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I derive a rigorous method to help determine whether a true
parameter takes a value between two arbitrarily chosen points for
a given level of confidence via a multiple testing procedure which
strongly controls the familywise error rate. For any test size, the
distance between the upper and lower bounds can be made smaller
than that created by a confidence interval. The procedure is more
powerful than other multiple testing methods that test the same
hypothesis. This test can be used to provide an affirmative answer
about the existence of a negligible effect.
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1. Introduction

In statistical analysis, it is often of interest to determine whether the value of an unknown
parameter lies within a certain range. There are two primary reasons for this. The first is to
determine if a true parameter lies between the upper and lower bounds of what is considered
usual for the issue at hand. The second is to investigate the possibility of a “null result”; to
illustrate, consider a scenario where a biostatistician would like to determine if a new drug
treatment has a negligible effect on the incidence of a specific side effect usually associated
with the class of drugs that the new drug is a member of.

The current practice is usually based on confidence intervals, normally ones derived
from inverting a t-statistic. Typically, an investigator would arbitrarily pick an upper and
a lower bound for the parameter of interest, and then examine whether the entire range
of the estimated confidence interval falls within these chosen bounds. The problem with
this approach is that the confidence interval is symmetric and selected for the investigator,
which may result in inference about the range of values of the true parameter that is too
conservative. The issue of what constitutes a null result is especially nebulous (Krantz,
1999), especially since the failure to reject a null hypothesis could simply be due to a lack
of precision.

This paper proposes a formal method that assuages the aforementioned problems. After
the investigator selects the upper and lower bounds for the test, the procedure then deter-

1Acknowledgements: I would like to thank Nicola Lacetera, Lealand Morin, and Benoit Perron for their
comments and suggestions. All remaining errors are my own.
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mines whether sufficient evidence exists to conclude that the true parameter lies within the
prescribed range. The method is constructed using a combination of hypothesis tests and is
thus a multiple testing procedure. Section 2 introduces the notation, formulates the problem,
and discusses existing methods. The proposed testing procedure is outlined in Section 3. In
Section 4, I apply it to an illustrative empirical example. This test has a number of desirable
technical properties, which are proven in Section 5.

2. Problem Formulation and Existing Methods

Label the lower bound τl, and the upper bound τu; τl < τu. The estimated coefficient of
interest is β̂. The two relevant hypotheses are:

Ho,l : β ≤ τl Ha,l : β > τl (1)

Ho,u : β ≥ τu Ha,u : β < τu (2)

The p-value for test (1) shall be designated po,l and the p-value for test (2) is po,u. For
simplicity of exposition, I combine both of these hypotheses to form a combined test :

Ho,c : Ho,l YHo,u Ha,c : τl < β < τu (3)

Care needs to be taken in interpretation of the outcome of the combined test; in particular, if
both nulls fail to be rejected, there is a potential contradiction2. In the case where both nulls
fail to be rejected, users should conclude that insufficient evidence exists to claim τl < β < τu
at the level of confidence α.

In a multiple testing scenario, the probability of rejecting at least one true null hypothesis
is called the familywise error rate (FWE), here denoted as α. A test is said to have strong
control of the FWE at level α if it is equal to or below level α regardless of which null
hypotheses are true in H = {Ho,1, . . . , Ho,m}.

One recently developed method that can be applied to an arbitrary bounds problem is a
partitioning procedure as proposed by Finner and Stassburger (2002). There are several key
differences between their procedure and the one proposed in this paper. Their procedure,
when applied to this bounds problem3, reverses the direction of the signs of the null hy-
potheses; this necessitates a different interpretation of the outcomes of the joint hypothesis
test4. The method also requires the generation of non-standard test statistics and critical
values. Other recently developed multiple testing methods are not valid to be applied to
the problem examined here, such as Romano and Wolf (2005) and Bittman et al. (2008),
because of the dependence of the hypotheses and the fact that the nulls operate in different
directions.

2See Finner and Strassburger (2002) for a guide as to how to interpret these cases.
3This is done in Example 4.2 on page 1207 in Finner and Strassburger (2002).
4For example, consider the case of large standard errors wherein the two nulls will not be rejected for

many different values of τl and τu.
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3. Testing Procedure

The steps to test the combined hypothesis (3) are as follows:

1. Choose the lower bound τl and the upper bound τu.

2. Conduct a test of the null hypothesis of the lower bound Ho,l : β ≤ τl;Ha,l : β > τl and
record its p-value po,l.

3. Conduct a test of the null hypothesis of the upper bound Ho,u : β ≥ τu;Ha,u : β < τu
and record its p-value po,u.

4. Define the p-value of the combined test po,c = sup{po,l, po,u}. If po,c ≤ α, reject the
combined null hypothesis and conclude sufficient evidence exists that τl < β < τu.

