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Abstract

We consider international negotiations on the level of global pollution, and examine

the Lindahl solution which determines the distribution of the pollution permits with

unanimous agreement. We show various properties to clarify difficulties to achieve a

Pareto efficient allocation as an agreement. The Lindahl solution may result in an

unfair allocation, and it does not belong to the γ-core as in other solutions based

on emissions trading. On the other hand, we provide mechanisms that implement the

Lindahl solution as the subgame-perfect equilibrium. We also consider the market with

region-specific prices as a device to induce second-best Pareto efficient allocations.

Keywords: International emissions trading, Global externality, Lindahl equilibrium, Effi-

ciency, Equity, Core, Implementability, Second-best analysis

JEL classification: Q54, D61, D62, D63, D78, H87, Q58

1 Introduction

The signatories of the Kyoto Protocol set rules and obligations towards the reduction of

greenhouse gas emissions, mostly among the developed countries, for the period of 2008-2012.

However, the limitation of greenhouse gas emissions and its assignment to the signatories

after this period is still under debate as an important issue for the future. The Kyoto

framework also adopted schemes including an international system of emissions trading which

is attractive to many for its potential for success. The idea is simple and appealing: The

total number of pollution permits is first determined as the emission target; subsequently,

trading on competitive markets assures this target with the minimum total cost (i.e., it

achieves production efficiency). A vital issue is how to set up the initial pollution permits

and their distribution at the stage prior to the market trading of the permits. Since the global
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environment is a public good, the total emission level should satisfy the Samuelson condition

that balances aggregate marginal damages and marginal products of each producer.

A number of works modeled a regime with permit trading to examine the choice of the

initial pollution permits and their distribution. Chichilnisky et al. (2000) and Heal (2000)

considered the case where the total number of pollution permits is fixed, and showed that

almost all distributions of the initial permits are incompatible with Pareto efficiency.1 Tade-

numa (2005), following the framework of Prat (2000), studied the complementary case where,

given the distribution rule of the initial permits, the countries decide on the total emissions.2

He showed that the locus of welfare vectors of the countries attained through a choice of

the total emission level (called the bargaining frontier) is (i) mostly below the Pareto fron-

tier, and (ii) not guaranteed to contain portions that Pareto dominate the noncooperative

disagreement point. These results thus indicated difficulties for achieving a Pareto-efficient

emission level as an agreement. In a different context, Caplan et al. (2003) and Caplan and

Silva (2007) assumed that, accompanied with the emissions trading, an agency in charge of

the international transfers maximizes a weighted sum of utilities. However, at the interna-

tional level there is no benevolent planner.3 As well, costless lump-sum transfers may not

1In this paper, instead of the case where the total number of pollution permits is fixed, we will examine
a problem in which countries choose the Pareto efficient level of total emissions at the equilibrium of a
noncooperative game.

2Prat (2000) showed that, under some regularity conditions, there exists the level of total emissions which
is compatible with Pareto efficiency. However, in the absence of a benevolent planner, the total emission level
has to be decided by self-interested countries. Prat (2000) also proved that the preferences of each country
are single-peaked as to the levels of total emissions, so that a unique winning level of total emissions exists
by the majority voting. However, as in the conventional case of the public goods, in general, the voting
equilibrium will not be Pareto efficient.

3 An example that Caplan et al. (2003) and Caplan and Silva (2007) suggested is the Global Environment
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be available.

A Lindahl solution in this setting is a politico-economic system that induces unanimous

support for the Pareto efficient level of emissions. Given the distribution of the initial

permit, each country has its own preferred level of the total emissions. Since countries

are different with respect to productivities and disutilities of global environmental damage,

desired levels of total emissions are typically different across countries. Then the countries

adjust the distribution of the permits, as individuals’ personalized prices in the standard

Lindahl equilibrium, in order to bring unanimity on the desired level of emissions. Therefore,

in contrast with Chichilnisky et al. (2000), Heal (2000), Prat (2000) and Tadenuma’s (2005)

approach, it simultaneously determines the total pollution permits and their distribution.

We will show that the solution achieves a Pareto efficient allocation (Propositions 1.(i) and

3). Notice also that it does not involve lump-sum transfers by a benevolent supreme body.

The classic problem of strategic misrepresentation of preferences can be readily resolved

in Section 6, by constructing simple mechanisms that give incentives to the countries to

behave in accordance with their true preferences to implement the Lindahl solution as a

noncooperative equilibrium outcome.

Although the Lindahl equilibrium is one of the central solutions in public-good problems,

few papers discusses formally its properties in the present framework of multilateral external-

ities where production technologies are decentralized and yield private benefits. Exceptions

Facility (GEF) which is responsible to the operation of financial transfers in the United Nations Framework
Convention of Climate Change. They also said that the weights of such aggregate welfare may be implied
by the equilibrium of a political game, but they did not formalize such a game.
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are Mäler and Uzawa (1995) and Uzawa (1995) who discussed existence and stability in a dif-

ferent setup from this paper. The present paper provides a comprehensive analysis on issues

discussed in the literature of multilateral externalities, including the possibility of interna-

tional cooperation (Helm (2003) and Shiell (2003)), core (Chander and Tulkens (1997) and

Eyckmans (1997)), implementation (Walker (1981), Danziger and Schnytzer (1991), Varian

(1994), and Duggan and Roberts (2002)), the use of the equilibrium with differential prices

(Chichilnisky et al. (2000) and Sandmo (2003)), and thus illuminates various properties of

the Lindahl equilibrium as a solution to global environmental problems.

We show that the Lindahl equilibrium is, if it exists, Pareto efficient. However, the

countries’ interactions taking account of the changes of the permit-prices in the subsequent

stage may result in no unanimous agreement, which strengthens the existing results on the

impossibility of achieving efficient allocations (Proposition 1.(ii), 1.(iii) and Corollary 1).

Also, the pattern of international distribution of the initial permits may be contrary to our

intuition of fair compensation, in that a country with higher damage and a country with

lower emissions are endowed with fewer permits (Proposition 2). If we consider a market with

respect to abatement rather than emissions, the conclusions are reversed (Proposition 3). As

to the possibility of international cooperation, the Lindahl equilibrium does not belong to

the γ-core as in other solutions based on emissions trading (Propositions 4 and 5). On the

other hand, the Lindahl equilibrium belongs to the weaker notion of the stand-alone core.

As to implementability, we provide mechanisms that implement the Lindahl solution as the
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subgame-perfect equilibrium (Proposition 6). We finally consider the market with region-

specific prices as a device to induce second-best Pareto efficient allocations, and discuss the

scope of the practical use of the Lindahl solution (Propositions 7 and 8).

2 A model with multilateral externalities

2.1 Technology, preferences, and Pareto efficiency

Consider a standard model of multilateral externalities. There are n ≥ 2 countries, N ≡

{1, ..., n}. Let yi denote the gross domestic product (GDP) of country i ∈ N , and ci be the

consumption of country i. Production generates emissions of greenhouse gases, xi ∈ IR+ for

country i, which accrues a utility cost as global environmental damage. The relation between

xi and yi is represented by the function yi = Yi(xi), where Yi(0) = 0 and Y ′

i (xi) > 0 > Y ′′

i (xi)

for all xi ∈ IR+.4 We also assume limxi→0 Y ′

i (xi) = ∞ for all i. Associated with a vector of

emissions (xi)i∈N , feasibility is defined by
∑

i∈N Yi(xi) ≥
∑

i∈N ci. Let X ≡
∑

j∈N xj ∈ IR+ be

the level of global emissions of greenhouse gases. Each country i has preferences over pairs

(ci, X) of its own consumption and a total emission level, represented by a utility function

ui(·, ·). For illustration, we assume quasi-linearity of the utility functions, a functional form

widely used in the related literature (e.g., Clarke (1971), Chander and Tulkens (1997), and

Helm (2003)):

ui(ci, X) = ci −Di(X), (1)

4Alternatively, as considered in the literature including Hourcade and Gilotte (2000), Helm (2003) and
Sandmo (2005), one can consider yi as country i’s benefits from emissions-generating activities such as
transport and heating, with Yi(xi) being the households’ benefit function that results in pollution xi.
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where Di(X) represents a disutility from pollution X with D′

i(X) > 0 and D′′

i (X) ≥ 0 for

all X ∈ IR+.

Associated with any Pareto efficient allocation, the level of individual emissions and the

total emissions are uniquely determined by arg maxx1,...,xn

∑
i∈N(Yi(xi) −D(

∑
j∈N xj)). The

solution, denoted by x∗

i for country i and X∗ for total emissions, is characterized by the

familiar first-order condition that aggregate marginal damages and marginal products of

each country are equalized:

Y ′

i (x
∗

i ) =
∑

j∈N

D′

j(X
∗) for all i. (2)

2.2 Market-clearing conditions with allowance trading

With international emissions trading, countries’ interaction can be illustrated as a multi-

stage game. In the first stage, countries choose the total emission level X and a proportion

of country i’s tradable emission allowances θi ∈ (0, 1) for all i that satisfies
∑

j∈N θj = 1. We

will formalize the first stage of the game in the next section. In the second stage, production

of each country takes place with the trading of allowances on an international permit market.

