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Abstract

We discuss the moment condition for the fractional functional central limit theo-
rem (FCLT) for partial sums of xt = ∆−dut, where d ∈ (−1/2, 1/2) is the fractional
integration parameter and ut is weakly dependent. The classical condition is exis-
tence of q ≥ 2 and q > (d + 1/2)−1 moments of the innovation sequence. When d is
close to −1/2 this moment condition is very strong. Our main result is to show that
when d ∈ (−1/2, 0) and under some relatively weak conditions on ut, the existence of
q ≥ (d+ 1/2)−1 moments is in fact necessary for the FCLT for fractionally integrated
processes, and that q > (d+ 1/2)−1 moments are necessary for more general fractional
processes. Davidson and de Jong (2000) presented a fractional FCLT where only q > 2
finite moments are assumed. As a corollary to our main theorem we show that their
moment condition is not suffi cient, and hence that their result is incorrect.
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1 Introduction
The fractional functional central limit theorem (FCLT) is given in Davydov (1970) for partial
sums of the fractionally integrated process ∆−dεt, where ∆−d = (1 − L)−d is the fractional
difference operator defined in (3) below and εt is i.i.d. with mean zero. Davydov (1970)
proved the fractional FCLT under a moment condition of the form E|εt|q < ∞ for q ≥ 4
and q > −4d/(d + 1/2), which was subsequently improved by Taqqu (1975) to q ≥ 2 and
q > q0 = (d+1/2)−1. The standard moment condition from Donsker’s Theorem is q ≥ 2, see
Billingsley (1968, chapter 2, section 10), and because the condition q ≥ q0 is only stronger
than q ≥ 2 when d < 0 we consider only d ∈ (−1/2, 0).
The fractional FCLT has been extended and generalized in numerous directions. For ex-

ample, Marinucci and Robinson (2000) replace εt by a class of linear processes, assuming the
moment condition q > q0. The latter authors proved FCLTs for so-called type II fractional
processes, whereas Davydov (1970) and Taqqu (1975) discussed type I fractional processes,
but the distinction between type I and type II processes is not relevant for our discussion of
the moment condition.
Davidson and de Jong (2000, henceforth DDJ) claim in their Theorem 3.1 that for some

near-epoch dependent (NED) processes with uniformly bounded q’th moment the fractional
FCLT holds, but (incorrectly, as we shall see below) assume a much weaker moment condition
than previous results, namely q > 2. To the best of our knowledge, Theorem 3.1 of DDJ is
the only fractional FCLT which claims a moment condition that is weaker than the earlier
condition.
In the next section we give some definitions and construct an i.i.d. sequence and a frac-

tional linear process which are central to our results. In Section 3 we present our main results
which state that if the fractional FCLT holds for any class of processes U(q) with uniformly
bounded q’th moment containing these two processes, then it follows that q ≥ q0 if the frac-
tional FCLT is based on fractional coeffi cients and q > q0 if the coeffi cients are more general.
The proofs of both results are based on counter examples which are constructed in a similar
way as a counter example in Wu and Shao (2006, Remark 4.1). In Section 4 we discuss the
results and give two applications. In particular, it follows from our results that if the FCLT
holds for NED processes with uniformly bounded q moments, then q ≥ q0. Hence DDJ’s
Theorem 3.1 and all their subsequent results do not hold under the assumptions stated in
their theorem.
Throughout, c denotes a generic finite constant, which may take different values in dif-

ferent places.

2 Definitions
Definition 1 We define the class U0(q) as the class of processes ut which satisfy the moment
condition

sup
−∞<t<∞

E|ut|q <∞ for some q ≥ 2 (1)

and have long-run variance

σ2
u = lim

T→∞
T−1E(

T∑
t=1

ut)
2, 0 < σ2

u <∞. (2)

For such processes we define two subclasses of U0(q):
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• ULIN(q) ⊂ U0(q) is the class of linear processes ut ∈ U0(q) satisfying ut =
∑∞

n=0 τnεt−n,
where

∑∞
n=0

∑∞
j=n τ

2
j <∞ and εt is i.i.d. with mean zero and variance σ2

ε > 0.

