj

Figure 3: A two-player game of drug use

For player i, the expected utility from consuming the addictive good is given by πj(v
i
1 + g) +

(1−πj)vi1 and the expected utility from choosing xi = 0 is πjv
i
0+(1−πj)(vi0+g). Therefore, player

i uses the drug when

πj(v
i
1 + g) + (1− πj)v

i
1 + e1>πjv

i
0 + (1− πj)(v

i
0g) + e0

⇔ (vi1 + πjg)− (vi0 + (1− πj)g)≥e0 − e1

⇔ vi1 − vi0 − (1− 2πj)g≥ε

⇔ MBi − (1− 2πj)g≥ε.
3For more details and proof of existence see McKelvey and Palfrey (1995).
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As a result, given definition 1, the equilibrium probabilities for players i and j are

π∗i =
exp

(
λ(π∗j (v

i
1 + g) + (1− π∗j )v

i
1)
)

exp
(
λ(π∗j (v

i
1 + g) + (1− π∗j )v

i
1)
)
+ exp

(
λ(π∗j v

i
0 + (1− π∗j )(v

i
0 + g))

) (4)

and

π∗j =
exp

(
λ(π∗i (v

j
1 + g) + (1− π∗i )v

j
1)
)

exp
(
λ(π∗i (v

j
1 + g) + (1− π∗i )v

j
1)
)
+ exp

(
λ(π∗i v

j
0 + (1− π∗i )(v

j
0 + g))

) . (5)

Note that (4) can be rewritten in the following way,

π∗i=
1

1 + exp
(
−λ(MBi + (2π∗j − 1)g)

) .
Thus, the probability to use for individual i is directly determined by the quantity

MBi + (2πj − 1)g. (6)

As defined before, agent i is likely to use if πi > 0.5. This occurs when the expression in (6) is

positive. Likewise, agent i is unlikely to use if (6) is negative. A few remarks are in order. First,

as in the case of no neighbours ni = ∅, as the marginal benefit of use increases, the probability of

use increases: πi(s
′) > πi(s) for s

′ > s. Second, if πj = 1
2 , the probability of use depends only on

the marginal benefit from use and not the network effect.

Third, the effect of g, the magnitude of the network effect, depends on πj ,

∂πi
∂g

∣∣∣∣
πj>

1
2

> 0,
∂πi
∂g

∣∣∣∣
πj<

1
2

< 0,
∂πi
∂g

∣∣∣∣
πj=

1
2

= 0. (7)

That is, if player j is likely to use, then increasing the parameter g raises the probability of use for

player i. If, on other hand player j is unlikely to use, then an increase in influence lowers πi. This

effect captures the fact that influence can work in both ways. Also, it is through this mechanism

that neighbourhood-related heterogeneity can lead to varying rates of recidivism and initial use for

two otherwise identical individuals.

Fourth, the probability of use is unambiguously increasing in the other player’s probability of

use,
∂πi
∂πj

> 0. (8)

Fifth, if the expected network effect is as large as the marginal benefit, MBi = (1 − 2πj)g, then

the player becomes indifferent, i.e. πi =
1
2 . Figure 4(a) shows exactly how these effects influence

individual i’s utility. Coordinating actions with a player that chooses not to use shifts the v0 curve

up to v0 + g. This is equivalent to shifting the MB down by g as shown in Figure 4(b). The

result is a lower probability of use as demonstrated by a rightward shift of the probability curve
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in Figure 4(c). Similarly, facing a player that chooses to consume the addictive good effectively

shifts the v1 curve up by the influence parameter g so that the marginal benefit increases for all s

(upward shift in Figure 4(b)) and the probability of use is higher (leftward shift in Figure 4(c)).

s

v

v0

v0 + g

v1

v1 + g

s∗

S

s∗− s∗+

Region I

Region II

Region III

(a) Deterministic utility with network effects

s

MB
S

0
s∗ s∗+s∗−

+g

−g

(b) Marginal benefit: v1 − v0

MB

P (xi)
1

0.5

xj = 1

xj = 0

(c) Probability

Figure 4: Marginal benefit and probability of use with network effect

Incorporating the network effect creates three distinct regions in the agent’s states of addiction.

