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Abstract

This paper explores contracting in the presence of ambiguity. It revisits Holm-

ström’s (1979) sufficient statistic result of when to condition a contract on an outside

signal. It is shown that if the signal is ambiguous, in the sense that its probabil-

ity distribution is unknown, then Holmström’s result can be overturned. Specifically,

uninformative ambiguous signals can be valuable.
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1 Introduction

In recent years a number of papers on contracting and mechanism design under ambiguity

have appeared. The increasing interest is well motivated, as ambiguity seems especially
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relevant for such problems. However, it is important to fully understand the implications of

introducing ambiguity. Specifically, there is a number of well-known results for contracting

in standard settings that may or may not hold under ambiguity.

The present paper shows that when allowing for ambiguity, one such well-known standard

result, namely Holmström’s (1979) sufficient statistic result no longer holds. In a standard

model with no ambiguity, Holmström considers the conditions under which a principal can

improve upon a contract by conditioning on an outside signal. His sufficient statistic result

shows that it is optimal to make the contract contingent on the outside signal if and only if

the signal is not orthogonal to the directly payoff relevant variables of interest.

This paper considers the canonical principal-agent model with hidden information with

the distinctive feature that there exists an ambiguous public signal which the contract may

be made contingent on. Both the principal (she) and the agent (he) are assumed to have

preferences that are represented by the α-maxmin expected utility model axiomatized in

Ghirardato, Maccheroni, and Marinacci (2004). Here, each party has a set of priors (rather

than a single prior) on the underlying state space and an attitude towards the realization

of ambiguity that is captured by a parameter α, which can be interpreted as the party’s

optimism. The payoff from any action is computed by weighing the maximum and the

minimum expected utility of the action over the set of priors with weight α on the maximum

and 1− α on the minimum.

The first result of this paper is that for a public signal that is uninformative about the

private information of the agent, that is, for a signal which is a payoff irrelevant random

variable (henceforth PIRV), the principal can benefit from conditioning the contract on the

public signal if and only if the signal is ambiguous. Hence, even PIRVs can be of value if

they are ambiguous. Contracts that condition on the signal are denoted ‘bait contracts’.1

The second result shows that a bait contract cannot be decomposed into a standard (non

conditioning) contract and a pure side bet. The optimality of a bait contract which conditions

on a PIRV shows that ambiguity overturns Holmström’s result.

The presence of the ambiguous public signal provides the principal with an additional

instrument she can use when designing the contract, namely that of deliberately introducing

ambiguity into the contract. By doing so, she can exploit optimistic ambiguity attitudes,

1The intuition for the use of the term ‘bait contract’ should become clear below.
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which will be left unexploited with a contract that does not condition on the signal. By

conditioning on the PIRV the principal creates endogenous heterogeneity in the parties’

overall decision weights, or effective beliefs. Such heterogeneity results in the parties having

a motive to bet on the resolution of the PIRV. If the agent is optimistic, the betting will be

to the principal’s advantage, and the optimal contract is a bait contract.

A bait contract thus fulfills two purposes. On one hand, it serves the usual purpose

of ensuring participation of and providing incentives for the agent. On the other hand,

the parties are betting on their differences in effective beliefs through the contract. If the

problem was broken up into separate contracting and betting problems, the betting would

upset the marginal trade-offs in the solution to the contracting problem. Thus, bundling the

two problems dominates solving them separately, as the joint solution allows all marginal

trade-offs, both those for given and those across signal realizations, to be at their optima.

The introduction of ambiguity is motivated by experimental and theoretical work. Ells-

berg (1961) showed that ambiguity can affect the choice of a decision maker in a fundamental

way that cannot be captured by a framework that assumes a unique prior. Many subsequent

papers have underlined the importance of ambiguity and of decision makers’ attitude towards

it in understanding observed behavior.

As mentioned, there appears to have been increasing interest recently in contracting under

ambiguity and in other non-standard choice theoretic settings. Mukerji (1998) considers a

moral hazard problem with firms in a vertical relationship and a discrete choice set and shows

that ambiguity aversion among the parties can rationalize incomplete contracts. Mukerji

and Tallon (2004) also consider a contracting problem where agents are ambiguity averse.

Lopomo, Rigotti, and Shannon (2011) consider a principal-agent model with moral hazard

where the agent’s beliefs are imprecise due to incomplete preferences. Vierø (2012) considers

contracting between risk neutral parties when the contracting environment itself is vague

(or ambiguous), and shows that the presence of vagueness or ambiguity often leads to the

standard ‘sell the firm to the agent’ contract being suboptimal. None of these papers consider

the issue of conditioning on an outside signal. Kotowski (2012) considers a principal-agent

problem with moral hazard in which the agent is ambiguity averse and the principal can be

ambiguous concerning the contract’s evaluative criteria.

A different group of related papers considers contracting when the parties have hetero-
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geneous beliefs. These include Adrian and Westerfield (2009) and Carlier and Renou (2005,

2006). When beliefs are heterogeneous, the parties also have a motive to bet on the resolu-

tion of uncertainty, but there is no possibility for the principal to influence the agent’s weight

on the different final scenarios. With precise information and heterogeneous beliefs, all dif-

ferences between the contracting parties are exogenous. These papers also do not consider

the issue of conditioning on an outside signal.

A third group of related papers analyzes mechanism design problems under uncertainty.