Given X and θi in the first stage, each country i chooses the emission level in a perfectly-

competitive market of tradable permits. Given a price of the permit q, each country maxi-

mizes its own profit:

max
xi

Yi(xi) + q(θiX − xi). (3)
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The first-order condition is:

Y ′

i (xi) = q. (4)

Let the solution be xi(q). Given X, the market-clearing price q(X) is uniquely determined

by the following equation:

∑

j∈N

xj(q(X)) = X. (5)

2.3 Alternative formulation: abatement game

The literature including Eyckmans (1997), Chichilnisky et al. (2000) and Heal (2000) con-

sidered the case of the abatement game which we discuss in Sections 4 and 5. It turns out

that some properties of the Lindahl equilibria in this framework are starkly different from

the case of the emission game.

Suppose that, in the initial state without international cooperation, there is a given

reference level of emissions of the pollution x̄i for each country i. The x̄i corresponds to

a situation in which the countries do not care about global environment. Following the

literature, we set x̄i to be exogenous, but we will discuss it later. Abatement is defined by

ai ≡ x̄i − xi ≥ 0. Each country is endowed with wi as an initial wealth. The abatement

is costly and incurs the private cost φi(ai) on country i. The cost functions satisfy φi(0) =

0, φ′

i(ai) > 0 and φ′′

i (ai) > 0 for all ai ∈ IR+. One can formulate the correspondence from

the emission model as wi = Yi(x̄i) and φi(ai) = Yi(x̄i)− Yi(x̄i − ai).
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A multi-stage game of international abatement trading is defined in the same way as

in the case of emissions-trading. Here, country i receives money with the abatement which

incurs a private cost. Given the total abatement A and the proportion of initial allotment θi

determined in the first stage, and a price of the abatement p, each country maximizes its own

profit: maxai
wi−φi(ai)+p(ai−θiA). Let the solution be ai(p). Given A, the market-clearing

price p(A) is uniquely determined by the following equation:

∑

j∈N

aj(p(A)) = A. (6)

3 Lindahl equilibrium

We now formalize the first stage of the game. Suppose first that the distribution rule of

the initial permits (θi)i∈N is given. From the work of the tradable-emission market and the

budget constraint ci = Yi(xi(q(X))) + q(X)(θiX − xi(q(X)) ≡ ci(X, θi), each country has its

own preferred level of X:

max
X

Yi(xi(q(X))) + q(X)(θiX − xi(q(X)))−Di(X). (7)

Denote the solution of (7) as Xi. The properties of Xi’s are important to analyze the nature

of international negotiations by self-interested countries. Basically, a country with a higher θi

has a higher revenue share from the emissions trading in the second stage. The countries may

also be different with respect to the desired pollution-supply (xi(q(X))) and the disutilities

from environmental damage (Di(X)). As a result, for a given (θi)i∈N , (7) typically generates
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a different desired level of global emissions, i.e., Xi 6= Xj for i 6= j. Also, the first-order

conditions do not have any a priori relationship with (2), i.e., Xi is generally Pareto inefficient

(Tadenuma (2005, Proposition 7)). These two properties indicate difficulties in achieving a

Pareto-efficient emission level as an agreement.

A Lindahl solution in this setting is a politico-economic system that brings unanimous

support for the Pareto efficient level of emissions. Given (θi)i∈N , each country has its own

preferred level of X as in (7). The θi (country i’s revenue share from tradable emission

permits) is adjusted, as individuals’ personalized prices in the standard Lindahl equilibrium,

in order to induce Xi = X for all i. Formally,

Definition 1 The system of (X, (θi)i∈N , (xi, ci)i∈N) satisfies a sequential Lindahl equilibrium

iff: (i) xi = xi(q(X)) for all i with
∑

j∈N xj(q(X)) = X, (ii)
∑

j∈N θj = 1, (iii) ci = ci(X, θi)

for all i, and (iv) X = Xi for all i. Namely,5

q(X)θi + q′(X)(θiX − xi(q(X))) = D′

i(X) for all i. (8)

At the conventional Lindahl equilibrium, each agent maximizes her utility at the point

where her marginal willingness to pay for the public good is equal to her personalized price.

The present analysis deals with the case of the public bad, and each country receives the

net revenue from the market trading, q(X)(θiX − xi(q(X))), as a victim and a polluter.

5By supposition, limX→0 q(X) >
∑

j∈N D′

j(0). Since
∑

i∈N q′(X)(θiX−xi(q(X))) = 0, limX→0(q(X)θi+
q′(X)(θiX − xi(q(X)))) ≤ D′

i(0) for all i never happens, so that X 6= 0 in Definition 1. The other extreme
of Xi → ∞ would be easily eliminated by appropriate assumptions on the production functions and the
damage functions. We therefore consider the case of the interior optimum.
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Accordingly, in (8), each country balances (i) the marginal damage of the emission, D′

i
(X)

on the right hand side, and (ii) the associated change in the net revenue, q(X)θi+q′(X)(θiX−

xi(q(X))) on the left hand side.6 The latter works as a personalized compensation against

the utility loss incurred, which consists of: (ii-a) the increase in the revenue from pollution

permits, q(X)θi > 0, and (ii-b) the change in the net revenue due to the fall in q, q′(X)(θiX−

xi(q(X))), which is positive (resp. negative) if country i is an emission-permit buyer (resp.

seller). The term “sequential” refers to the case where X is determined in the first stage,

and the producer’s optimization in the second stage is bound to the value of X, i.e., q(X)

and (xi(q(X)))i∈N . This framework follows recent contributions (e.g., Prat (2000), Helm

(2003), and Tadenuma (2005)), and is more suitable to analyze the case of environmental

treaties including the Kyoto Protocol. Mathematically, this setup yields countries’ far-sighted

behavior represented by (ii-b).

We adopt the Lindahl approach for the following reasons. Firstly, in contrast with

Chichilnisky et al. (2000), Heal (2000), Prat (2000) and Tadenuma’s (2005) approach out-

lined in the Introduction,7 it simultaneously determines X and (θi)i∈N , inducing unanimity

on the desired level of emissions. Secondly, making use of a classic politico-economic frame-

work and the tradable-permits market, the solution achieves a Pareto efficient allocation (see

Propositions 1.(i) and 3 below). Thirdly, it does not involve lump-sum transfers by a benev-

6The differentiation of the budget constraint yields ∂ci(X, θi)/∂X = Y ′

i
(xi)x

′

i
(q)q′(X) + q(X)(θi −

x′

i
(q)q′(X)) + q′(X)(θiX − xi(q(X)). Y ′

i
(xi)x

′

i
(q)q′(X) offsets q(X)x′

i
(q)q′(X) by (4).

7In Chichilnisky et al. (2000) and Heal (2000), the countries first determine X, and then they decide
on (θi)i∈N . In Prat (2000) and Tadenuma (2005), the countries decide X given (θi)i∈N . They pointed out
difficulties for achieving a Pareto-efficient allocation.
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olent supreme body. And fourthly, the problem of strategic misrepresentation of preferences

can be readily resolved in Section 6: it is possible to construct simple mechanisms that give

incentives to the self-interested countries to implement the Lindahl solution as a noncoop-

erative equilibrium outcome (Proposition 6). The (θi)i∈N in the Lindahl allocation can also

be derived from the public-bad version of the matching contribution system by Guttman

(1978) and Danziger and Schnytzer (1991), which is implementable as the subgame-perfect

equilibrium as well (Appendix B).

4 Pareto efficiency, existence and welfare properties

4.1 Basic properties

Let −
q(X)

X

1

q′(X)
≡ ε(X) be the elasticity of the demand for the pollution permits in the

trading market. It is convenient to rewrite (8) as follows:

q(X)θi

(

1−
1

ε(X)

)

= D′

i
(X) + q′(X)xi(q(X)) for all i. (9)

We first show the following proposition on Pareto efficiency and existence:

Proposition 1 (i) A sequential Lindahl equilibrium is, if it exists, Pareto efficient. (ii) If

ε(X∗) = 1 and D′

i
(X∗) 6= −q′(X∗)xi(q(X

∗)) for some i, there does not exist a sequential

Lindahl equilibrium. (iii) Even if the equilibrium exists, the equilibrium proportion of the

permits may not satisfy θi ∈ (0, 1) for all i.

Proof: We first prove part (i). Summing up (8) with respect to i, and using (4), (5) and
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∑
i∈N θi = 1, we obtain:

∑

i∈N

D′

i(X) = q(X)
∑

i∈N

θi + q′(X)(
∑

i∈N

θiX −

∑

i∈N

xi(q(X)))

= q(X)

= Y ′

j (xj) for all j.

Hence, we obtain (2), i.e, X = X∗ and xi = x∗

i for all i, at the sequential Lindahl equilibrium.