The borders of these regions occur at states where |MBi| = g and are marked by s∗− and s∗+ in

Figures 4(a) and 4(b). As explained by the following definitions, these regions have important
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implications for behaviour.

Definition 2 (Region I). Region I is the set of states for which −MB > g. These states are

s ∈ [0, s∗−) and if an individual is in this region then she is unlikely to use regardless of the

behaviour of the other players.

Definition 3 (Region III). Region III is the set of states for which MB > g. These states are

s ∈ (s∗+, S] and if an individual is in this region then she is likely to use regardless of the behaviour

of the other players.

These definitions are the direct consequence of the statistical reaction functions. Note that,

player i is likely to use if

1

1 + exp (−λ(MBi + (2πj − 1)g))
>
1

2
(9)

⇔ MBi + (2πj − 1)g>0 (10)

⇔ πj>
1

2
− MBi

2g
. (11)

When player i is in region III,MBi > g so that the inequality in (11) is satisfied for any πj because

the right-hand-side is negative. In contrast, if she is in region I then −MBi < g and the inequality

in (11) cannot be satisfied by any πj because the right-hand-side is greater than one. Although the

network effect alters the probability of use for agents in regions I and III, it is not large enough to

make a likely user become an unlikely user and vice-versa. The set of states between regions I and

III however, are different.

Definition 4 (Region II). Region II is the set of states for which |MB| ≤ g. These states are

s ∈ [s∗−, s
∗
+].

There are two cases when player i is in region II in which the network effect serves to reinforce

behaviour. First, if player i is in addictive state s ∈ (s∗, s∗+] and player j is in region III, then

player i is likely to use because (11) is satisfied (MBi is positive and πj > 0.5). Second, if player i

is in addictive state s ∈ [s∗−, s
∗) and player j is in region I, then player i is unlikely to use because

(11) is not satisfied (MBi is negative and πj < 0.5).

Under what conditions can the network effect alter behaviour? Suppose player i is in region II

in addictive state s ∈ [s∗−, s
∗) and player j is in region III or i is in s ∈ (s∗, s∗+] and j is in region I.

The next set of definitions describes certain conditions under which the player with addictive state

in region II can become likely to conform to the other player’s behaviour.

Definition 5 (Commitment Premium). Consider a two-player drug use coordination game, where

player i is in region II and player j is in region III. Player j is likely to use with a probability of at

least 0.5. The commitment premium, given by MBi
2g , is the additional level of commitment to use,

from player j, that would make player i likely to use. That is, for player i to be likely to use, the

probability of using for player j would have to be over the minimum by at least MBi
2g . Similarly, if

12



player j is in region I, the commitment premium is the additional level of commitment not to use

from player j that would make player i unlikely to use.

The commitment premium is determined by the marginal benefit of use for player i, the indi-

vidual in region II. Therefore, we can identify a set of states for player i for which peer influence

can be strong enough to alter behaviour.

Definition 6 (Zone of Susceptibility). For a given state of addiction for player j, define the zone of

susceptibility, Z, as the set of states for player i for which the probability to use πj is large (small)

enough to satisfy the commitment premium.

Thus if player i is in state s ∈ Z then she is likely to choose the same action as player j even

though alone she would be likely to do the opposite. Furthermore, the farther player i is from her

tipping point, the greater the commitment premium.4 This result is intuitive since the greater the

marginal benefit in magnitude the higher the relative weight of either choice and the more unwilling

is the individual to alter her decision. In order to be swayed, the probability of getting g must be

high enough to account for this reluctance. Note that for an individual in regions I or III, Z = ∅.
In summary, for two players coordinating to use drugs we can expect the following results. If

both payers are in region I then they are likely not to use the drug. If they are in region III, then

consumption of the addictive good is likely for both players. If one player is in region II and the

other player is in regions I or III then both are likely to choose the same action if the commitment

premium is met. If the commitment premium is not met or both players are in region II, then the

outcome is unpredictable because there are multiple equilibria.