Levin and Ozdenoren (2004) consider auctions when there is ambiguity about the number

of bidders, while Bose, Ozdenoren, and Pape (2006) and Bose and Daripa (2009) study

auctions when there is ambiguity about the bidders’ valuations. De Castro and Yanellis

(2011) show that when individuals have MEU preferences, then any efficient allocation is

incentive compatible. Lopomo, Rigotti, and Shannon (2009) consider mechanism design

when preferences are incomplete.

The paper is organized as follows: Section 2 presents the model with ambiguity. Section

3 contains the results. Section 4 concludes. Proofs can be found in the appendix.

2 Model

Consider the canonical principal-agent problem with hidden information.2 A principal, who

is risk neutral, wants to hire a risk averse agent to complete a task. It is assumed that the

agent’s effort can be measured by a one-dimensional variable e ∈ [0,∞). The principal’s

gross profit is a continuous function of the agent’s effort, π(e), with π(0) = 0, first-order

derivative π′(e) > 0 ∀e > 0, and second-order derivative π′′(e) < 0 ∀e > 0. The principal’s

Bernoulli utility function is given by her net profits,

uP (w, e) = π(e)− w,

where w denotes the wage she pays to the agent.

The agent’s utility is assumed to depend on a variable, measuring how well suited to the

required task he will find himself. The value of this variable is realized after the contract

is signed. For convenience, it is referred to as the agent’s efficiency level, but it could be

2See, for example, Mas-Colell, Whinston, and Green (1995, chp. 14.C).
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interpreted in a variety of ways. The agent’s Bernoulli utility function depends on his wage

w, how much effort he exerts e, and his efficiency x, which affects how much disutility,

denoted g(e, x), he experiences from effort. There are assumed to be two possible values

of x: the agent will be either of high-efficiency type xH or of low-efficiency type xL. It is

assumed that the efficiency level is unobservable to the principal. Effort, on the other hand,

is observable and contractible.

Assume further that the agent’s Bernoulli utility function is of the form

uA(w, e, x) = v(w − g(e, x)), with v′(·) > 0 and v′′(·) < 0.

The disutility g(e, x) is assumed to satisfy the following standard conditions: the first-order

derivative w.r.t. e is ge(e, x) > 0 ∀e > 0 and the second-order derivative w.r.t. e is gee(e, x) >

0 ∀e, such that his disutility from effort is increasing at an increasing rate, g(0, xH) =

g(0, xL) = ge(0, xH) = ge(0, xL) = 0, such that the agent suffers no disutility if he does not

exert any effort, and ge(e, xL) > ge(e, xH) ∀e > 0, such that his marginal disutility from

positive effort is higher if he is of low-efficiency type. Note that these conditions imply that

g(e, xL) > g(e, xH) ∀e > 0, that is, the disutility of any positive effort level is also higher

for the low-efficiency type. Finally, let u denote the agent’s reservation utility, which for

simplicity (and without effect on the results) is assumed to equal zero.

Suppose there is a publicly observable and verifiable outside signal, which can take values

yH or yL. The state space is the Cartesian product of the two possible realizations of the

agent’s type and the two possible realizations of the signal. Thus, there are four possible

states of the world.

I assume that the signal and the agent’s type are independent, i.e. the probability of

realizing the pair (xi, yj), i, j = H,L, is the product of the relevant marginal probabilities.

Because the signal is orthogonal to, and thus uninformative about, the agent’s type, it is

referred to as a PIRV. Let p = (pH , pL), with pH ∈ (0, 1), denote the marginal probability

distribution over the agent’s types. That is, the agent will be of type xi with probability pi.

This probability is known to both parties to the contract. Hence, the contracting environment

itself is unambiguous, i.e. there is no ambiguity about the directly payoff relevant variable

x.

The PIRV, however, is potentially ambiguous. That is, the contracting parties may not

know the precise marginal probability with which the PIRV will take the value yH . Instead
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they only know a possible set Q = {q = (qH , qL) : qH ∈ [a, b], qL = 1− qH , 0 ≤ a ≤ b ≤ 1} of

this marginal distribution. That is, the probability of yH is qH ∈ [a, b] ⊆ [0, 1]. The parties

therefore have common but, in general, ambiguous knowledge of the marginal probability of

the PIRV taking value yH . The PIRV is only unambiguous in the special case a = b.3

Contracting is assumed to take place ex-ante, i.e. before the agent learns his type and

before the PIRV is realized. Ex-ante contracting has two stages: the agent first agrees to

a menu of wage-effort pairs. Then, once he learns his type, the agent selects one of the

wage-effort pairs in the menu by announcing his type. It is assumed that the principal is

unable to observe the agent’s efficiency level at any point in time; hence there is asymmetric

information at the interim.

The principal can choose whether or not to make the contract contingent on the am-

biguous signal. That is, she can decide whether or not to make it a bait contract. A bait

contract, denoted C, consists of different wage-effort pairs for different values of the agent’s

type and of the signal:

C =
(
e(xH , yH), w(xH , yH), e(xH , yL), w(xH , yL), e(xL, yH), w(xL, yH), e(xL, yL), w(xL, yL)

)
≡

(
eHH , wHH , eHL, wHL, eLH , wLH , eLL, wLL

)
.