• UNED(q) ⊂ U0(q) is the class of zero mean covariance stationary processes ut ∈ U0(q)
which are L2-NED of size −1

2
on vt with dt = 1, where vt is either an α−mixing se-

quence of size −q/(1−q) or a φ−mixing sequence of size −q/(2(1−q)); see Assumption
1 of DDJ.

Note that the condition
∑∞

n=0

∑∞
j=n τ

2
j <∞ in the definition of the class ULIN(q) neither

implies nor is implied by (2). Also note that if ut ∈ ULIN(q) then ut is zero mean and
covariance stationary.
Next we define the fractional and general fractional processes.

Definition 2 For any ut ∈ U0(q) we we define the fractional process

xt = ∆−dut =
∞∑
j=0

bj(d)ut−j for − 1/2 < d < 0, (3)

where bj(d) = (−1)j
(−d
j

)
= d(d+ 1) . . . (d+ j − 1)/j! ∼ cjd−1 are the fractional coeffi cients,

i.e., the coeffi cients in the binomial expansion of (1− z)−d, and “∼”means that the ratio of
the left- and right-hand sides converges to one. The general fractional process is defined by

xt =
∞∑
j=0

aj(d)ut−j for − 1/2 < d < 0, (4)

where aj(d) ∼ c`(j)jd−1 and `(j) is a (normalized) slowly varying function, see Bingham,
Goldie, and Teugels (1989, p. 15).

Note that the bj(d) coeffi cients from the fractional difference filter are a special case of
aj(d). The processes (3) and (4) are well defined because, with ||x||2 denoting the L2-norm,
we have from (1) that

||xt||2 ≤ ||ut||2 + c

∞∑
j=1

`(j)jd−1||ut−j||2 ≤ c for d < 0

using Karamata’s Theorem, see Bingham, Goldie, and Teugels (1989, p. 26).
We base our results on the construction of the following two specific processes.

Definition 3 Let εt be i.i.d. with mean zero, variance σ2
ε > 0, and finite q’th moment for

some q ≥ 2 to be chosen later. For such εt we define the two processes:

• u1t = εt.

• u2t = εt + ∆1+dεt.

For these two processes we note the following connection with the classes ULIN(q) and
UNED(q).
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Lemma 1 For d ∈ (−1/2, 0) and for i = 1, 2, uit ∈ ULIN(q) ∩ UNED(q) and the long-run
variance of uit is σ2

ε.

Proof. Clearly, u1t = εt is contained in both ULIN(q) and UNED(q) and has long-run variance
σ2
ε.
The process u2t = εt + ∆1+dεt = εt +

∑∞
j=0 bj(−d− 1)εt−j is a linear process and

∞∑
n=0

∞∑
j=n

bj(−d− 1)2 ≤ c

∞∑
n=1

∞∑
j=n

j−2d−4 ≤ c

∞∑
n=1

n−2d−3 ≤ c for d ∈ (−1/2, 0),

so that u2t is in ULIN(q). To see that u2t is in UNED(q), we calculate

||u2t−E(u2t|εt−m, . . . , εt+m)||2 = ||
∞∑

n=m+1

bn(−d−1)εt−n||2 ≤ c(
∞∑

n=m+1

n−2d−4)1/2 ≤ cm−d−3/2.

Because 3/2 + d > 1/2 for d ∈ (−1/2, 0), this shows that u2t is L2-NED of size −1/2 on εt,
and hence u2t is also in UNED(q). The generating function for u2t is f(z) = 1 + (1 − z)1+d

and for z = 1 we find because 1 + d > 0 that f(1) = 1. Therefore the long-run variance of
u2t is limT→∞ T

−1E(
∑T

t=1(εt + ∆1+dεt))
2 = f(1)2V ar(εt) = σ2

ε.
We next give a general formulation of the FCLT for fractional processes. For this purpose

we define the scaled partial sum process

XT (ξ) = σ−1
T

[Tξ]∑
t=1

xt, 0 ≤ ξ ≤ 1, (5)

where σ2
T = E(

∑T
t=1 xt)

2 and [z] is the integer part of the real number z.