Compared to the case of ni = ∅, the presence of the network effect can reinforce or diminish

the likelihood of an individual’s action. The next series of theorems describes how changes in the

model fundamentals affect the outcome.

Theorem 1 (Utility effects). A level increase (decrease) in the withdrawal and/or willpower cost

affecting vi0(s) causes the tipping point s∗ to shift to the left (right), the size of region I (III) to

decrease and the size of region III (I) to increase. A level increase (decrease) in the decline of health

effects, hedonic experience, and/or resource cost q affecting vi1(s) causes the tipping point s∗ to shift

to the right (left), the size of region I (III) to increase, and the size of region III (I) to decrease.

Proof. Consider a level decrease of vi0(s) (the proof for a level increase of vi1(s) is the same). This

causes the new marginal benefit, MBi
n, to be greater than the original marginal benefit, MBi

o, for

all states s > 0. Thus, at the original tipping s∗o, the new marginal benefit of use is greater than 0,

and therefore, MBi
n(s

∗
o) > MBi

o(s
∗
o). Since, by Assumption 6, MBi is increasing in s and negative

at s = 0, the new tipping point s∗n must be at a lower state than the original one s∗o. That is,

s∗n < s∗o. Regions I and III are delimited by |MBi(s)| = g. Since MBi
n > MBi

o for all s > 0,

−MBi
n(s

∗
n−) = g and MBi

n(s
∗
n+) = g must both occur at a lower state than in the original case

(s∗o−, s
∗
o−). Consequently, the set [0, s∗n−) is smaller than [0, s∗o−) and the set (s∗n−, S] is larger than

4MBi is zero at the tipping point and then increasing in magnitude for any state larger or smaller.
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(s∗o−, S]. The proof for a level increase of vi0(s, ni) (level decrease of vi1(s, ni)) is exactly the same

but with everything moving in the opposite direction. ■

According to Theorem 1, substances for which regular use begins at higher states of addiction

(high s∗) make the individual vulnerable to network effects later than for substances with a faster

onset of addiction (low s∗). For instance, it could be easier for someone who has consumed mari-

juana a few times to say no to a friend than it would be for someone who has started experimenting

with heroin. Moreover, the network effect can be an important driving force in the transition from

low to regular use. This is of particular importance for drugs that are often used in a social context

such as tobacco and alcohol. A person who would normally abstain can be tempted to engage in

social smoking or social drinking and develop an addiction more quickly when the probability of

use in the neighbourhood is high. This effect works in both ways. Once regular use begins it is

easier to stop when probability of use in an individual’s neighbourhood is low. This mechanism

shows that recidivism rates are likely to be higher for individuals in areas of high use, consistent

with the empirical findings discussed in Section 1.

Theorem 1 also sheds some light on how government policy can affect an outcome. Suppose

the government can alter the resource cost q of obtaining the addictive good. This can be achieved

through policies such as higher police presence or direct disruption of the supply-chain. Note that

by Assumption 4, an increase in q causes a level decrease of vi1(s)∀i. For an individual close to her

tipping point s∗, such a policy can alter her path away from addiction. On the other hand, for an

individual in a state close to S, the policy might lower the probability of use but, unless the change

is very large, not have a significant impact on long term behaviour. Furthermore, if the policy is

only active for a small number of periods, then the individual is likely to return to regular use once

it expires, even if it was large enough to get them to stop using for a few periods.

If two individuals are in region I, then the network effect serves to reinforce the policy that

increases the resource cost in the sense that the policy is more effective when ni ̸= ∅. The opposite

holds true if both individuals are in region III. In that case, the policy is more effective when

ni = ∅. In both cases, coordination offers a higher payoff. This finding implies that a policy aimed at

reducing use by increasing the resource cost of a drug could be made more effective if complemented

with a policy that encourages or discourages links between individuals. In low-use neighbourhoods,

such policies could entail encouraging group activities and in high-use neighbourhoods links could

be discouraged via curfews and restricting access to areas where individuals tend to gather.