Since the PIRV is publicly observable, conditioning the wage-effort pairs on it does not

lead to any further informational asymmetry between the contracting parties. For a particu-

lar realization of the PIRV, the agent must choose one of the corresponding wage-effort pairs

at the interim: If y = yH , then the agent’s choice is between (eHH , wHH) and (eLH , wLH),

while if y = yL, then the agent’s choice is between (eHL, wHL) and (eLL, wLL). A bait contract

therefore has to be incentive compatible given each value of the signal.

For an incentive compatible contract, the agent will truthfully reveal his type. Given a

high value of the PIRV, he will thus exercise effort eHH and be paid wage wHH when he

is of high-efficiency type xH , and exercise effort eLH and be paid wage wLH when he is of

low-efficiency type xL. Similarly, if the value of the PIRV is low, he will exercise effort eHL

and be paid wage wHL when he is of high-efficiency type xH , and exercise effort eLL and be

paid wage wLL when he is of low-efficiency type xL. Note that the agent’s Bernoulli utility is

3It is assumed that we do not have a = b = 0 or a = b = 1, in which case there would be ex-ante certainty

about the realization of the PIRV.
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state-dependent, since his disutility depends on the realization of his type. This is captured

by letting x be an argument of the utility function. For ease of notation, define z ≡ (w, e, x).

The preferences of the parties are represented by the α-maxmin expected utility (hence-

forth α-MMEU) model axiomatized in Ghirardato, Maccheroni, and Marinacci (2004). A

similar representation under objective ambiguity is axiomatized in Olszewski (2007) and

Vierø (2009).4 In the present context, the assumption of α-MMEU preferences implies that

both the principal and the agent maximize utility of the following form:

Uk(C) = αk

∑
j∈{H,L}
i∈{H,L}

qk,jpiuk(zij) + (1− αk)
∑

j∈{H,L}
i∈{H,L}

q
k,j
piuk(zij), (1)

where j indexes the value of the PIRV, i indexes the agent’s type, k ∈ {P,A}, uk is k’s

Bernoulli utility function defined over zij = (wij, eij, xi), and αk ∈ [0, 1] is a parameter

that captures k’s ambiguity attitude or degree of optimism. Finally, qk = (qk,H , qk,L) and

q
k

= (q
k,H
, q

k,L
) are, respectively, the best and worst marginal probability distributions in

the set Q from k’s point of view given the contract C. That is,

qk = arg max
q∈Q

∑
j∈{H,L}
i∈{H,L}

qjpiuk(zij) (2)

and

q
k

= arg min
q∈Q

∑
j∈{H,L}
i∈{H,L}

qjpiuk(zij), (3)

where zij is specified by the contract. Since x and y are independent, there is a one-to-one

correspondence between these best and worst marginal probabilities and the best and worst

overall probabilities over the four states.

It is important to note that which probabilities are best and worst depend on the contract

offered. Therefore, the contract offered endogenously determines the beliefs of the agent and

principal. Consequently, the agent and the principal may endogenously have heterogeneous

beliefs. This is the driving force behind the optimality of bait contracts. The ambiguous

PIRV provides the principal with an extra instrument when designing the contract, which

enables her to exploit optimistic ambiguity attitudes.

4Gilboa and Schmeidler (1989) axiomatize the case of α = 0, while Ahn (2008) provides an alternative

representation of preferences under objective ambiguity.
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To focus on the case in which the principal cares about expected profits, it is henceforth

assumed that she is ambiguity neutral, that is, αP = 1
2
. Given this assumption, the principal’s

effective weight on (or effective belief about) the PIRV taking value yH is 1
2
qP,H + 1

2
q

P,H
and

thus independent of whether the principal is best off when the PIRV takes value yH or yL.

Put differently, when the principal is ambiguity neutral her effective weight on the PIRV

taking value yH is the same when qP,H = a, q
P,H

= b and when qP,H = b, q
P,H

= a, since this

weight will be equal to the midpoint of the interval [a, b].5

Let qe
P,H denote the midpoint of the interval [a, b], i.e. qe

P,H ≡ 1
2
a + 1

2
b. As described in

the previous paragraph, the principal’s effective weight on the PIRV taking value yH will

be equal to qe
P,H . Also, any set Q of possible marginal probability distributions over the

signal y can be described by the corresponding qe
P,H and a parameter δ ≥ 0, and is given

by Q = {(qH , 1 − qH) | qH ∈ [qe
P,H − δ, qe

P,H + δ]} where δ = b − qe
P,H . Thus, for any set Q,

ambiguity is symmetric around the ambiguity neutral principal’s effective weight qe
P,H . This

situation is the same as one in which the principal has standard preferences with belief qe
P,H

that the signal takes value yH and ambiguity being symmetric around the principal’s beliefs.

It is in this sense that the principal cares about expected profits.

Using the notation just introduced, the agent’s effective weight on the PIRV taking high

value yH will be

qe
A,H = qe

P,H + (2αA − 1)δ (4)

if the contract makes the agent best off when the PIRV takes value yH , and

qe
A,H = qe

P,H + (1− 2αA)δ (5)

if the contract makes the agent worst off when the PIRV takes value yH . If δ = 0, the PIRV

is unambiguous, and by (4) and (5) the parties’ effective weights will be equal. If δ > 0, the

PIRV is ambiguous, and, moreover, by (4) and (5) the parties will have different effective

weights for all αA 6= 1
2
.