To prove (ii), suppose that the Lindahl equilibrium exists. By (i), it should be X = X∗.

Then, when ε(X∗) = 1, (9) should be D′

i(X
∗) = −q′(X∗)xi(q(X

∗)) for all i. This is a

contradiction.

Part (iii) of the proposition is shown from the following numerical example:

n = 2, ui(ci, X) = ci −
ai

2
X2, Yi(xi) = 2bi(xi)

1

2 , a1 + a2 = 1. (10)

For example, when a1 = 0.9, b1 = b2 = 0.1, the values of (θi)i∈N consistent with X1 = X2 is

θ1 = 1.3 and θ2 = −0.3. Q.E.D.

In (ii), the marginal revenue from the permit, q(Xi), is cancelled out by the price decrease

q′(Xi)Xi: graphically, the country’s “demand function” on (Xi, θi)-space represented by (8)

becomes vertical to the Xi axis, so that the standard Lindahl adjustment to reach Xi = X∗

for all i does not work. The case stated in (iii) is that, for any (θi)i∈N such that θi ∈ (0, 1) for

all i (the normal range of the permit distributions without lump-sum taxes and transfers),

no level of the total emissions can receive unanimous support.8, 9 These results strengthen

8However, regarding implementability, mechanisms shown in Section 6.1 and Appendix B can implement
the Lindahl solution including the cases in Proposition 1.(iii) where θi < 0 for some i.

9The second order conditions for the solution of (8) are q′(X)(2θi − (
∑

j∈N (Y ′′i /Y ′′j ))−1) + (θiX −
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the previous works by Chichilnisky et al. (2000), Heal (2000) and Tadenuma (2005) on

the impossibility of achieving efficient allocations which we outlined in the Introduction and

Section 3.

Corollary 1 The countries may not be able to find the allocation of initial permits, (θi)i∈N ,

with θi ∈ (0, 1) for all i and
∑

j∈N θj = 1, to have an agreed level of emissions X in the sense

of X = Xi for all i.

We next examine the welfare properties of the Lindahl equilibrium. The inspection of

(9) yields the following:

Proposition 2 Suppose that ε(X∗) < 1. Under a sequential Lindahl equilibrium, (i) for i

and j such that D′

i(X
∗) = D′

j(X
∗), θi > θj iff xi(q(X

∗)) > xj(q(X
∗)), and (ii) for i and

j such that xi(q(X
∗)) = xj(q(X

∗)), θi > θj iff D′

i(X
∗) < D′

j(X
∗). These properties are

reversed if ε(X∗) > 1.

Proof: The results follow from (9), q(X∗) > 0 and q′(X∗) < 0. Q.E.D.

This proposition illustrates the pattern of redistribution through θi’s among those which

have same preferences on the one hand, and those which have the same production (func-

tions) on the other hand. These properties critically depend on the elasticity of polluting

activities with respect to the price change. The empirical literature typically shows low price

xi(q(X)))
∑

j∈N Y ′′′

j (xj)(x
′

j(q)q
′(X))3 − D′′

i (X) < 0. Sufficient conditions are: (i) the third derivative of
the production functions, Y ′′′

i (xi) (i ∈ N), are sufficiently small (see Helm (2003, footnote 3)), and (ii) those
which have high −1/Y ′′

i (x∗

i ) also have high θi (which can be compared with the properties in Proposition
2 below). They may not hold at X = X∗ for all i in general, but we are not sure how large is the class of
functions in which the conditions fail to hold. It is, for example, satisfied in the economy in (10).
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elasticities.10 In our case, if ε(X∗) < 1, a country which suffers higher damage is endowed

with fewer initial permits under the sequential Lindahl equilibrium. Also, a country with

higher emissions is endowed with more permits: if developed countries emit higher pollution

levels, Proposition 2 also predicts a regressive distribution of the initial permits (or a pro-

gressive distribution of the permits would not be consistent with a unanimous agreement).

These are contrary to our intuition of the fair compensation11 in a North-South framework.

4.2 Alternative formulations

Properties of the sequential Lindahl equilibrium discussed so far rest on the presence of q′(X),

i.e., agents determine Xi in (8) anticipating the effects on emissions-price in the subsequent

stage. If, instead, we assume the existence of the self-fulfilling belief of the market-clearing

price q = q(X∗) in the first stage of the game, then the framework is equivalent to the

one-shot game in which X from the consumers’ side and (xi)i∈N from the producers’ side

are simultaneously determined. Here we define a simultaneous Lindahl equilibrium in the

following way:

10For demand for gasoline, Rogat and Sterner (1998) reported price elasticities of the Latin American
countries over the period of 1960-94 that are, on average, 0.17 in the short run and 0.58 in the long run.
Franzen and Sterner (1995) estimated the OECD countries over the period of 1963-85. The price elasticity
is less than unity in the short-run but it exceeds unity in the long-run. In a survey by Goodwin (1992), the
average long-run elasticity for petrol is 0.84 for cross-section studies and 0.71 for time-series studies.

11For example, according to a principle of responsibility and compensation (Fleurbaey and Maniquet
(2002)), the redistribution should be sensitive to the factors beyond individuals’ control (such as talent
or ability), but individuals are held responsible for their genuine choices (ambitions or preferences). Suppose
that the production technology is succeeded from the previous generations beyond countries’ choice, but the
countries are deemed responsible for their preferences for the damage, Di(X). Then the international trans-
fers towards those with less efficient technology would be consistent with the compensation principle, whereas
the higher transfers towards those with higher marginal damage make sense as a principle of responsibility.
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Definition 2 The system of (X, q, (θi)i∈N , (xi, ci)i∈N) satisfies a simultaneous Lindahl equi-

librium iff: (i) for xi = xi(q) (i ∈ N) determined in (4),
∑

j∈N xj(q) = X, (ii)
∑

j∈N θj = 1,

(iii) ci = Yi(xi(q)) + q(θiX − xi(q)) for all i, and (iv) X = arg maxX′ Yi(xi(q)) + q(θiX
′
−

xi(q))−Di(X
′) for all i. Namely,

qθi = D′

i(X). (11)

The difference between the simultaneous and the sequential Lindahl equilibrium is re-

flected on the first-order conditions. In the simultaneous Lindahl equilibrium, (11) is a

benefit principle that the country’s price θi is proportional to its marginal disutility D′

i(X).

For instance, in (10), θi = ai for all i.

A simultaneous Lindahl equilibrium is clearly Pareto efficient, and it uniquely exists with

θi ∈ (0, 1) for all i.12 In Section 6.2, we show that the simultaneous Lindahl allocation is

equivalent to (and hence justified as) the allocation based on a classic solution of pairwise-

trading, which is also implementable as the subgame-perfect equilibrium. In the following, we

show various properties of these two Lindahl solutions. Many properties are in fact common

in these solutions.

An alternative way to restore reasonable welfare properties is the case of the abatement

game introduced in Section 2.3. With the utility function vi(ci, A) ≡ ci+Bi(A), B′

i(A) > 0 >

B′′

i (A), associated with an equilibrium level of abatement A∗, under the sequential Lindahl

12The existence of the simultaneous Lindahl equilibrium was shown by Mäler and Uzawa (1995) and Uzawa
(1995) under strict concavity of the utility functions and the production possibility set.
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equilibrium,

(p(A∗) + p′(A∗)A∗)θi = B′

i(A
∗) + p′(A∗)ai(p(A∗)) for all i, (12)

with
∑

i∈N θi = 1. Suppose that the second order conditions are satisfied (sufficient conditions

similar to those discussed in footnote 9). In contrast to Propositions 1 and 2, we obtain the

following:

Proposition 3 In the abatement game, the sequential Lindahl equilibrium exists, satisfies

Pareto efficiency, and satisfies θi ∈ (0, 1) for all i. Also, regardless of the value of elasticities

of pollution supply, (i) for i and j such that B′

i(A
∗) = B′

j(A
∗), θi > θj iff ai(p(A∗)) >

aj(p(A∗)), and (ii) for i and j such that ai(p(A∗)) = aj(p(A∗)), θi > θj iff B′

i(A
∗) > B′

j(A
∗).

Proof: The proof of Pareto efficiency is the same as in Proposition 1, which implies that the

sequential Lindahl equilibrium, if it exists, would induce the unique Pareto-efficient aggregate

and individual abatement levels. To prove existence, in (12), all values except θi are uniquely

determined as a function of A∗, which is unique. This uniquely determines θi. An inspection

of (6) shows that p′(A) = (
∑

j∈N(1/φ′′j (aj))
−1 > 0. Since B′

i(A
∗), p′(A∗), and ai(p(A∗)) are

all positive, (12) indicates that θi > 0 for all i. Since
∑

i∈N θi = 1, then θi < 1 has to be the

case for all i. The properties (i) and (ii) follow from (12) as in Proposition 2. Q.E.D.