Fractional FCLT for U(q): Let XT (ξ) be given by (5) and suppose xt is linear in ut. We
say that the functional central limit theorem (FCLT) for fractional Brownian motion
holds for a set U(q) ⊂ U0(q) of processes if, for all ut ∈ U(q), it holds that

XT (ξ)
D→ X(ξ) in D[0, 1], (6)

where X(ξ) is fractional Brownian motion.

Here, D→ denotes convergence in distribution (weak convergence) in D[0, 1] endowed with
the metric d0 in Billingsley (1968, chapter 3, section 14), which induces the Skorohod topol-
ogy and under which D[0, 1] is complete.

3 The necessity results
Our first main result is the following theorem.

Theorem 1 Let XT (ξ) be defined by (5) for xt given by the fractional coeffi cients bj(d) in
(3) with −1/2 < d < 0, and let U(q) ⊂ U0(q) be such that uit ∈ U(q) for i = 1, 2. If the
fractional FCLT holds for all ut in U(q) for some q ≥ 2, then q ≥ q0.
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Proof. We prove the theorem by assuming that there is a q1 ∈ [2, q0) for which the FCLT
holds for U(q1), and show that this leads to a contradiction by a careful construction of εt
and therefore u1t and u2t.
For uit, i = 1, 2, we define xit and XiT by (3) and (5), and because uit is in U(q1) the

fractional FCLT holds by the maintained assumption for uit and hence XiT (ξ) converges in
distribution to fractional Brownian motion.
(i) The normalizing variance for X1T . The variance of

∑T
t=1 x1t =

∑T
t=1 ∆−du1t =∑T

t=1 ∆−dεt can be found in Davydov (1970), see also Lemma 3.2 of DDJ,

σ2
1T = E(

T∑
t=1

x1t)
2 ∼ σ2

εVdT
2d+1, (7)

where Vd = 1
Γ(d+1)2

( 1
2d+1

+
∫∞

0
((1 + τ)d − τ d)2dτ).

(ii) The normalizing variance for X2T . We write x2t and X2T in terms of x1t and X1T ,
using (3) and (5),

x2t = ∆−du2t = x1t + εt − εt−1, (8)

X2T (ξ) = σ−1
2T

[Tξ]∑
t=1

x2t = σ1Tσ
−1
2TX1T (ξ) + σ−1

2T (ε[Tξ] − ε0). (9)

We next find that the variance of
∑T

t=1 x2t =
∑T

t=1 ∆−du2t =
∑T

t=1(x1t + εt − εt−1) is

σ2
2T = E(

T∑
t=1

x2t)
2 = E(

T∑
t=1

(x1t + εt − εt−1))2 = E(εT − ε0 +
T∑
t=1

x1t)
2

= E(εT − ε0)2 + E(
T∑
t=1

x1t)
2 + 2E(

T∑
t=1

∆−dεt(εT − ε0)).

The first term is constant, the next is σ2
1T , and letting 1{A} denote the indicator function of

the event A, the last term consists of

E(
T∑
t=1

∆−dεtεT ) =
T∑
t=1

∞∑
k=0

bk(d)E(εt−kεT ) = σ2
ε

T∑
t=1

∞∑
k=0

bk(d)1{k=t−T} = σ2
εb0(d) = σ2

ε

and

E(
T∑
t=1

∆−du1tε0) =
T∑
t=1

∞∑
k=0

bk(d)E(εt−kε0) = σ2
ε

T∑
t=1

∞∑
k=0

bk(d)1{k=t} ≤ c
T∑
t=1

td−1 ≤ c for d < 0.