5It follows immediately that the principal’s weight on the PIRV taking value yL is also independent of

the value of the PIRV under which she is best off.
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3 Bait contracts

It is now shown that there exists a set of principals and agents for which the principal

will write deliberately ambiguous contracts. That is, the principal will introduce ambiguity

into a contracting situation where there is otherwise no ambiguity, since the principal will

optimally choose to condition the contract on the ambiguous PIRV. Therefore, signals can

be valuable, even if they are independent of the unobserved variables that directly affect the

parties’ payoffs, as long as they are ambiguous.

In a standard model with no ambiguity, Holmström (1979) considers the question of when

an outside signal can be used to improve upon a contract. He shows that it is optimal to

make the contract contingent on the outside signal if and only if the signal is not orthogonal

to the directly payoff relevant variables of interest. Holmström obtains his result in a moral

hazard model, but a similar result is easily derived in a model with adverse selection and

unambiguous information. I now show that Holmström’s result can be overturned if the

outside event adds ambiguity to the contracting situation.

The principal can choose whether or not to make the contract contingent on the am-

biguous PIRV, i.e. whether to write a bait contract or a standard contract. A standard

contract does not condition on the signal and therefore has e(xH , yH) = e(xH , yL) ≡ eH ,

e(xL, yH) = e(xL, yL) ≡ eL, w(xH , yH) = w(xH , yL) ≡ wH , and w(xL, yH) = w(xL, yL) ≡ wL.

Hence, it is a special case of conditioning and will appear as the solution to the problem

below if optimal.

Vierø (2012, Theorem 1) shows that the revelation principle holds in the presence of

ambiguity, i.e., that any general incentive compatible contract can be implemented with a

truthful revelation mechanism. Given that, the principal’s problem of finding the optimal

contract is given by

maxwHH ,eHH≥0
wHL,eHL≥0
wLH ,eLH≥0
wLL,eLL≥0

qe
P,H

(
pH

(
π(eHH)− wHH

)
+ pL

(
π(eLH)− wLH

))

+
(
1− qe

P,H

)(
pH

(
π(eHL)− wHL

)
+ pL

(
π(eLL)− wLL

))
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subject to

qe
A,H

(
pHv

(
wHH − g(eHH , xH)

)
+ pLv

(
wLH − g(eLH , xL)

))
+
(
1− qe

A,H

)(
pHv

(
wHL − g(eHL, xH)

)
+ pLv

(
wLL − g(eLL, xL)

))
≥ 0,

(PC)

v
(
wHH − g(eHH , xH)

)
≥ v
(
wLH − g(eLH , xH)

)
, (ICHH)

v
(
wLH − g(eLH , xL)

)
≥ v
(
wHH − g(eHH , xL)

)
, (ICLH)

v
(
wHL − g(eHL, xH)

)
≥ v
(
wLL − g(eLL, xH)

)
, (ICHL)

v
(
wLL − g(eLL, xL)

)
≥ v
(
wHL − g(eHL, xL)

)
, (ICLL)

where qe
P,H = 1

2
a+ 1

2
b and qe

A,H is given by (4) if the agent is best off when y = yH , by (5) if

he is best off when y = yL, and equals qe
P,H if he is equally well off under the two realizations

of the PIRV.6

Conditioning on the ambiguous PIRV results in the agent receiving different utility for

each possible realization of the PIRV. His effective weight on y = yH will be given by (4)

or (5) and thus be different from the principal’s. Hence, conditioning generally creates

an endogenous heterogeneity in the effective weights (or effective beliefs) that the parties

assign to the two possible realizations of the signal. Consequently, the contract fulfills two

purposes. Not only does it serve the usual purpose of ensuring participation of and providing

incentives for the agent, but the parties are also placing side-bets on their differences in

effective beliefs through the contract. If the agent is ambiguity loving, the principal can

exploit the heterogeneity, and therefore it is worthwhile for her to generate a difference in

the agent’s utility. Thus, with ambiguity loving (or optimistic) agents, the principal can use

the ambiguous PIRV to her advantage.

The following theorem shows that bait contracts can be optimal when there is ambiguity,

i.e. that there exist principals and agents for which the principal will condition the wage-effort

pairs on an ambiguous PIRV.

Theorem 1 (Optimality of bait contracts). Let the set of possible marginal probability dis-

tributions over the PIRV y be given by Q = {(qH , 1− qH) | qH ∈ [qe
P,H − δ, qe

P,H + δ]}, where

δ ≥ 0. Then the following two statements are equivalent:

6When the agent is equally well off under the two realizations of the PIRV, all probabilities in Q are

equally good from his point of view, and qA,H and q
A,H

can be chosen such that qe
A,H = qe

P,H .
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i. There exists a set of agents characterized by {αA, v(·), g(e, x)} for which the optimal

contract conditions on the PIRV.

ii. The PIRV is ambiguous, that is, δ > 0.

Proof: See the appendix.

Theorem 1 states that if and only if the outside signal is ambiguous, there exists a set

of principals and agents for which the principal will optimally choose to make the contract

contingent on the realization of the outside signal, even when this signal is uninformative

about the variable that is subject to asymmetric information at the interim and directly

affects the parties’ payoffs. By conditioning on the ambiguous PIRV, the principal introduces

ambiguity into the otherwise unambiguous contracting situation. That way she creates

an endogenous heterogeneity in the effective beliefs that the parties assign to the different

realizations of the PIRV. This endogenous heterogeneity is a consequence of the ambiguity

and depends on the contract offered.