Therefore, the sequential Lindahl equilibrium of the abatement game overcomes the prob-

lem of non-existence of the equilibrium in θi ∈ (0, 1) for all i, and also circumvents the

pathological allocations of θi’s in relation to D′

i(X
∗)’s and xi(q(X

∗))’s in the emission game.
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Given the symmetric structure, the difference of the properties is striking.

5 Possibility of international cooperation

5.1 γ-core

Prior to the first stage of the international emissions trading, countries decide on the estab-

lishment of a trading system. This decision may take place as a result of voluntary participa-

tion in the system. Helm (2003) and Tadenuma (2005) assumed that, if at least one country

chooses not to participate for the establishment of a trading system, the outcome of the game

is the following Nash equilibrium allocation, where each country maximizes its utility with

respect to its own emissions while taking other countries’ choices as given. The allocation, de-

noted by (x̂i)i∈N and X̂ ≡
∑

j∈N x̂j, is determined by arg maxxi
(Yi(xi)−Di(xi+

∑
j∈N,j 6=i x̂j)).

The first-order condition is:

Y ′
i (x̂i) = D′

i(X̂) for all i. (13)

One can easily derive X̂ > X∗.13 This, however, does not mean that x̂i > x∗
i for all i.

In this section we assume n = 2 for illustration. Associated with X̂ and ûi ≡ ui(Yi(x̂i), X̂),

we now introduce the following concept of the core:

Definition 3 An allocation belongs to the γ-core if it is a Pareto efficient allocation that

13Suppose that X̂ ≤ X
∗. Then, by convexity of Di’s,

∑
j∈N D

′

j(X
∗) ≥

∑
j∈N D

′

j(X̂). By (2) and

(13), Y
′

i (x∗

i ) ≥
∑

j∈N Y
′

j (x̂j) > Y
′

i (x̂i) for all i ∈ N . Then X
∗ =

∑
j∈N x

∗

j <
∑

j∈N x̂j = X̂. This is a
contradiction.
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Pareto dominates (ûi)i∈N .14

Table 1 illustrates the core property of the Lindahl equilibria, through the economy in

(10) with varying the parameters a1, b1, and b2:

Table 1 around here.

The table lists consumption, utility, θ1(= 1 − θ2), and country 1’s revenue from the

emissions trading= q(X∗)(θ1X
∗
−x∗

1
), in a sequential Lindahl equilibrium and a simultaneous

Lindahl equilibrium, respectively. (8) implies that θi = 2ai − (b2

i /
∑

j∈N b2

j) in the sequential

Lindahl equilibrium, and, as discussed before, (11) implies that θi = ai in the simultaneous

Lindahl equilibrium. Depending on the parameters under consideration, the two allocations

give substantially different consumptions and utilities. However, in all cases, the Lindahl

equilibria do not Pareto dominate the Nash equilibrium: in Cases 1 and 2, country 2 is

worse-off at the Lindahl equilibria than the Nash equilibrium; in Case 3, country 1 is worse-

off.

Proposition 4 Generally, neither a simultaneous Lindahl equilibrium nor a sequential Lin-

dahl equilibrium belongs to the γ-core.

In Case 1, country 1 has a higher productivity but also has a higher marginal disutility of

pollution than country 2. In a Nash equilibrium (13), consumers’ high marginal disutility

14Chander and Tulkens (1997) considered a stronger concept of the core with respect to the γ-Characteristic
Functions. Their notion of the γ-core is equivalent to our definition under n = 2.
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voluntarily reduces emissions of pollution, given country 2’s high pollution under the Nash

equilibrium. In the market, on the other hand, a revenue-maximizing firm exploits the

comparative advantage of the high productivity, following (4). Comparing these equilibria,

q on the right hand side of (4) becomes lower than D′

1
(X̂) in (13), i.e., x∗

1
> x̂1. The

phenomenon of x∗

1
> x̂1 is also observed in Case 2, where country 1 has a lower productivity.

In both cases, country 2 is worse-off at the Lindahl equilibria. It is interesting to see that, in

Case 1, country 2 is the emission-permit seller (so that it gains at the emissions trading) but

it eventually becomes worse-off as a result of the market trading. In Case 3, country 1 is the

emission-permit buyer, and its consumption is much lower than under the Nash equilibrium,

although the consumption of country 2 is significantly higher. As a result, country 1 loses

more by purchasing the emission-permits than the benefit from reducing pollutions.

5.2 Comparison with other solutions based on emissions trading

With the same numerical example as in Table 1, we now examine other solutions based on

emissions trading in the literature: (i) Helm’s (2003) equilibrium with noncooperative deter-

mination of initial permits,15 (ii) a Pareto efficient allocation without a lump-sum transfer,

i.e., (ci, X) = (Yi(x
∗

i
), X∗) for all i, examined in Shiell (2003), and (iii) the case of θi = x̂i/X̂

for all i, namely, countries start negotiations at the point where the initial emission permits

15Helm (2003) considered the scenario that the values of θi and X are determined by noncooperative coun-
tries. Namely, each country announce θiX = ω̃i that would maximize its own utility, given the announcement
of the others: maxωi

Yi(xi(q(ωi+
∑

j∈N,j 6=i ω̃j)))+q(ωi+
∑

j∈N,j 6=i ω̃j)(ωi−xi(q(ωi+
∑

j∈N,j 6=i ω̃j)))−Di(ωi+∑
j∈N,j 6=i ω̃j).
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are proportional to the Nash equilibrium,16 examined in Tadenuma (2005).

Table 2 around here.

Several observations emerge. Firstly, Helm’s (2003) equilibrium does not belong to the

γ-core, either. The calculations in Table 2 complement Helm’s (2003) Proposition 4. In

Cases 1 and 2, the total emissions are reduced as a result of voluntary reduction of the

permits and the work of the trading market. However, it does not result in the Pareto

improvement. Case 3 is the so-called “hot air problem”, in that a country with a low

disutility from the environmental damage is willing to sell permits which in fact exceeds

the business-as-usual emissions. Secondly, a Pareto efficient allocation without a lump-

sum transfer does not belong to the γ-core. This property contrasts with Shiell’s (2003)

statement that such allocation brings cooperative gains.17 An implication is significant: for

an allocation to belong to the γ-core, one generally needs international lump-sum taxes and

transfers. Thirdly, Tadenuma (2005, Proposition 8) showed that, when θi = x̂i/X̂ for all i,

the bargaining frontier (the locus of utility vectors of the countries attained by changing X)

contains allocations that Pareto dominate (ûi)i∈N .18 In Table 2, the utility vector of (ua

1
, ua

2
)

16The choice of the weights θi = x̂i/X̂ to find efficiency gains resembles Roemer’s (1989) solution concept
in the context of the tragedy of commons.

17“In the absence of regulation, the countries will be located below the [Pareto] frontier, [called] point
a for example, owing to the public-good nature of abatement. ... [T]here is one Pareto-efficient allocation
associated with zero transfers ... This point is located to the north-east of a, since both countries benefit
from some level of pollution control, even given the existing imbalance in the distribution of income.” (Shiell
(2003, pp. 42-43))

18In general, the Nash equilibrium ((ûi)i∈N ) may be outside the bargaining frontier, in which the outcome
is (ûi)i∈N — no cooperative agreement is made and the outcome is Pareto inefficient.
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corresponds to an allocation with X = X̂ and the emissions trading. The emissions trading

improves production efficiency, so that this allocation Pareto dominates (û1, û2), although it

is not Pareto efficient. On the other hand, the utility vector of (ub
1
, ub

2
) corresponds to an

allocation with X = X∗ and the emissions trading. It belongs to the bargaining frontier,

but Table 2 suggests that (ub
1
, ub

2
) will not belong to the γ-core (except Case 1).

The above discussion is summarized into the following proposition:

Proposition 5 (i) Helm’s (2003) equilibrium does not belong to the γ-core. (ii) A Pareto

efficient allocation without a lump-sum transfer does not belong to the γ-core. (iii) Suppose

that θi = x̂i/X̂ for all i. An allocation in a bargaining frontier with X = X∗ does not belong

to the γ-core.

Chander-Tulkens’ (1997) solution,

ci = Yi(x̂i)− ri

∑

j∈N

(Yj(x̂j)− Yj(x
∗

j)), ri ≡
D′

i(X
∗)

∑
j∈N D′

j(X
∗)

for all i, (14)

belongs to the γ-core under certain conditions. Eyckmans (1997, p. 324) stated that coun-

terexamples can be found that this solution does not always belong to the γ-core. One issue

about this solution in the present context is that it is hard to relate to the system of trad-

able permits. Neither producer-consumer’s decentralized decision nor a market of tradable

permits seems explicit.19 The system may also have to be supported by appropriate inter-

national lump-sum transfers, which are usually excluded in the literature in the absence of

19Mechanisms proposed in the next section have decentralized decision making by the producer and the

consumer in each country.

21



a central authority and costless transfers. Proposition 5 and this fact indicate a dilemma

between the use of the decentralized market scheme without lump-sum transfers and the

possibility of cooperation.