The next theorem is mostly technical but serves to clarify the role of the error term.

Theorem 2 (Effect of error variance). As λ → ∞ the zone of susceptibility Z → region II. As

λ→ 0 the zone of susceptibility Z → ∅ and P(xi = 1|s, ni) → 0.5.

Proof. As λ→ ∞, the probability of use for player j, given by 1
1+exp(−λ(MBj+(2πi−1)g))

, goes to zero

forMBj+(2πi−1)g < 0 and one forMBj+(2πi−1)g > 0. Therefore, player j uses with probability

one in region III and with probability zero in region I. Since the commitment premium for player
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i in region II is MBi

2g ∈
[
−1

2 ,
1
2

]
, it is always satisfied and the zone of susceptibly covers the entire

region II. As λ→ 0, the probability of use for player j, 1
1+exp(−λ(MBj+(2πi−1)g))

→ 1
1+exp(0) =

1
2 . ■

Recall that λ is the inverse of the variance of the random variable ε. As the variance of the error

term gets very large (λ → 0), all of the other effects get washed out and the individual behaves

randomly choosing to use with a probability of 0.5 regardless of her state or her neighbourhood.

As the variance collapses to zero (λ → ∞), decisions become deterministic. For an individual in

region II the probability of coordinating with a region I or region III player becomes 1. At the

same time, a very low variance eliminates all of the dynamics in the model. Agents in region I stay

in region I and agents in region III stay in region III with probability 1. Clearly λ is an important

parameter to consider if this model is taken to the data.

Theorem 3 (Strength of link). An increase (decrease) in the influence parameter g results in an

increase (decrease) in the size of region II and a decrease (increase) in the size of regions I and III.

Proof. Consider an increase in the influence parameter g′ > g. Regions I and III are delimited by

|MBi(s)| = g. Let the original delimiting states be s∗o− for region III (−MBi(s∗o−) = g) and s∗o+

for region I (−MBi(s∗o+) = g). Since MBi is increasing in s, it must be the case that the new

delimiting states are s∗n− < s∗o− for region I (−MBi(s∗o−) = g < g′ = −MBi(s∗n−)) and s
∗
n+ > s∗o+

for region III (MBi(s∗o+) = g < g′ = MBi(s∗n+)). As a result, the set [0, s∗n−) is smaller than

[0, s∗o−) and the set (s∗n−, S] is smaller than (s∗o−, S]. ■

Theorem 3 describes how the strength of links affects behaviour. First, note that if g = 0

there is no added payoff for coordination and an individual behaves as if her neighbourhood is

empty. As g gets larger, region II and the zone of susceptibility, increase in size. For two players in

region I or region III facing a very large g there is a strong incentive to coordinate. Therefore, we

expect individuals in these situations to stabilize around a low (s = {0, 1}) or high state (s = S)

of addiction, respectively. Although there is a very low probability that both individuals receive a

large enough shock (or series of shocks) so that they decide to consume the addictive good and end

up in region II, if this does occur then the outcome is very volatile. Once in region II, due to the

multiple equilibria, behaviour becomes volatile and unpredictable. Two players could quickly end

up in region III where they would be likely to remain until another very large shock simultaneously

arrives for both of them to stop use. Thus, for large g the system exhibits strong absorption -

if both agents are in states s = {0, 1} or s = S then there is low probability of them leaving -

and more volatility - the set of states for which multiple equilibria arise is large. At the other

extreme, for a very small g the system exhibits weak absorption - not much stronger than if the

individuals behave independently - and low volatility. Since region II is relatively small, even after

a few instances of use agents can return to a low use state.