Therefore,
σ2

2T ∼ σ2
1T + c. (10)

(iii) The contradiction. We now construct the i.i.d. process εt so that it has no moment
higher than q1, that is E|εt|q =∞ for q > q1, by choosing the tail to satisfy

P (|εt|q1 ≥ c) ∼ 1

c(log c)2
as c→∞. (11)
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In this case we still have E|εt|q1 <∞. We then find

P (σ−1
1T max

1≤t≤T
|εt| < c) = P (σ−1

1T |ε1| < c)T = P (|ε1|q1 < cq1σq11T )T

= (1− P (|ε1|q1 ≥ cq1T q1/q0))T

∼
(

1− 1

cq1T q1/q0(q1(log c+ q−1
0 log T ))2

)T
∼ exp

(
− T 1−q1/q0

cq1(q1(log c+ q−1
0 log T ))2

)
→ 0

as T →∞ because q1 < q0. Thus, σ−1
1T max1≤t≤T |εt|

P→∞ because the normalizing constant
σ1T = σεV

1/2
d T 1/q0 = σεV

1/2
d T 1/2+d < σεV

1/2
d T 1/q1 is too small to normalize max1≤t≤T |εt|

correctly.
The definition (9) implies the evaluation

max
0≤ξ≤1

|ε[Tξ]| ≤ max
0≤ξ≤1

|ε[Tξ] − ε0|+ |ε0| ≤ max
0≤ξ≤1

|σ2TX2T (ξ)|+ max
0≤ξ≤1

|σ1TX1T (ξ)|+ |ε0|

such that

σ−1
1T max

0≤ξ≤1
|ε[Tξ]| ≤ max

0≤ξ≤1
|σ−1

1T σ2TX2T (ξ)|+ max
0≤ξ≤1

|X1T (ξ)|+ σ−1
1T |ε0|. (12)

We have seen in (7) and (10) that σ2
2T ∼ σ2

1T+c and σ2
1T ∼ σ2

εVdT
1+2d →∞ for d ∈ (−1/2, 0),

so that σ1Tσ
−1
2T → 1. Therefore, both σ−1

1T σ2TX2T (ξ) and X1T (ξ) converge in distribution
by the previous results and it follows from (12) that σ−1

1T max0≤ξ≤1 |ε[Tξ]| is OP (1). This

contradicts that σ−1
1T max1≤t≤T |εt|

P→∞, and hence completes the proof of Theorem 1.
The proof of Theorem 1 implies that the issue is that the rate of convergence, T−(d+1/2),

of
∑[Tξ]

t=1 ∆−du1t can be very slow for d close to −1/2. Thus, more control on the tail-behavior
of the ut sequence is needed when d ∈ (−1/2, 0), and this is achieved through the moment
condition (1).
We end this section by giving a result that shows when the moment condition q > q0 is

necessary instead of q ≥ q0. The former is the moment condition applied by, e.g., Taqqu
(1975) and Marinucci and Robinson (2000).

Theorem 2 Let XT (ξ) be defined by (5) for xt given by the general fractional coeffi cients
in (4) with −1/2 < d < 0, and let U(q) ⊂ U0(q) be such that uit ∈ U(q) for i = 1, 2. If the
fractional FCLT holds for all slowly varying functions `(·) and all ut in U(q) for some q ≥ 2,
then q > q0.

Proof. We assume that there is a q1 ∈ [2, q0] for which the FCLT holds for U(q1) and show
that this leads to a contradiction. For uit, i = 1, 2, we define xit and XiT by (4) and (5) and
use the proof of Theorem 1 with the following modifications.
(i) From Karamata’s Theorem, see Bingham, Goldie, and Teugels (1989, p. 26), we find

that the normalizing variance is σ2
1T ∼ c`(T )2T 2d+1 = c`(T )2T 1/q0 .
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(iii) We choose the tail of εt as in (11) in the proof of Theorem 1 and take `(T ) = (log T )−1

and find

P (σ−1
1T max

1≤t≤T
|εt| < c) = P (σ−1

1T |ε1| < c)T = P (|ε1|q1 < cq1σq11T )T

= (1− P (|ε1|q1 ≥ cq1T q1/q0`(T )q1))T

∼
(

1− 1

cq1T q1/q0`(T )q1(q1(log c+ q−1
0 log T + log `(T )))2

)T
∼ exp

(
− T 1−q1/q0`(T )−q1

cq1(q1(log c+ q−1
0 log T + log `(T )))2

)
→ 0

as T →∞ because q1 ≤ q0. Note that even with q1 = q0 (and q0 > 2 because d < 0) we have
the factor exp(−c(log T )q1−2)→ 0 which ensures the convergence to zero. The contradiction
follows exactly as in the proof of Theorem 1.