5.3 Stand-alone core

A weaker notion of the core is Foley’s (1970) stand-alone core. The notion corresponds

to the idea that the outsiders of the coalition do not contribute to the public good at all.

In Appendix A, we provide a definition of the stand-alone core in the abatement-game,

and conclude that a sequential Lindahl equilibrium belongs to the stand-alone core.20 The

property is the same as Eyckmans’ (1997) Proposition 3 which states that the solution of

the abatement game corresponding to Chander-Tulkens’ (1997) allocation (14) belongs to

the stand-alone core.

At this point we will discuss the issue of x̄i. There are three possibilities. The first

possibility is that the emissions are carried out by self-interested producers so that the

marginal product is zero. Both Mäler (1989) and Chander and Tulkens (1997) stated that

such case is not interesting, since virtually all Pareto efficient allocations belong to the stand-

alone core in such a case. The second possibility is to set x̄i = x̂i, the Nash equilibrium level

defined in (13). In this case, however, since the stand-alone core is equivalent to the γ-core

when n = 2, then the result of the above proposition cannot apply. Notice also that x∗

i
> x̂i

may happen, as we showed above. The above proposition may not be extended to the cases

20In the emission game, a sequential Lindahl equilibrium belongs to the stand-alone core if x̄i’s are “suffi-

ciently large”. It is difficult to formalize this condition.
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that allow ai < 0 for some i, as in Eyckmans’ (1997) Proposition 3. The third and a practical

case is the one where domestic externality problems were not resolved so that x̄i > x̂i for all

i. The above proposition has some use in such a case.

6 Implementation of Lindahl equilibria

Suppose that the countries involved in the global environmental problem agreed to use

the international system of emissions trading. Given that the Lindahl solution shares the

nature with the classic politico-economic framework and is Pareto efficient, it is a good

candidate solution.21 Suppose that a neutral regulator is established by the negotiating

parties for the enforcement of the Lindahl allocation. As in the conventional public-good

problem, the direct use of the Lindahl system is subject to the countries’ strategic behavior

through misrepresentation of preferences. In a typical situation where information on the

production functions and the damage functions of each country is private information that

is not available for the regulator, how can she design a mechanism that will implement the

Lindahl solution as a noncooperative equilibrium outcome through decentralized decisions

by utility-maximizing consumers and profit-maximizing producers in each country? In this

section, we provide simple and interpretable mechanisms that implement the sequential and

the simultaneous Lindahl solutions as the subgame-perfect equilibrium, respectively.

21A failure to achieve the γ-core is shared with other candidate solutions through the emissions trading,

as we saw in the previous section.
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6.1 A mechanism that implements a sequential Lindahl equilib-

rium

We first consider a mechanism that implements a sequential Lindahl equilibrium.22 We begin

with the case of n ≥ 3. The decentralized decisions are formulated as a 2n-player game by

n utility-maximizing consumers and n profit-maximizing producers. Corresponding to our

setup in which the countries decide on X and (θi)i∈N in the first stage, and the emissions

trading takes place in the second stage, we consider the following two-stage game:

Stage 1 : The consumer in each country i announces si ∈ IR.

Stage 2 : The producer in each country i announces its own pollution-supply function x̃a
i :

IR++ → IR+ and a function x̃b
i : IR++ → IR+ for its “neighbor,” producer i− 1, where

we treat n as producer 1’s neighbor. Each function must be continuous and decreasing,

with x̃a
i (∞) = x̃b

i(∞) = 0.

The outcome of the game is defined as follows. Associated with the above strategies, the

price qi is assigned to producer i. It is given by:

∑

j∈N,j 6=i

x̃a
j (qi) + x̃b

i+1(qi) =
∑

j∈N

sj, (15)

with the convention of n + 1 ≡ 1. Here, we show the property of the mechanism for the

case where such qi exists for all i. See Appendix B.(a) for the construction of the outcome

22Hereafter we only examine the emission game, as the analogies to the abatement game is straightforward.
Here, in order to exclude the situation of Proposition 1.(ii), we assume ε(X) 6= 1 for all X, which is known
by the regulator as a minimal information on the domain: the information on elasticities could be available
in practice at least in approximation (see footnote 10), and this assumption is not needed if we consider the
abatement game.
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when there is no qi that satisfies (15) for some i, and the proof that such cases would not

constitute an equilibrium. Let qc ≡ mini∈N qi be the price assigned to the consumer. The

regulator assigns an emission level of country i as xi = x̃a
i (qi), and:

πi = Yi(x̃
a
i (qi))− qix̃

a
i (qi)− |x̃

a
i−1(qi−1)− x̃b

i(qi−1)|, (16)

ci = πi + qc((1/n) + si+1 − si+2)
∑

j∈N

x̃a
j (qj), (17)

X =
∑

j∈N

x̃a
j (qj), (18)

for the profit, consumption, and the total emission, respectively, with the conventions of

i − 1 ≡ n for i = 1 and n + 2 ≡ 2. In (16), associated with xi = x̃a
i (qi), producer i has to

pay qix̃
a
i (qi) to the regulator, and there is a penalty for misrepresenting the pollution-supply

of the neighbor. In (17), the profit of producer i goes to consumer i as in the present model

of emissions-trading. The consumer also receives the amount of ((1/n) + si+1 − si+2)qcX

from the regulator out of the revenue collected from the producers,23 with the price qc and

the fraction (1/n) + si+1 − si+2 of the permits for country i. The latter is determined by

its neighbors’ announcements and independent of its own, in the same manner as in Walker

(1981). Producer i chooses strategies to maximize πi in (16), and consumer i announces si

to maximize her utility ui(ci, X), with ci and X determined by (17) and (18), respectively.

23The game form assures
∑

i∈N qix̃
a
i (qi) ≥

∑
j∈N qc((1/n) + sj+1 − sj+2)

∑
i x̃a

i (qi) at any strategy, which
is complementary to the feasibility. The issue of ensuring the balance at nonequilibrium strategies would be
readily handled, following the standard of the literature (e.g., Varian (1994), Tian (1994), and Duggan and
Roberts (2002)). This is left as future research. A similar comment applies for the mechanism in the next
section.
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In order to see that the subgame-perfect equilibrium outcome coincides with the Lindahl

solution, one must work backwards through the game. Begin with the second stage. Since

qi that producer i faces does not depend on producer i’s own strategy, producer i’s choice

of x̃a
i (qi) is simply profit-maximizing: x̃a

i (qi) = xi(qi) as in (4). Neither does the choice of

x̃b
i(qi−1) 6= x̃a

i−1(qi−1) affect qi, so x̃b
i(qi−1) = x̃a

i−1(qi−1) for all i. In Appendix B.(b), we show

that qi = qc = q(
∑

j∈N sj) for all i, as in (5). Substituting these values into (17) and (18), we

obtain: (i)
∑

i∈N xi(q(
∑

j∈N sj)) =
∑

j∈N sj = X, (ii)
∑

i∈N((1/n) + si+1− si+2) = 1, and (iii)

ci = ci(
∑

j∈N sj, (1/n)+si+1−si+2) for all i, corresponding to conditions (i)-(iii) of Definition

1.

We next examine Stage 1 of the game. Taking account of (i)-(iii) above, each consumer

maximizes her utility ui(ci, X) = ui(ci(
∑

j∈N sj, (1/n)+si+1−si+2),
∑

j∈N sj) ≡ Ui(si, sN\{i}).

From the Nash behavior, each consumer i treats
∑

j∈N,j 6=i sj and (1/n)+ si+1− si+2 as given,

so that the choice of si for the utility maximization is equivalent to the choice of X given

θi = (1/n)+si+1−si+2. Formally, the first-order condition of Ui(si, sN\{i}) with respect to si

is equivalent to (8) with (X, θi) = (
∑

j∈N sj, (1/n) + si+1 − si+2). Therefore, the equilibrium

outcome is the Lindahl solution. Conversely, given (θi)i∈N that satisfies (8) with X = X∗, the

system of n linear equations,
∑

j∈N sj = X∗ and (1/n)+si+1−si+2 = θi (i = 1, ..., n−1), has

the unique solution (si)i∈N which is consistent with the equilibrium outcome. We therefore

conclude that the subgame-perfect equilibrium outcome coincides with the Lindahl solution.

Notice that we did not impose (1/n) + si+1 − si+2 ≥ 0 for all i, so that this mechanism can
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implement the Lindahl solution when θi < 0 for some i, as in the cases of Proposition 1.(iii).

Appendix B.(c) examines the case of n = 2, where we derive (θi)i∈N as a version of

Guttman (1978) and Danziger and Schnytzer’s (1991) matching contribution game. The θi

there has a particular interpretation as the compensation from the other consumer out of

the revenues from the emissions-trading market.

6.2 A pairwise-trading mechanism

We next provide a mechanism to implement a simultaneous Lindahl equilibrium. It is based

on a classic pairwise-trading system, an idea that each polluter (a producer) has to purchase

the right of emissions from each victim (a consumer) per unit of pollution. The formal

analysis for the work of this system also facilitates our discussion in the next section.