The strength of the network parameter g has immediate effects on system stability and diffusion

of addiction. To explore these effects further, the next section uses simulations to examine behaviour

and dynamics of multi-player games under various conditions.
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3 N-player Behaviour

The theoretical model for two players provides a lot of intuition for the impact of influence on

behaviour but it limits analysis to comparisons of static equilibria. Using a computational model,

this section extends the analysis to N-players and shows the evolution of aggregate behaviour

and the impact of changing network topologies. I analyze the spread of addiction with different

numbers of links di and various magnitudes of the influence parameter g. Simulation requires

explicit descriptions of the space, agent attributes, methods of interaction, initial conditions, as

well as decision rules. Definitions of these components are provided below and followed by a

discussion of the simulation strategy and results.5

For simplicity, I only consider regular networks, i.e. where each node has the same degree.

The most basic network formation is a circle which is represented by a line of agents with the

two endpoints connected. In this configuration, as shown in Figure 5(a), each agent has degree

two, sharing one link with each adjacent neighbour. Adding one more dimension results in an

alternative network formation represented by a torus. This shape, shown in Figure 5(c), is a

rectangle wrapped in such a way that its opposing sides are connected to each other. Agents can

have either 4 links - one for each agent to the north, south, east, and west - or 8 links - adding

connections to neighbours to the north-west, north-east, south-west, and south-east. Figure 5(b)

shows these two configurations as they would appear on a section of the torus surface. In addition,

for comparison, I also provide results for the N -player game with N − 1 links, i.e. with all players

connected to each other.

(a) Circle with each agent connected
to a neighbour on both sides

(b) Section of a torus
with 4 links (solid
lines) and 8 links (solid
and dashed lines) from
the perspective of the
centre node

(c) Torus

Figure 5: Network structures

In the static model, when more than one agent is in region II, multiple equilibria arise and

there is no criterion for selecting one equilibrium strategy over another. Therefore, in order to

consider a dynamic version of the model, agents best respond to the information received from the

previous period. This is a similar process to diffusion over a network discussed by Jackson and

Yariv (2007). In that paper, the authors look at what network properties affect the adoption of

5For a detailed discussion of parameterization see Appendix A.
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a new technology or behaviour in a population. Once behaviour converges to a stable point, this

steady state corresponds to an equilibrium of the static game. While their paper has only two

possible outcomes - complete adoption or failure to adopt - my model has several and I compare

them by observing how the system evolves under various conditions.

Recall (3) from definition 1. The equilibrium probability of consuming the addictive good

depends on the marginal benefit of use MBi and the expected value of the network payoff. I

assume that each agent uses last period’s information as a prediction for the expected network

payoff in the current period. Thus, the probability of use is determined by

MBi +
1

di

∑
j∈ni

(πj)g −
1

di

∑
j∈ni

(1− πj)g =MBi +
g

di

∑
ȷ∈ni

(2xj − 1), (12)

where ni is the set of agent i’s neighbours, di is the size of that set, and all xj ’s are neighbours’

actions from the previous period.

I consider an environment with eleven stages of addiction s ∈ {0, . . . , 10} with the tipping point

at s∗ = 5. The objective is to explore how changing the strength of the influence parameter g and

increasing the number of links alters the evolution of addiction for various initial conditions. These

initial conditions include two scenarios: (1) the majority of the population is in advanced stages of

addiction, and (2) the majority of the population is in the experimentation stages of addiction.

Simulation proceeds as follows. For a given network, agents are each assigned to a particular

node, implicitly defining their neighbourhoods. Agent attributes take on two forms, private and

public, and only the latter is used in communication with neighbours. Private attributes include

the agent’s current state of addiction, used to calculate MBi, while public attributes contain the

agent’s location and the previous period’s choice xi. Agents all begin with same addictive state,

which depends on the experiment, and are all identical at t = 0. For all of the experiments, the

number of agents is N = 100. At each iteration, there are two steps: (1) an intra-period step where

information is gathered and payoffs are calculated, and (2) an inter-period step where agents act

based on the probabilities obtained in step (1). To generate some variation in the population, for

experiments where g > 0, the network effect only becomes active after 300 periods. Simulations

run for T = 1000 periods and in each case, the benchmark is given by the simulation with g = 0,

i.e. no network influence. The length of simulation is chosen so that a pattern of behaviour can

be clearly identified but is otherwise arbitrary. Each experiment is repeated 5000 times and the

reported results are given as simulation averages.
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Table 1: Average number of users, 1
N