It is important to note that the bounds should not be interpreted as a confidence interval.
This testing procedure says nothing about the chance that the population parameter is
between the upper and lower limit; rather, rejecting the combined null hypothesis leads us
to conclude that it is unlikely that the population parameter is outside the bounds. If the
combined null hypothesis is true, there is at most an α chance that the test wrongly produces
an affirmative result.

4. Empirical Example

Example 1. A biostatistician working for a pharmaceutical company is performing an anal-
ysis of a drug currently in clinical trials. According to the country’s regulations, a drug must
list as a side effect any condition that occurs over 3 percentage points more or less often
in patients taking the drug compared to placebo. Hence, the investigator sets τl = −3 and
τu = 3. He estimates a regression that includes a dummy variable for those in the experimen-
tal group. The estimated coefficient on the dummy is β̂ = −0.09, with SE(β̂) = 1.72. The
95% confidence interval on the parameter estimate is [−3.47, 3.29], exceeding both limits. He

employs the arbitrary bounds test. Since |β̂−τl| = |−0.09−−3| < |−0.09−3| = |β̂−τu|, he
examines the lower bound since it will yield the larger p-value. Performing the one-tail test
of Ho,l : β ≤ τl gives a p-value of 0.045. The investigator concludes that sufficient evidence

exists to claim −3 < β̂ < 3 at level α = 5%: the drug is not different from the placebo for
the incidence of the side effect.

5. Mathematical Properties

I first discuss an important technical issue. Denote the set of null hypothesesH = {Ho,l, Ho,u}.
Since the case that all null component hypotheses are true is not possible, H is said to be
closed under arbitrary intersections; furthermore, a global null hypothesis5 does not exist
(Finner and Strassburger, 2002). Because of this, the technical property of coherence is

5A global null hypothesis is defined as the case where all null hypotheses in a set of null hypotheses H
are true.
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satisfied. A test is coherent if whenever a joint null hypothesis fails to be rejected, all of
its components also fail to be rejected; for example, a test that fails to reject the joint null
hypothesis H12 : β1 = β2 = 0 will also fail to reject both H1 : β1 = 0 and H2 : β2 = 0
separately. Since there are no such implications in the combined test, this property is sat-
isfied vacuously. Coherence is a necessary feature of any multiple testing procedure, as any
incoherent test can be replaced with a coherent test that has at least as much power and
will reject in every situation where the noncoherent test will reject (Sonnemann and Finner,
1988).

This bounds test has the following technical properties, which I prove in turn. I first
present a technical lemma for later use.

Lemma 1. The inequality Pr(po,l ≤ α|po,u < po,l) ≤ Pr(po,u ≤ α|po,u < po,l) holds.

Proof. Suppose instead Pr(po,l ≤ α|po,u < po,l) > Pr(po,u ≤ α|po,u < po,l). Using Bayes’s
theorem and cancelling out the denominator, the equality can be contradicted.

Theorem 1. The proposed test has the following properties.
(i) The familywise error rate is strongly controlled for at level α.
(ii) FWE = α is possible.
(iii) FWE

a.s.→ α.

(iv) ∀α, one can bound the estimated parameter β̂ in a narrower area compared to using
a confidence interval based on a t-statistic.

(v) Pr(Ho,c is rejected|τl < β < τu) → 1 as n→ ∞.
(vi) This is an asymptotically uniformly most powerful (AUMP) test.

Proof. (i) Without loss of generality, consider the case where (2) is true at the point β = τu.
We have two possibilities for test statistics: po,c = sup{po,l, po,u} = po,u and po,c = po,l.
Denote the expression (β = τu) ≡ θ. Then, the FWE is

= Pr(po,u ≤ α|po,u ≥ po,l, θ)Pr(po,u ≥ po,l|θ) + Pr(po,l ≤ α|po,u < po,l, θ)Pr(po,u < po,l|θ)
≤ Pr(po,u ≤ α|po,u ≥ po,l, θ)Pr(po,u ≥ po,l|θ) + Pr(po,u ≤ α|po,u < po,l, θ)Pr(po,u < po,l|θ)
= Pr(po,u ≤ α|θ) = α.