The heterogeneity in effective beliefs introduces a betting motive into the contract. If the

agent’s effective weight on the signal realization being high is higher than the principal’s, the

principal can improve upon the standard contract by offering the agent a higher utility when

y = yH . With such a contract, the best distribution in Q from the agent’s point of view has

qA,H = b, while the worst has qA,H = a. In this case, the agent will therefore assign higher

effective weight to the signal realization being high if and only if he is ambiguity loving, i.e.

αA > 1
2
. If instead the agent’s effective weight on the signal realization being low is higher

than the principal’s, the principal can improve upon the standard contract by offering the

agent a higher utility when y = yL. By an argument similar to that just made, the agent

will in this case again assign higher effective weight to the signal realization being low if and

only if he is ambiguity loving.7

7In the present paper, it is assumed that the principal is ambiguity neutral, i.e. that αP = 1
2 . Although

not fully explored, numerical computations indicate that the result in Theorem 1 continues to hold for

αP 6= 1
2 as long as αA + αP > 1, that is, if the parties are on average ambiguity loving. When αP = 1

2 ,

the condition that αA > 1
2 ensures that the parties are ambiguity loving on average. For general αP , the

endogenous heterogeneity in effective beliefs has two possible sources. The first source of heterogeneity is the

potential difference in those marginal probability distributions that are the best and worst for each of the

contracting parties, and the second source is the parties’ ambiguity attitudes as captured by the parameters
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The side bet makes it easier to get the agent to participate: with a bait contract the

average (according to the ambiguity neutral principal’s beliefs) compensation needed for the

agent’s participation is lower than with a contract that does not condition on the signal. By

writing a bait contract, the principal attempts to bait the agent by offering him a high payoff

given one value of the signal. If the agent is sufficiently optimistic, he will put a lot of weight

on this high payoff and take the bait. This means that the agent will accept contracts with

an average compensation that would otherwise be insufficient to ensure his participation.

The next theorem turns to the question of whether it is possible to mimic a bait contract

by offering a contract and a side bet separately.

Theorem 2 (No decomposition). There exists a set of agents characterized by {αA, v(·), g(e, x)}
for which the optimal contact is a bait contract and this bait contract cannot be decomposed

into a standard contract and a pure side bet.

Proof: See the appendix.

By Theorem 2, bundling dominates breaking up the problem into distinct contracting and

betting problems. The intuition is as follows. Since a standard contract does not condition on

the PIRV, it specifies the same effort level and wage for a particular type of agent, regardless

of the value of the PIRV. As it is the case for the bait contract, the optimal non-bait contract

distorts effort for the low-efficiency type in order to ensure incentive compatibility for the

high-efficiency type. The exact amount of distortion is such that the principal’s marginal loss

in profit for the low-efficiency type xL equals the marginal gain in profit for the high-efficiency

type xH :

(1− pH)
[
π′(eL)− ge(eL, xL)

]
= pH

[
1− v′(wL−g(eL,xH))

pHv′(wL−g(eL,xH))+(1−pH)v′(wL−g(eL,xL))

][
ge(eL, xL)− ge(eL, xH)

]
,

which is the non-conditioning equivalent to conditions (24) and (25) in the proof of Theorem

1 in the appendix. Suppose now that the principal also offers a side bet, which consists of

a payment of TH that the principal pays to the agent when the PIRV takes value yH and

a payment TL that the agent pays to the principal when the PIRV takes value yL. The

optimal payments will be such that the parties’ marginal rates of substitution between the

(αA, αP ).
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two possible realizations of the signal are equal. That is, the optimal TH and TL are such that

(22) and (23) in the appendix hold for eLH = eLL = eL, wLH = wL +TH , and wLL = wL−TL.

However, since the agent is risk averse with strictly concave v, (24) and (25) will no longer

be satisfied after the transfer.

When the principal instead solves the contracting and betting problems jointly, she can

adjust the effort level for the low-efficiency type for the two values of the signal such that not

only the parties’ marginal rates of substitution given the two possible signal realizations are

equal, but also the marginal loss in profit for the low-efficiency type continues to equal the

marginal gain in profit for the high-efficiency type for either value of the PIRV. By bundling

the problems, the principal thus ensures that all marginal trade-offs will be at their optima.

This cannot be achieved by the decomposed contract.

As an example of the results in Theorems 1 and 2, consider the solution to the principal’s

problem when v(·) = log(·), g(e, x) = e2

2x
, and π(e) = 2e1/2, and the parameters take values

xL = 1, xH = 8, pH = 1
2
, αA = 0.95, and the interval [a, b] is symmetric around 1

2
. In this

case, the solution when there is no ambiguity (i.e. when δ = 0) has (eHH , wHH , eLH , wLH) =

(eHL, wHL, eLL, wLL) = (4.000, 2.197, 0.908, 1.248). This optimal contract consists of the

same wage-effort pairs for either realization of the PIRV and has effort for the high-efficiency

type at the first-best level, while effort for the low-efficiency type is distorted downwards to

ensure incentive compatibility for the high-efficiency type. With this contract, the utility for

either type of agent is zero (the reservation utility).

If instead δ = 0.1, the PIRV is ambiguous. In this case, (eHH , wHH , eLH , wLH) =

(4.000, 2.355, 0.918, 1.408) and (eHL, wHL, eLL, wLL) = (4.000, 2.005, 0.893, 1.055). The op-

timal contract thus consists of different wage-effort pairs for the two realization of the PIRV.