∑N
i=1 xi, at t = T in different initial environments

High-use (s = 6) Low-use (s = 4)

di = 2 di = 4 di = 8 di = 99 di = 2 di = 4 di = 8 di = 99

g = 0 0.8306 0.8306 0.8306 0.8306 0.1695 0.1695 0.1695 0.1695

(0.0014) (0.0014) (0.0014) (0.0014) (0.0014) (0.0014) (0.0014) (0.0014)

g = 2 0.8928 0.8877 0.8883 0.8635 0.1077 0.1124 0.1119 0.1370

(0.0017) (0.0016) (0.0017) (0.0022) (0.0017) (0.0016) (0.0016) (0.0020)

g = 3 0.9304 0.9421 0.9421 0.9948 0.0690 0.0588 0.0590 0.0054

(0.0018) (0.0014) (0.0014) (0.0006) (0.0019) (0.0015) (0.0014) (0.0006)

g = 4 0.9345 0.9844 0.9842 0.9997 0.0650 0.0156 0.0161 0.0004

(0.0017) (0.0006) (0.0006) (0.0000) (0.0017) (0.0006) (0.0007) (0.0000)

Notes: Standard errors are provided in parenthesis below each average. All statistics are given for period T=1000,

averaged over 5000 replications.

Table 1 reports the average number of agents choosing to consume the addictive substance at

the end of the simulation for two scenarios with different initial conditions.6 The first scenario has

the state of addiction set to 6 across all agents and represents a high initial use environment and

the second sets it to 4 to mimic a low initial use environment. The various columns show the results

for different degrees and the various rows correspond to different strengths of the network effect.

In the high-use environment about 83.1% of the population consumes the addictive good when

there are no network effects present. As predicted by the results in the two-player game, for a

given number of links, increasing the strength of the network parameter increases the proportion

of agents consuming the addictive good. However, the effect of increasing the number of links for

a given network strength is not as apparent. First, moving from 2 to 4 links appears to change

the results, but moving from 4 to 8 has no significant impact. When the number of links increases

significantly, as in the case of di = 99, the difference in behaviour is much clearer.

When the strength of the network parameter is relatively weak, g = 2, increasing the number of

links lowers the average use in the economy. However, when the strength of the network parameter

is relatively strong, g = 4, increasing the number of links increases the average use in the economy.

In fact, when there are few strong links (g = 4, di = 2), the diffusion of addiction is faster, with

93.5% of the population using at the end of the simulation, than when there are many weak links

(g = 2, di = 99), with 88.8% of the population using.

These results are similar for the low initial use environment. The majority behaviour is rein-

forced as the strength of the network parameter increases for a given number of links and drug use

is eliminated more quickly when there are few strong links, with only 1.6% of agents using at the

end of the simulation, than when there are many weak links, with 13.7% of the population using.

6Several other summary statistics were considered but are not reported here. These include the average addictive
state, the average number of agents in the highest state of addiction, and the average probability of use. The results
using these other measures were qualitatively the same. Furthermore, other regular networks (with di = 20, 40, and

18



0 200 400 600 800

0.
85

0.
90

0.
95

1.
00

period

av
g 

nu
m

be
r 

of
 u

se
rs

Number of Links

0
2
8
99

(a) g = 2
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(b) g = 3
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(c) g = 4

Figure 6: Simulation results for high initial use

To gain a better understanding of this result, Figure 6 plots the simulation paths for various

numbers of links and network strengths in the initial environment with high use. As shown in

Figure 6(a), addiction spreads faster with fewer links when the connections are weak. Figure 6(c)

shows that this difference becomes more pronounced and reverses order when the connections are

strong. Finally, Figure 6(b) reveals that when the strength of the links is in between, addiction

60) were also considered and led to the same conclusions. All of these additional results are available upon request.
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initially spreads faster with fewer links but by the end of the simulation the environment with many

links has more addicts. For the environment with low initial use, the same plots appear as mirror

images of the ones shown in Figure 6 and reveal the same dynamics (see Figure 7 in Appendix B).