4 Discussion
In this section we present two corollaries which demonstrate how our results apply to the
processes in Marinucci and Robinson (2000) and to those in DDJ, respectively.
We first discuss the implications of Theorem 1 for the results of DDJ who state (in our

notation) the following claim (given as Theorem 3.1 in DDJ):

DDJ claim: If XT (ξ) is defined by (3) and (5) where |d| < 1/2, and ut ∈ UNED(q) for

q > 2, then XT (ξ)
D→ X(ξ) in D[0, 1] where X(ξ) is fractional Brownian motion.

It is noteworthy that UNED(q) allows ut to have a very general dependence structure
through the NED assumption, but in particular that DDJ assume only that suptE|ut|q <∞
for q > 2, which is weaker than q ≥ q0 if d < 0. The following corollary to Theorem 1 shows
how our result disproves Theorem 3.1 in DDJ.

Corollary 1 Let XT (ξ) be defined by (3) and (5) with −1/2 < d < 0. If the fractional
FCLT holds for all ut in UNED(q) then q ≥ q0.

Proof. From Lemma 1 we know that u1t and u2t are in UNED(q) which by Theorem 1 proves
the corollary.
It follows from Corollary 1 that Theorem 3.1 of DDJ (and their subsequent results relying

on Theorem 3.1) does not hold under their Assumption 1. We finish with an application of
our results to the processes in Marinucci and Robinson (2000).

Corollary 2 Let XT (ξ) be defined by (4) and (5) with −1/2 < d < 0. If the fractional
FCLT holds for all slowly varying functions `(·) and all ut in ULIN(q) then q > q0. Thus,
the moment condition (1) with q > q0 is both necessary and suffi cient for Theorem 1 of
Marinucci and Robinson (2000).

Proof. The first statement follows from Theorem 2 because u1t and u2t are in ULIN(q) by
Lemma 1. The second statement follows because the univariate version of Assumption A of
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Marinucci and Robinson (2000) (translated to type I processes) was in fact used to define
the class ULIN(q) and the coeffi cients aj(d).
It follows from Corollary 2 that q > q0 is both necessary and suffi cient for the fractional

FCLT when using the coeffi cients aj(d) to define a general fractional process and ut is a
linear process of the type in ULIN(q). However, it does not follow from our results that
q ≥ q0 is necessary for the FCLT when ut is an i.i.d. or ARMA process because the process
u2t needed in the construction is neither i.i.d. nor ARMA.

References
1. Billingsley, P. (1968). Convergence of Probability Measures, Wiley, New York.

2. Bingham, N. H., Goldie, C. M., and Teugels, J. L. (1989). Regular Variation, Cam-
bridge University Press, Cambridge.

3. Davidson, J. and de Jong, R. M. (2000). The functional central limit theorem and weak
convergence to stochastic integrals II: fractionally integrated processes. Econometric
Theory 16, pp. 643—666.

4. Davydov, Yu. A. (1970). The invariance principle for stationary processes. Theory of
Probability and Its Applications 15, pp. 487—498.

5. Marinucci, D. and Robinson, P. M. (2000). Weak convergence of multivariate fractional
processes. Stochastic Processes and their Applications 86, pp. 103—120.

6. Taqqu, M. S. (1975). Weak convergence to fractional Brownian motion and to the
Rosenblatt process. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete
31, 287—302.

7. Wu, W. B. and Shao, X. (2006). Invariance principles for fractionally integrated non-
linear processes. IMS Lecture Notes—Monograph Series: Recent Developments in Non-
parametric Inference and Probability 50, pp. 20—30.