Effort for the high-efficiency type remains at the first-best level for either realization, but

the effort levels for the low-efficiency type and the wages differ. When the signal takes value

yH , either type of agent is paid a higher wage and the effort for the low-efficiency type is less

distorted than when there is no ambiguity. On the contrary, when the PIRV takes value yL,

either type of agent is paid a lower wage and the effort for the low-efficiency type is more

distorted than when there is no ambiguity. The agent gets positive utility when the PIRV-

realization is high and negative utility when the PIRV-realization is low. The principal gets

higher utility with this bait contract than with a standard contract. Figure 1 illustrates that,
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Figure 1: Numerical example
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for the example under consideration, the principal’s utility (Panel A) as well as the difference

eLH − eLL (Panel B) and the difference in the agent’s utility given the two realizations of the

PIRV (Panel C) are all increasing in the level of ambiguity δ.

The presence of ambiguity and the assumption of α-MMEU preferences together drive the

results. If the outside signal is unambiguous, the set of probability distributions is a singleton

and the best and worst distributions always coincide. In that case, we are in the standard

model. When the signal is ambiguous on the other hand, the best and worst probability

distributions differ and the assumption of α-MMEU preferences makes a difference.

4 Concluding remarks

This paper has revisited Holmström’s (1979) sufficient statistic result and shown that for

a signal that is uninformative about the agent’s superior information, the optimal contract

conditions on this signal if and only if the signal is ambiguous. Contracts that condition on

the realization of the signal are referred to as “bait contracts.” The basic intuition behind

14



the optimality of bait contracts is that the ambiguous signal gives the principal an extra

instrument she can use when designing contracts. By conditioning on the ambiguous sig-

nal, the principal creates a motive for betting and can thereby take advantage of optimistic

ambiguity attitudes. The analysis above showed that this extra instrument can indeed be

valuable. It was also shown that the bait contract cannot be decomposed into a standard

(non-conditioning) contract and a pure side bet. The reason is that when solving the con-

tracting and betting problems jointly, the principal can adjust the agent’s effort such that

the amount of distortion that occurs to ensure incentive compatibility for each realization of

the signal is optimal given the wealth transfer across states.

Appendix

Proof of Theorem 1: It is first shown that i. implies ii. by showing the contrapositive.

This follows simply by noting that if ii. is not true (i.e., if a = b) we are in the standard

model with precise information, which implies that i. is not true.

It is now shown that ii. implies i.. The Lagrangian for the principal’s problem is

L = qe
P,H

(
pH

(
π(eHH)− wHH

)
+ (1− pH)

(
π(eLH)− wLH

))
+
(
1− qe

P,H

)(
pH

(
π(eHL)− wHL

)
+ (1− pH)

(
π(eLL)− wLL

))
+ γ

[
qe
A,H

(
pH v

(
wHH − g(eHH , xH)

)
+ (1− pH)v

(
wLH − g(eLH , xL)

))

+
(
1− qe

A,H

)(
pH v

(
wHL − g(eHL, xH)

)
+ (1− pH)v

(
wLL − g(eLL, xL)

))]
+ λHH

[
v
(
wHH − g(eHH , xH)

)
− v
(
wLH − g(eLH , xH)

)]
+ λHL

[
v
(
wHL − g(eHL, xH)

)
− v
(
wLL − g(eLL, xH)

)]
+ λLH

[
v
(
wLH − g(eLH , xL)

)
− v
(
wHH − g(eHH , xL)

)]
+ λLL

[
v
(
wLL − g(eLL, xL)

)
− v
(
wHL − g(eHL, xL)

)]
,

where γ, λHH , λHL, λLH , and λLL are the Lagrange multipliers. The first-order conditions
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for the problem are

pHq
e
P,Hπ

′(eHH)− γpHq
e
A,Hv

′(wHH − g(eHH , xH))ge(eHH , xH)

−λHHv
′(wHH − g(eHH , xH))ge(eHH , xH) + λLHv

′(wHH − g(eHH , xL))ge(eHH , xL) ≤ 0,

(6)

−pHq
e
P,H + γpHq

e
A,Hv

′(wHH − g(eHH , xH))

+λHHv
′(wHH − g(eHH , xH))− λLHv

′(wHH − g(eHH , xL)) = 0,
(7)

(1− pH)qe
P,Hπ

′(eLH)− γ(1− pH)qe
A,Hv

′(wLH − g(eLH , xL))ge(eLH , xL)

+λHHv
′(wLH − g(eLH , xH))ge(eLH , xH)− λLHv

′(wLH − g(eLH , xL))ge(eLH , xL) ≤ 0,
(8)

−(1− pH)qe
P,H + γ(1− pH)qe

A,Hv
′(wLH − g(eLH , xL))

−λHHv
′(wLH − g(eLH , xH))− λLHv

′(wLH − g(eLH , xL)) = 0,
(9)

pH

(
1− qe

P,H

)
π′(eHL)− γpH

(
1− qe

A,H

)
v′(wHL − g(eHL, xH))ge(eHL, xH)

−λHLv
′(wHL − g(eHL, xH))ge(eHL, xH) + λLLv

′(wHL − g(eHL, xL))ge(eHL, xL) ≤ 0,
(10)

−pH

(
1− qe

P,H

)
+ γpH

(
1− qe

A,H

)
v′(wHL − g(eHL, xH))

+λHLv
′(wHL − g(eHL, xH))− λLLv

′(wHL − g(eHL, xL)) = 0,
(11)