The proposed game form is a two-step compensation mechanism as in Varian (1994):

Stage 1 : The consumer in country i announces (q̂ik)k∈N ∈ IRn
+, as the price that producer k

pays for consumer i’s damage. Simultaneously, the producer in country i announces

(q̃ki)k∈N,k 6=i ∈ IRn−1

+ , as the price that consumer k receives for producer i’s emissions.

Stage 2 : The producer in country i chooses xi to maximize the profit given by:

πi = Yi(xi)−
∑

k∈N

q̂kixi −
∑

k∈N,k 6=i

|q̂ki − q̃ki|. (19)

Consumer i receives a payoff ui(ci,
∑

j∈N xj), with ci determined by:

ci = πi +
∑

k∈N,k 6=i

q̃ikxk + q̂iixi. (20)
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As in the previous section, the firms’ profit is determined by its own announcement of the

pollution-supply, the price determined by others, and the penalty for misrepresenting the

prices of the bilateral-trade. In (20), πi goes to consumer i again, and consumer i receives

the compensation from the polluters. The πi in (19) includes the term of −q̂iixi, which

depends on consumer i’s announcement. This term offsets the last term of (20), which

eliminates the price-setting power of consumer i in the bilateral-trade against producer i.

Appendix C shows the following properties of the subgame-perfect equilibrium. (a) q̂ik =

q̃ik = D′

i
(X) = q̂ii ≡ di for all i and k 6= i: q̂ik is independent of k, so the dimension of the

bilateral-trade is reduced from n2 to n.24 (b) Y ′

i
(xi) =

∑
k∈N dk ≡ q for all i: each polluter

pays q per unit of emission, dk to each victim k. (a) and (b) imply that the equilibrium is

unique, with X = X∗ and xi = x∗

i
for all i. Notice that di/q is equal to θi in (11), with

∑
i∈N θi = 1. Substituting the equilibrium strategy into (19) and (20), the budget constraint

of the consumer becomes:

ci = Yi(xi)−
∑

k∈N

dkxi + di

∑

k∈N

xk = Yi(xi) + q(θiX − xi). (21)

(21) and the above discussion verified conditions (i)-(iv) of Definition 2. We conclude that

the unique subgame-perfect equilibrium coincides with the unique simultaneous Lindahl

equilibrium.

The analysis in this section concludes as follows:

24Consider the following simpler game. In Stage 1, the consumer in country i announces (q̃i, q̂i−1). In
Stage 2, the producer in country i chooses xi. The outcome is that πi = Yi(xi) −

∑
k 6=i q̃kxi − q̂ixi, ci =

πi+q̂i

∑
j∈N xj−|q̃i−1−q̂i−1|, X =

∑
j∈N xj . This game also implements the simultaneous Lindahl allocation

at the subgame-perfect equilibrium.
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Proposition 6 There exist mechanisms that implement the Lindahl solutions as the subgame-

perfect equilibrium.

7 Differentiated prices and second-best optimum

Costless international lump-sum transfers are not available in the second-best world. The

previous literature suggested the use of a market solution with region-specific prices in such

an environment. This may increase the scope of the Lindahl approach beyond a particular

point in the first-best utility possibility frontier. In this section, we formally introduce the

Lindahl equilibrium with region-specific prices, and examine the possible practical use of

the system to induce the second-best Pareto optima. For an illustrative purpose, we assume

n = 2.

7.1 Second-best Pareto efficiency

First, consider a welfare-maximization problem of maxx1,x2
u1(Y1(x1), x1+x2)+µu2(Y2(x2), x1+

x2) with µ > 0. This corresponds to the case without lump-sum transfers. The solution,

denoted by (xµ

1 , x
µ

2) and Xµ = x
µ

1 + x
µ

2 , is characterized by:25

Y ′

1
(xµ

1) = D′

1
(Xµ) + µD′

2
(Xµ) = µY ′

2
(xµ

2). (22)

Once costless lump-sum transfers are ruled out, then we do not generally require produc-

tion efficiency (Y ′

1
(x1) = Y ′

2
(x2)) in the social optimum. The allocations with emissions of

25Eliminating µ, (22) becomes D′

1
/Y ′

1
+ D′

2
/Y ′

2
= 1, a general formula of the second-best optimum by

Sandmo (2003, eq. (12)) and Chichilnisky et al. (2000, eq. (3.6)).
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(xµ
1 , x

µ
2 , X

µ) are called the second-best Pareto efficienct allocations.

7.2 Lindahl equilibrium with region-specific prices

Chichilnisky et al. (2000, p. 63) started with the introduction of the pairwise-trading model

as in Section 6.2.26 They proceeded to introduce region-specific prices (qi)i∈N as a result of

the pairwise-trading, with possibly a different price in each bilateral trade. Corresponding

to their eq. (3.13), each country’s budget constraint is characterized by:

ci = Yi(xi) + qi(θiX − xi), (23)

where qi is the price of pollution permits to country i. Having differential prices (q1 6= q2)

would be beneficial in achieving the second-best optima in (22), since the producers’ revenue

maximization, Y ′

i (xi) = qi (i = 1, 2), can lead to the condition of Y ′

1
(x1) = µY ′

2
(x2) with

µ 6= 1, by setting the differential prices appropriately. A similar discussion is found in

Sandmo (2003, p. 122).27

To formalize their discussion, we introduce the following concept:

Definition 4 The system of (X, µ, (θi)i∈N) satisfies a Lindahl equilibrium with region-specific

prices iff: (i)
∑

i∈N θi = 1, (ii) x1(q(X)) + x2(q(X)/µ) = X. (iii) Let q1(X) ≡ q(X) and

26“In this context each pairwise externality is a separate commodity, separately priced. There are therefore
... n2 prices, one between each pair of the n regions, as each is both a buyer and a seller of emission rights
[q̂ki (k, i ∈ N) in Section 6.2], whereas with each charging a different price for a permit, there are only n

prices [di]. By comparison, in the framework modeled previously, there is only one price [q].” (Chichilnisky
et al. (2000, p. 63))

27“If [perfect international redistribution of income is not possible], one would like the marginal cost of
contributing to the global public good to be less in the poor country than in the rich. ... [W]ith tradable
quotas, the price of a quota must be lower in the poor country.” (Sandmo (2003, p. 122))
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q2(X) ≡ q(X)/µ. Then,28

qi(X)θi + q′i(X)(θiX − xi(qi(X))) = D′

i(X) for all i. (24)

(24) is an extension of (8), which represents consumers’ preferred level of X over the

budget constraint (23). We now show the following:

Proposition 7 The Lindahl-equilibrium with region-specific prices results in (xµ
1 , x

µ
2 , X

µ) in

(22).

Proof: Summing up (24) with respect to 1 and 2, with country 2’s equation being multiplied

by µ, and using conditions (i)-(iii) of Definition 4, we obtain:

D′

1
(X) + µD′

2
(X) = q(X)

∑

i∈N

θi + q′(X)(
∑

i∈N

θiX − x1(q(X))− x2(q(X)/µ))

= q(X)

= Y ′

1
(x1) = µY ′

2
(x2).

Hence, we obtain (22) at the Lindahl equilibrium with region-specific prices. Q.E.D.

Proposition 7 formalizes the discussion in Chichilnisky et al. (2000, p. 63-64) which

relates the pairwise-trading, the emissions trading with region-specific prices, and the second-

best Pareto optima.29 However, there are two problems to point out. Firstly, as a result

28The simultaneous Lindahl equilibrium can be defined analogously. In this section, we do not discuss
the difference between the simultaneous and the sequential Lindahl equilibria, since the relevant qualitative
properties to discuss are the same.

29The relationship is as follows. The firms’ optimization condition, their eq. (3.14), corresponds to
xi = xi(qi(X)) in condition (ii) of Definition 4. The differential prices in their eq. (3.15) will result in
the condition for second-best Pareto efficiency, eq. (3.6), corresponding to our (22). The present analysis
makes the derivation of q1, q2 and Xµ in the Lindahl-process more explicit, connecting Xµ in (22) and the
consumers’ desired level of X in (24), which in turn derives qi = qi(X

µ) (i = 1, 2) in the equilibrium.
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of the pairwise-trading with n equilibrium prices, each polluter in fact pays the same price

for each unit of pollution, as the result of Section 6.2 suggests.30 Since Definition 4 involves

differential prices among producers, the pairwise-trading does not yield a Lindahl equilibrium

with region-specific prices, contrary to Chichilnisky et al.’s (2000) explanation quoted above.

The second and more serious problem with respect to our motivation in this section is

the following:

Proposition 8 Let c
µ
i be country i’s consumption determined in (23) at the Lindahl equi-

librium with region-specific prices. If µ 6= 1 and θ1X
µ 6= x

µ
1 , then (23) implies c

µ
1 + c

µ
2 6=

Y1(x
µ
1)+Y2(x

µ
2): one needs lump-sum taxes to cover a deficit or lump-sum transfers to refund

a surplus to balance the world production and consumption.