The simulations shown here imply that the speed of diffusion is critically related to both the

number of links and their strength. Although addiction can spread the fastest when there are

many strong links, this rate of diffusion can be greatly reduced as the network effect is weakened.

This finding has implications for the role of networks in understanding the spread of addiction

in different communities. For instance, rural towns with few inhabitants that know each other

very well (few strong links) might be more susceptible to the diffusion of addiction than those

living in large urban areas and interacting with many strangers (many weak links). Furthermore,

knowledge of the network configuration can provide important insights for a policy maker dealing

with addiction. For example, as part of a drug-deterrent policy, disrupting links can have a greater

effect when there are few strong links than when there are many weak links.

Interestingly, the environment that is best at keeping use low is also the one that is most

susceptible to the fastest spread of addiction. Thus, it is important to keep in mind that network

effects are only one factor in explaining differences in addiction across environments. Nevertheless,

as this section reveals, understanding the role of the network configuration can be an important

tool in assessing the threat of drug addiction or dealing with its spread.

4 Conclusion

This paper introduces network influence into a dual-self model of addiction. On the individual

level, it is consistent with previous studies that model decision making under addiction as a trade-

off between two competing systems in the brain. Furthermore, it captures the dynamics of the

transition from experimental use to dependence.

I analyze interaction in the two-player game using a quantal response equilibrium. As the

strength of influence rises so does the zone of susceptibility or the set of states in which the agent

is susceptible to behaviour-altering network effects. Also, as influence rises so does the absorption

into dependence or abstention. If both players are in low states, they are more likely to stay there.

If they are both in advanced states of addiction, then their connection reinforces their behaviour

and they are less likely to stop use than if they were acting alone.

Next, I explore a dynamic version of the model using simulations. For standard network topolo-

gies, increasing the strength of the network parameter reinforces the majority behaviour. Changing

the number of links however, has different effects based on the strength of network influence. The

majority behaviour spreads faster with less links when connections are weak and with more links

when connections are strong.

These results have several implications for policy. For example, the network based explanation

of heterogeneity in relapse rates provides a theoretical foundation for implementing post reha-

bilitation relocation programs aimed at improving the probability of recovery. Also, in high use
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environments, depending on the number of links and their strength, disrupting connections can

make drug deterrent policies more effective.

In comparison to previous literature, criminalization has similar effects in my model as in

Bernheim and Rangel (2004). If I adopt the same welfare criterion as they do, namely the utility

as determined by the deliberative system, then laissez-faire is the optimal policy so long as an

individual’s hedonic experience exceeds the negative health effects of consuming the addictive good.

When the reverse is true but the affective system imposes a large enough cost to make the individual

likely to use, then policies limiting access are optimal. However, by incorporating the network effect,

my model adds an important dimension to the policy analysis and shows how the environment can

impact effectiveness.

Furthermore, the affective or “cold” system in Bernheim and Rangel (2004) is very simple

and always desires consumption of the addictive good, regardless of the state of addiction. But as

Loewenstein and O’Donoghue (2004) point out, choosing the welfare criterion becomes complicated

when the affective system is more complex. Specifically, if we also consider the utility lost from

expending the willpower required to appease the affective system then it is no longer clear that

the deliberative system alone is an appropriate welfare criterion. For this reason, the focus in this

paper is on positive rather than normative analysis.