(1− pH)
(
1− qe

P,H

)
π′(eLL)− γ(1− pH)

(
1− qe

A,H

)
v′(wLL − g(eLL, xL))ge(eLL, xL)

+λHLv
′(wLL − g(eLL, xH))ge(eLL, xH)− λLLv

′(wLL − g(eLL, xL))ge(eLL, xL) ≤ 0,
(12)

−(1− pH)
(
1− qe

P,H

)
+ γ(1− pH)

(
1− qe

A,H

)
v′(wLL − g(eLL, xL))

−λHLv
′(wLL − g(eLL, xH))− λLLv

′(wLL − g(eLL, xL)) = 0,
(13)

qe
A,H

(
pH v

(
wHH − g(eHH , xH)

)
+ (1− pH)v

(
wLH − g(eLH , xL)

))

+
(
1− qe

A,H

)(
pH v

(
wHL − g(eHL, xH)

)
+ (1− pH)v

(
wLL − g(eLL, xL)

))
≥ u,

(PC)

v
(
wHH − g(eHH , xH)

)
≥ v
(
wLH − g(eLH , xH)

)
, (ICHH)

v
(
wLH − g(eLH , xL)

)
≥ v
(
wHH − g(eHH , xL)

)
, (ICLH)

v
(
wHL − g(eHL, xH)

)
≥ v
(
wLL − g(eLL, xH)

)
, (ICHL)

v
(
wLL − g(eLL, xL)

)
≥ v
(
wHL − g(eHL, xL)

)
, (ICLL)

where (6), (8), (10), (12), (PC), (ICHH), (ICLH), (ICHL), and (ICLL) hold with equality if,

respectively, eHH , eLH , eHL, eLL, γ, λHH , λLH , λHL, and λLL are strictly greater than zero.
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It follows from (7) and (9) that γ > 0. Furthermore, since π′(0) > 0 and ge(0, xL) =

ge(0, xH) = 0, it follows from (6), (8), (10), and (12), respectively, that eHH > 0, eLH > 0,

eHL > 0, and eLL > 0. Thus, we have equality in (PC), (6), (8), (10), and (12).

The following constellations of the Lagrange multipliers,

λHL = 0 and λLL = 0,

λHL > 0 and λLL > 0,

λHL = 0 and λLL > 0,

λHH = 0 and λLH = 0,

λHH > 0 and λLH > 0,

and

λHH = 0 and λLH > 0,

all lead to contradictions, as will now be shown. When λHL = λLL = 0, (11) and (13) imply

that wLL − g(eLL, xL) = wHL − g(eHL, xH), which violates (ICHL) and (ICLL). A similar

argument gives a contradiction when λHH = λLH = 0.

When λHH > 0 and λLH > 0, (ICHH) and (ICLH) give that eHH = eLH and wHH = wLH .

By (6), (7), (8), and (9), it then follows that π′(eHH)−ge(eHH , xH) < π′(eHH)−ge(eHH , xL),

which contradicts the assumptions on the function g(e, x). A similar argument can be used

to show that λHL > 0 and λLL > 0 leads to a contradiction.

Finally, when λHL = 0 and λLL > 0, (11), (13), and (ICLL) can be combined to solve

for λLL as a function of eHL and wHL. The condition that λLL > 0 then gives that wHL −
g(eHL, xH) < wLL − g(eLL, xL), which violates (ICHL) and (ICLL). By a similar argument,

λHH = 0 and λLH > 0 leads to a contradiction.

This leaves one case to investigate, namely

λHH > 0, λLH = 0, λHL > 0, and λLL = 0.

In this case, (6) and (7) imply that

π′(eHH) = ge(eHH , xH), (14)
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while (10) and (11) imply that

π′(eHL) = ge(eHL, xH). (15)

Thus, eHH = eHL = eo
H , i.e. at their undistorted levels. Also, by (8) and (9),

(1− pH)qe
P,H

(
π′(eLH − ge(eLH , xL)

)
= λHHv

′(wLH − g(eLH , xH)
(
ge(eLH , xL)− ge(eLH , xH)

)
,

(16)

and by (12) and (13),

(1− pH)
(
1− qe

P,H

)(
π′(eLL − ge(eLL, xL)

)
= λHLv

′(wLL − g(eLL, xH)
(
ge(eLL, xL)− ge(eLL, xH)

)
.

(17)

It follows from (ICHH) and (ICHL) that

wHH − g(eHH , xH) = wLH − g(eLH , xH)

and

wHL − g(eHL, xH) = wLL − g(eLL, xH).

Then (7) and (ICHH) imply that

λHH =
pHq

e
P,H

v′(wLH − g(eLH , xH)
− γpHq

e
A,H , (18)

which together with (9) implies that

γ =
qe
P,H

pHqe
A,Hv

′(wLH − g(eLH , xH) + (1− pH)qe
A,Hv

′(wLH − g(eLH , xL))
. (19)

Similarly, (11) and (ICHL) give that

λHL =
pH

(
1− qe

P,H

)
v′(wLL − g(eLL, xH)

− γpH

(
1− qe

A,H

)
, (20)

which together with (13) results in

γ =
1− qe

P,H

pH(1− qe
A,H)v′(wLL − g(eLL, xH)) + (1− pH)(1− qe

A,H)v′(wLL − g(eLL, xL))
. (21)

Using (19) and (21), I now have that

qe
P,H

1− qe
P,H

=
qe
A,H

1− qe
A,H

pHv
′(wLH − g(eLH , xH) + (1− pH)v′(wLH − g(eLH , xL)

pHv′(wLL − g(eLL, xH) + (1− pH)v′(wLL − g(eLL, xL)
. (22)
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Also, (PC), (ICHH), and (ICHL) imply that

qe
A,H

(
pHv

(
wLH − g(eLH , xH)

)
+ (1− pH)v

(
wLH − g(eLH , xL)

))

+
(
1− qe

A,H

)(
pHv

(
wLL − g(eLL, xH)

)
+ (1− pH)v

(
wLL − g(eLL, xL)

))
= 0.