Proof: Adding up the net revenue from the emissions trading, we obtain q1(θ1X
µ − x

µ
1) +

q2(θ2X
µ − x

µ
2) = q1(θ1X

µ − x
µ
1) − q2(θ1X

µ − x
µ
1) = q2(µ − 1)(θ1X

µ − x
µ
1) ≡ mµ. Then

c
µ
1 + c

µ
2 = Y1(x

µ
1) + Y2(x

µ
2) + mµ. Q.E.D.

Nothing in the equilibrium condition can ensure θ1X
µ = x

µ
1 , so that there generally

arises a deficit or a surplus (mµ 6= 0) in the equilibrium. Such a deficit or a surplus has

30Consider a classic pairwise-trading, i.e., the model in Section 6.2 without individual strategic behaviors,
where we assume from the beginning q̃ik = q̂ik ≡ qik and q̂ii ≡ qii for all i, k ∈ N, (k 6= i). The price-
taking consumers’ utility maximization from the budget constraint (20) results in qik = D′

i(X) ≡ di for all
i and k as long as xk > 0: the consumers do not wish to differentiate the bilateral-prices in the process
of the pairwise-trading. The Inada condition guarantees xk > 0 for all k in the Warlasian equilibrium of
the pairwise-trading. Therefore, in the equilibrium, each producer pays the same price

∑
j∈N dj ≡ q from

a unit of pollution, as in Section 6.2. It is the consumers who receive different prices, di = D′

i(X
∗), from

each polluter. The fraction di/q corresponds to θi of the simultaneous Lindahl equilibrium, not the Lindahl
equilibrium with region-specific prices: see the difference between (21) and (23).
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to be resolved by international transfers, although we intended to find an efficiency gain of

region-specific permit prices in the second-best world where such transfers are either costly

or infrasible! Neither Chichilnisky et al. (2000) nor Sandmo (2003) pointed out this issue.

Once we try to absorb the deficit or the surplus through international transfers, the

mechanisms used in Section 6 do not work directly for an implementation of the Lindahl

equilibria with differentiated prices: the mµ above must enter the expression of πi or ci

corresponding to (16), (17), (19) and (20), but the anticipation of the deficit or the surplus

which depends on X and xi distorts the behavior of producers and consumers. A more

sophisticated mechanism is required (e.g., Moore and Repullo (1988)).

7.3 A framework with costly transfers

We instead consider the following framework. Suppose that country 1 is the rich country,

and country 2 is the poor country. An international financial institute (such as the Global

Environment Facility (GEF) in footnote 3) is established to absorb the possible deficit or

the surplus. As a simple scenario, the deficit is financed by (taxing on) country 1 when

mµ > 0, and the surplus is transferred to country 2 when mµ < 0.31 As in the conventional

welfare costs of the public finance, taxes incur the utility loss of 1 + λ1 > 1 per dollar to

the taxpayers (due to the excess burden of the taxes or political oppositions against such

expenditures), and only the fraction 1−λ2 ∈ (0, 1) of the transfer is recognized as the utility

31An example of the tax on the rich country is the Multilateral Fund by industrialized countries in the

case of the Montreal Protocol. The transfer may be used for financing the range of global public goods, such

as health, research, and development.
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gain to the recipients (due to corruptions or technological inefficiencies of the foreign aids).

Then the budget constraint of each country becomes:

c1 = Y1(x
µ

1) + qµ(θµ

1Xµ − x
µ

1)− (1 + λ1) max{mµ, 0}, (25)

c2 = Y2(x
µ

2) +
qµ

µ
(θµ

2Xµ − x
µ

2)− (1− λ2) min{mµ, 0}, (26)

where the superscript µ represents the Lindahl equilibrium with region-specific prices.

Suppose that a welfare weight µ∗ is assigned on country 2, by a benevolent GEF or an

equilibrium political bargaining. The present framework modifies the conclusion of Propo-

sition 7, in that µ may not be equal to µ∗ for a welfare maximization: the desire for global

equity must be tempered by the direction of the permit trading (the second terms of (25)

and (26)) and distortionary features of international transfers (the third terms of (25) and

(26)).

In the context of environmental taxation, Hourcade and Gilotte (2000) and Sandmo

(2005) showed that it is second-best optimal for the rich country to pay higher tax rates than

the poor country in proportion to the weight of the social welfare. However, their analysis

was from the perspective of a social-welfare maximizer. The present model can be applied

to environmental taxation, as a politico-economic framework that allows an international

tax-revenue sharing.
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8 Conclusion

In this paper, we applied a Lindahl mechanism to the case of international interactions

under global externalities. The proposed solution is appropriate to the Kyoto (or post-Kyoto)

framework, since it has a built-in simultaneous choice of the total number of pollution permits

(X) and their distribution ((θi)i∈N). It achieves the Samuelson condition, and furthermore,

trading of the distribution through the competitive markets results in production efficiency.

The present framework also admits (i) mechanisms for implementation (compliance with no

misrepresentation of preferences), and (ii) extensions to the second-best environment with

costly transfers.

Appendix A (Section 5.3)

Here, we introduce the definition of the stand-alone core in the abatement-game, and prove

that a sequential Lindahl equilibrium belongs to the stand-alone core.

The set of feasible allocations for a nonempty coalition S ⊂ N is given by: FS =

{(ci, ai)i∈S ∈ IR
|S|
+ ×Πj∈S[0, x̄j]|

∑
i∈S wi ≥

∑
j∈S cj +

∑
j∈S φj(aj)}. An allocation (ci, ai)i∈N ∈

FN belongs to the stand-alone core of the abatement game iff for all S ⊂ N, there does not

exist (c′i, a
′
i)i∈S ∈ FS such that for all i ∈ S, vi(c

′
i,

∑
j∈S a′

j) ≥ vi(ci,
∑

j∈N aj), with strict

inequality for at least one i ∈ S.

To prove the proposition, suppose that a coalition S ⊂ N can find an allocation (c′i, a
′
i)i∈S ∈

FS that is contrary to the condition stated in the previous footnote. Rewrite the util-
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ity function as vi(ci, A) ≡ Vi(ci, a1, ..., an). Then the formulation of the Lindahl equi-

librium is that every individual maximizes Vi(ci, a1, ..., an) over the budget constraint of

ci = wi − φi(ai) + p(
∑

j∈N aj)(ai − θi

∑
j∈N aj). This implies that c′i ≥ wi − φi(a

′
i) +

p(
∑

j∈S a′
j)(a

′
i − θi

∑
j∈S a′

j) for all i ∈ S with strict inequality for at least one i ∈ S. Then

∑
i∈S c′i >

∑
i∈S(wi − φi(a

′
i)) + p(

∑
j∈S a′

j)(
∑

i∈S a′
i −

∑
i∈S θi

∑
j∈S a′

j) =
∑

i∈S(wi − φi(a
′
i)) +

p(
∑

j∈S a′
j)

∑
i∈S a′

i(1 −
∑

j∈S θj) >
∑

i∈S(wi − φi(a
′
i)). This contradicts the definition of FS.

Q.E.D.

Appendix B (Section 6.1)

(a) First, we give full analysis for the cases when there is no qi that satisfies (15). In such

cases, either (i)
∑

j∈N,j 6=i x̃
a
j (0)+ x̃b

i+1(0) <
∑

j∈N sj or (ii)
∑

j∈N,j 6=i x̃
a
j (q)+ x̃b

i+1(q) >
∑

j∈N sj

for all q. In (i), set the outcome as qi = 0. In (ii), set the outcome as qi = ∞ if
∑

j∈N sj > 0,

and, if
∑

j∈N sj ≤ 0, set directly the final outcome as (πi, xi, ci) = (0, 0, 0) for all i.

For case (i), x̃b
i+1(qi) = x̃a

i (qi) = xi(qi) along the equilibrium, as shown in the text. And

xi(0) = ∞. This is not consistent with the original situation of
∑

j∈N,j 6=i x̃
a
j (0) + x̃b

i+1(0) <

∑
j∈N sj, so that it does not constitute an equilibrium. In (ii), if

∑
j∈N sj > 0, then producers’

optimization implies x̃a
j (qi) = 0 for all j and x̃b

i+1(qi) = 0, so that
∑

j∈N,j 6=i x̃
a
j (qi)+ x̃b

i+1(qi) =

0. This is a contradiction. Suppose that
∑

j∈N sj ≤ 0. Part (b) of the proof shows that,

for any
∑

j∈N sj > 0, X =
∑

j∈N sj, qi = q(X) and x̃b
i+1(qi) = x̃a

i (qi) = xi(q(X)) for all i,

which implies ci = ci(X, (1/n) + si+1 − si+2) for all i. If limX→0 ε(X) 6= 1 (see footnote 22),
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then limX→0 ci(X, (1/n) + si+1 − si+2) = 0 for all i, si+1 and si+2,
32 so that the consumers’

payoff functions are continuous at any (sj)j∈N where
∑

j∈N sj = 0. Given
∑

j∈N sj ≤ 0, for

the expression of ui(ci(
∑

j∈N sj, (1/n) + si+1− si+2),
∑

j∈N sj) in the text, there exists k ∈ N

such that ∂uk(ci(0, (1/n) + si+1 − si+2), 0)/∂sk > 0: the logic is analogous to footnote 5.