The model presented in this paper serves as an important stepping stone for future exploration

of the role of networks in drug addiction. There are two main directions for future work. One

is to endogenize the network. In all of the discussion in this paper, the network structure has

been imposed exogenously. Nevertheless, there are many instances where people do not have much

influence over their networks. For instance, growing up in a certain neighbourhood exposes an

individual to peers particular to that area. However, drug addiction can shatter friendships and

spawn new ones, creating dynamics that are far more complicated than the ones considered in

the current model. The other element that has been exogenous in this paper is the supply side.

It is possible that certain areas of a network have easier access to drugs or that drug-suppliers

target areas where addicts conglomerate. This could create heterogeneity in the resource cost of

the addictive good that would translate to pockets of agents across the network with increased

susceptibility to use.
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A Computational Model Parameterization

Building a computational model requires explicit parameterization of the entire environment. I

start by describing the individual behaviour rules and then discuss the model parameters.

Recall from (12) that probability of use is entirely determined by the quantity

1

1 + exp(−λ(MBi + g
di

∑
j∈ni

(2xj − 1)))
, (13)

where xj is the only endogenous variable. The number of links di and neighbourhood ni are specified

by the network structure as discussed previously. The components that need to be given values are

MBi, g, and λ. Furthermore, since MBi is a function of the addictive state s, I must also specify

the maximum state of addiction S.

I assume that the function MBi(s) takes on the following form,

MBi(s) =MB0 + ψs.

Here, MB0 represents the marginal benefit from use in state s = 0. The other parameter, ψ,

captures the difference between the response of the deliberative system and the affective system to

a change in degree of addiction s. If the difference is positive, the marginal benefit of use increases

each time the agent uses. If ψ is negative, the decline in utility from continual use is greater than

the willpower cost of controlling the affective system, and marginal benefit is decreasing in s. For

Assumption 6 to be satisfied, MB0 must be negative and MB0 + ψS must be positive.

An agent is fully characterized by five parameters: {λ, g, S,MB0, ψ}. I let S and λ be homoge-

neous over the entire population. S is the maximum degree of addiction and it affects the length

of the addiction-state-interval and thus how long it takes for an agent to reach her tipping point

s∗ and develop dependence. For a given S, s∗ can also shift as a result of changes to parameters

MB0 and ψ. If the tipping point is close to the middle of the interval {0, . . . , S}, then a larger S

implies a longer path to the tipping and a longer descent into state S once the tipping point has

been passed. However, the speed of moving to s∗ and eventually S can be determined by MB0

and ψ because they directly impact the probability of transitioning between states. Therefore, I

set S = 10, and, let the other parameters determine the speed and likelihood of descent into heavy

use.

The scale parameter, λ, governs how responsive the agent is to shocks. For λ → ∞, the error

term plays no role and decisions are based solely on the sign of the marginal benefit. For λ = 0,

behaviour is completely random and the marginal benefit has no impact on an agent’s choice.

In order to obtain similar absorption strengths for s = 1 and s = 10, I choose MB0 = −5

and ψ = 1. Furthermore, to add some more dynamics to the model, I set λ = 0.8. The resulting
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transition probabilities are

P (s′|s) =



0.98 0.02 0 0 0 0 0 0 0 0 0

0 0.96 0.04 0 0 0 0 0 0 0 0

0 0.92 0 0.08 0 0 0 0 0 0 0

0 0 0.83 0 0.17 0 0 0 0 0 0

0 0 0 0.69 0 0.31 0 0 0 0 0

0 0 0 0 0.50 0 0.50 0 0 0 0

0 0 0 0 0 0.31 0 0.69 0 0 0

0 0 0 0 0 0 0.17 0 0.83 0 0

0 0 0 0 0 0 0 0.08 0 0.92 0

0 0 0 0 0 0 0 0 0.04 0 0.96

0 0 0 0 0 0 0 0 0 0.02 0.98


where each element Pij represents the probability of an agent in state i moving to state j.
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B Additional Simulation Results
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(a) g = 2
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(b) g = 3
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(c) g = 4

Figure 7: Simulation results for low initial use
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