(23)

From equations (16), (18), and (19) it follows that

pHv
′(wLH − g(eLH , xH))

[
π′(eLH)− ge(eLH , xH)

]
+(1− pH)v′(wLH − g(eLH , xL))

[
π′(eLH)− ge(eLH , xL)

]
= pHv

′(wLH − g(eLH , xL)
[
ge(eLH , xL)− ge(eLH , xH)

]
.

(24)

Furthermore, it follows from equations (17), (20), and (21) that

pHv
′(wLL − g(eLL, xH))

[
π′(eLL)− ge(eLL, xH)

]
+(1− pH)v′(wLL − g(eLL, xL))

[
π′(eLL)− ge(eLL, xL)

]
= pHv

′(wLL − g(eLL, xL)
[
ge(eLL, xL)− ge(eLL, xH)

]
.

(25)

Equations (24) and (25) reflect the well-known requirement that the exact amount of distor-

tion of the low-efficiency type’s effort is such that the principal’s marginal loss in profit for

the low-efficiency type equals the marginal gain in profit for the high-efficiency type. Equa-

tion (22) is the, also well-known, condition that the parties’ marginal rates of substitution

with respect to consumption in different states are equal. The latter equation implies that if

the parties’ decision weights differ, then there must be conditioning on the signal. However,

since the decision weights depend on the contract offered, further investigation is required.

With a contract that does not condition on the signal, all marginal distributions in Q

are equally good for each of the parties. With such a contract, the distributions qk and q
k
,

k ∈ {A,P}, can therefore be any of the distributions in Q and thus chosen such that the

parties have equal marginal rates of substitution. Hence, there exists a contract that does

not condition on the signal that satisfies the first-order conditions.

However, there may also be bait contracts that satisfy the first-order conditions with

different wage-effort pairs given the two realizations of the signal. Hence, the first-order

conditions must be solved for these, and the value of the principal’s objective function must

be compared with the value when there is no conditioning.
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Equations (14) and (15) pin down eHH and eHL. The other variables are, however,

determined by the set of nonlinear equations (22)-(25), which can not be solved for general

functional forms. Therefore, to show existence, consider the specific functional forms

v(·) = log(·), g(e, x) =
e2

2x
, and π(e) = 2e1/2.

The nonlinear system of equations (22)-(25), and hence the principal’s optimization prob-

lem, is solved numerically using Ox for the case where xL = 1, xH = 8, and αA = 0.95 on

a grid of (pH , q
e
P,H) where both probabilities range from 0.001 to 0.999, with increments of

0.001. In the computations, qe
A,H is assumed to be defined by (4) and below it is confirmed

that this is indeed correct.

For positive levels of δ, on a grid with 0.001 increments from 0 to min{qe
P,H , 1−qe

P,H}, the

difference in the principal’s utility is computed when the contract conditions on the PIRV

and when the contract does not condition on the PIRV. This difference is positive for all

values on the grid. This implies that the principal will condition on the PIRV when δ is

strictly positive. The difference in the agent’s utility given y = yH and his utility given

y = yL is also computed under the optimal contract, and this difference is positive when

δ > 0, showing that it is indeed equation (4) that is relevant for computing the agent’s weight

on yH .8

The numerical computations finally show that the derivative of the principal’s utility is

positive when evaluated at δ = 0 for all values of (pH , q
e
P,H) on the grid. Thus even an

infinitesimal amount of ambiguity will make the principal condition on the PIRV. �

Proof of Theorem 2: Equations (22)-(25) in the proof of Theorem 1 together with equa-

tion (4) implicitly define eLH , wLH , eLL, and wLL as functions of the ambiguity parameter

δ. This can be used to find the derivatives of eLH and eLL with respect to δ. For the same

functional forms, parameter values, and grid for (pH , q
e
P,H) as used in the proof of Theorem

1, numerical computations show that when evaluated at δ = 0 the values of these derivatives

8There are actually two optimal contracts for each level of ambiguity. The two contracts are symmetric

in the sense that (eLH , wLH) for one contract will equal (eLL, wLL) for the other contract, and vice versa.

With the symmetric contract, eLH < eLL and the agent will be best off when the PIRV takes value yL, thus

it will be (5) that is relevant for computing the agent’s weight on yH .
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are non-zero and that of eLH is positive while that of eLL is negative.9

For positive levels of δ, on the same grid as in the proof of Theorem 1, the difference eLH−
eLL is computed for the optimal bait contract, and this difference is positive as illustrated

in Panel B of Figure 1 for pH = qe
P,H = 1

2
.

Since the optimal contract always has eLH 6= eLL, and a contract that does not condition

on the PIRV necessarily has eLH = eLL, the bait contract cannot be mimicked by breaking

up the problem into separate contracting and betting problems for any δ > 0. �
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