The inequality follows by Lemma 1, and the second equality follows from the law of total
probability. An analogous proof follows for the case of (1) being true at the point β =
τl. Since this proof shows that the FWE is controlled at level α regardless of which null
hypothesis is true, the test strongly controls for the FWE.

Proof. (ii) Consider the case where the null Ho,u is true, β = τu, and β̂−τu
se(β̂)

= t−1(df, 1 − α)

where t−1(df, ·) is the quantile function of Student’s t distribution with df degrees of freedom.

By continuity, ∃τl : β̂−τl
se(β̂)

= t−1(df, α) = |t−1(df, 1 − α)|, thus po,l = po,u. Thus, po,l is

irrelevant. Then, Pr(po,u ≤ α|β = τu) = α, giving us exactly FWE = α.

Proof. (iii) Without loss of generality, consider (2) to be true at the point β = τu. Then,

Pr(sup{po,l, po,u} = po,u)
a.s.
= 1, since β̂

p→ β = τu implies that |β̂ − τu| < |β̂ − τl| ⇒ to,u < to,l

4



as n→∞. The FWE is thus

= Pr(po,u ≤ α|po,u ≥ po,l, θ)Pr(po,u ≥ po,l|θ) + Pr(po,l ≤ α|po,u < po,l, θ)Pr(po,u < po,l|θ)
a.s.
= Pr(po,u ≤ α|θ) = α

where the almost surely equality follows because Pr(po,u ≥ po,l|θ)
a.s.
= 1 and Pr(po,u ≤

α|po,u ≥ po,l, θ)
a.s.
= Pr(po,u ≤ α|θ). An analogous proof can be constructed for the case of

β = τl.

Proof. (iv) A (1− α)% confidence interval is defined as β̂ − se(β̂) · t−1(df, α/2), β̂ + se(β̂) ·
t−1(df, α/2). Set τl = β̂ − se(β̂) · t−1(df, α/2), and τh = β̂ + se(β̂) · t−1(df, α/2). See that

τl = β̂ − se(β̂) · t−1(df, α/2)⇒ t−1(df, α/2) =
β̂ − τl
se(β̂)

> t−1(df, α)

where the right-hand side expression of the second equal sign is the t-statistic for hypothesis
(1), and t−1(df, α) is its critical value. Similarly, we see that τu = β̂ + se(β̂)t−1(df, α/2) ⇒
β̂−τu
se(β̂)

= −t−1(df, α/2) = t−1(df, 1−α/2) < t−1(df, 1−α) where the left-hand side expression

of the second equal sign is the t-statistic for hypothesis (2). Thus, we can pick a larger value
for τl and a smaller value for τu, giving us a range of values narrower than that created by
a confidence interval for a given level of α.

Remark. (iv) In fact, we can set po,l = α, po,u = α, and use these values in the t-statistics for
the hypothesis tests (1) and (2) to derive figures for τl and τu that would form an interval
that would be equivalent to a (1− 2α) confidence interval. It is easy to see that this is the
maximum possible length of the interval.

Proof. (v) Assume τl < β < τu and, without loss of generality, |β − τu| < |β − τl|. Since

β̂
p→ β, Pr(|β̂ − τu| < |β̂ − τl|)

a.s.
= 1 as n → ∞, thus Pr(sup{po,l, po,u} = po,u) = 1.

Therefore, we need only consider Ho,u to reject the combined null Ho,c. We thus require

z−1(α) ≥ β̂−τu
se(β̂)

, where z−1(α) is the α-quantile of the standard normal distribution. Clearly,

limn→∞
β̂−τu
se(β̂)

= −∞ ≤ z−1(α) since limn→∞ se(β̂) = 0 and β < τu. Hence, the null hypothesis

Ho,u will be rejected with probability 1 asymptotically, which means Ho,c will be as well. The
proof of |β − τu| > |β − τl| is similar, and the case of |β − τu| = |β − τl| is trivial.

Proof. (vi) Since Ho,l ∩Ho,u = ∅, that is, both nulls that make up the combined test cannot
be true simultaneously, a global null hypothesis does not exist. Therefore, the combined
null hypothesis must necessarily be tested through its individual components Ho,l and Ho,u.
Asymptotically, the Likelihood Ratio test and the t-test are equivalent; therefore, Ho,l and
Ho,u are both AUMP at level α. Since each component of the combined test is AUMP, the
combined test is AUMP as the rejection probability is maximized through the sum of its
parts at the level FWE

a.s.→ α.
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