Consumer k’s best response against (sj)j∈N,j 6=k is s̃k such that
∑

j∈N,j 6=k sj + s̃k > 0, so that

it does not constitute an equilibrium.

(b) Next, we will show that qi = qc for all i in the subgame-perfect equilibrium. Since

the case of
∑

j∈N sj ≤ 0 is dealt with in part (a), suppose that
∑

j∈N sj > 0. Suppose

to the contrary that qi1 > qi2 for some i1 and i2. Notice that, x̃b
i(qi−1) = x̃a

i−1(qi−1) =

xi−1(qi−1) for all i in equilibrium, and qi2 < ∞ and the assumptions for the production

functions together imply x̃b
i2
(qi2−1) > 0. Since x̃a

i : IR++ → IR+ and x̃b
i : IR++ → IR+ must

be decreasing, (15) implies
∑

j∈N sj =
∑

j∈N,j 6=i1
x̃a

j (qi1) + x̃b
i1+1(qi1) <

∑

j∈N,j 6=i2
x̃a

j (qi2) +

x̃b
i2+1(qi2) =

∑

j∈N sj. This is a contradiction. Taking all properties together, (15) indicates

that qi = qc = q(
∑

j∈N sj) for all i.

(c) For n = 2, remaining the strategies in Stage 2 the same, we replace the strategies in

Stage 1 with the following two-step process:

32First, limX→0 Yi(xi(q(X))) = 0 for all i. From de l’Hospital’s rule, limX→0 q(X)X = limX→0

q(X)

1/X
=

lim
X→0

q′(X)

−1/X2
= lim

X→0
(−q′(X)X2) = lim

X→0
q(X)X

1

ε(X)
, so that limX→0 q(X)X

(

1−
1

ε(X)

)

= 0. The assump-

tion implies limX→0 q(X)X = 0. Also, 0 ≤ limX→0 q(X)xi(q(X)) ≤ limX→0 q(X)X = 0. Taking account of
these, limX→0 ci(X, (1/n)+si+1−si+2) = limX→0{Yi(xi(q(X)))+q(X)(((1/n)+si+1−si+2)X−xi(q(X)))} =
0 for all i.
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Stage 1.1 : The consumer in country i announces (ra
i , r

b
i ) ∈ IR2.

Stage 1.2 : The consumer in country i announces si ∈ IR+.

As to the outcome, qi in (15), qc = mini∈N qi, πi in (16), and X in (18) remain the same,

and ci in (17) is replaced with:

ci = πi + qc((1− ra
k)si + rb

ksk)− |r
b
i − ra

k|, i 6= k,

and consumers’ utilities are given by ui(ci, X).

Here, consumers announce a tolerable level of emissions (s1, s2), with X =
∑

j∈N sj in

equilibrium. Out of the revenue qcsi that consumer i receives from the emissions-trading

market, the proportion ra
k chosen by the opponent is used to compensate against consumer

k, as a victim of multilateral externalities. Conversely, consumer i sets ra
i , the rate of

compensation from consumer k’s announced revenue, and in equilibrium she receives qcr
b
ksk =

qcr
a
i sk. This is a public-bad version of the matching contribution model by Guttman (1978)

and Danziger and Schnytzer (1991), which has a particular interpretation in the present

context. We will show that:

θisi = (1− ra
k)si and θisk = ra

i sk for all i and k, i 6= k.

That is, the revenue share in the Lindahl solution represents: (i) the fraction of the rev-

enue received from the emissions-trading market net of the compensation paid to the other

consumer, and (ii) the compensation received from the other consumer.
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Now, the equilibrium properties of Stage 2 remain the same as in the case of the text,

since we made use of (15), (16) and (18) only in the derivation: we have qc = q(
∑

j∈N sj),

X =
∑

j∈N sj, and xi = xi(q(
∑

j∈N sj)) in equilibrium. The expression of ci along the

equilibrium path is:

Yi(xi(q(
∑

j∈N

sj))) + q(
∑

j∈N

sj)((1− ra
k)si + rb

ksk − xi(q(
∑

j∈N

sj)))− |r
b
i − ra

k| ≡ c̃i(si, sk; r), i 6= k,(27)

where r ≡ (ra
i , r

b
i )i∈N . In Stage 1, consumers noncooperatively maximize ui(c̃i(si, sk; r),

∑
j∈N sj).

In Stage 1.2, the choice of si is determined by maxsi≥0 ui(c̃i(si, sk; r),
∑

j∈N sj). Let (1−

ra
k)si + rb

ksk ≡ Si. The first-order conditions are:

q(X)(1− ra
k) + q′(X)(Si − xi(q(X))) = D′

i(X) or si = 0, i = 1, 2, i 6= k. (28)

Consider Stage 1.1. As a minimal assumption, suppose that Local Invertibility of Varian

(1994, p. 1286) holds.33 We first show that rb
i = ra

k (i, k = 1, 2, i 6= k). Suppose to the

contrary that i would choose rb
i 6= ra

k which results in (ĉi, ŝ1 + ŝ2). Consider an alternative

strategy by consumer i where rb
i = ra

k and use the compensation rate ra
i to induce consumer

k to announce ŝj. Then, this new allocation has the same pollution ŝ1 + ŝ2, the price of

the permits q(ŝ1 + ŝ2), productions, and the profits, but at a higher ci since there is no

penalty. This implies that the choice of rb
i 6= ra

k does not constitute the equilibrium outcome.

As to the total emissions, Varian’s (1994) Theorem 1 applies to prove Pareto efficiency of

33Let s = (s1, s2) be the outcome from announcement r. Let ŝi be a choice close to si that consumer j

prefers to si. Then there is some r̂a
j that consumer j can announce that will make ŝi an optimal choice for

consumer i.
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the equilibrium outcome (s1 + s2 = X∗). Then (s1, s2) has two possibilities. First, it is

an interior solution so that s1 and s2 are both positive. In this case, since s1 and s2 are

perfect substitutes in consumption, they must have the same price in equilibrium (otherwise

there is a profitable deviation): we now have 1 − ra

i
= rb

i
= ra

k
(i, k = 1, 2, i 6= k). Then

the condition of the interior optimum in (28) is equivalent to (8), where the only solution

is ra

i
= θi (i = 1, 2). Second, when sk = 0 for k = 1 or 2, then si = X∗ (i 6= k),

and the first-order condition q(X∗)(1 − ra

k
) + q′(X∗)((1 − ra

k
)X∗ − xi(q(X

∗))) = D′

i
(X∗) is

equivalent to 1 − ra

k
= θi corresponding to (8). Since θk = 1 − θi, so ra

k
= θk. This yields

Si = (1 − ra

k
)si = θiX

∗ and Sk = rb

i
X∗ = ra

k
X∗ = θkX

∗. Substituting the equilibrium

conditions into (27), we obtain c̃i(si, sk; r) = ci(X
∗, θi) and c̃k(si, sk; r) = ck(X

∗, θk) in both

cases. As in the text, we obtained one-to-one correspondence between conditions (i)-(iv) of

Definition 1 and the subgame-perfect equilibrium outcome. Q.E.D.

Appendix C (Section 6.2)

We work through backward-induction to examine the equilibrium of the game in Section

6.2. Start with the second stage. Producer i ∈ N maximizes its profits πi in (19), given

(q̂ki)k∈N announced by each consumer k ∈ N in the first stage. This results in Y ′

i
(xi) =

∑
k∈N q̂ki for all i, which determines the relationship between xi and

∑
k∈N q̂ki. The function

xi(q) is exactly the same as in (4), with x′

i
(q) < 0.

In Stage 1, the firms’ choice is to minimize the penalties, similar to Section 6.1: q̃ki = q̂ki

for all i and k 6= i. On the other hand, consumer i maximizes ui(ci,
∑

k∈N xk) with ci given
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by (20), noting that her choice of q̂ik has an indirect effect through the influence on polluter

k’s choice of xk in Stage 2. The first-order conditions of the utility maximization with

respect to q̂ik (k 6= i) yield ∂(πi(
∑

j∈N q̂ji,
∑

j∈N,j 6=i |q̂ji − q̃ji|) +
∑

l∈N,l 6=i q̃ilxl(
∑

j∈N q̂jl) +

q̂iixi(
∑

j∈N q̂ji) − Di(
∑

l∈N xl(
∑

j∈N q̂jl))/∂q̂ik = (q̃ik − D′
i(X))x′

k(
∑

j∈N q̂jk) = 0. As to q̂ii,

noting that ∂(πi + q̂iixi(
∑

j∈N q̂ji))/∂q̂ii = −xi(
∑

j∈N q̂ji) + xi(
∑

j∈N q̂ji) + q̂iix
′
i(

∑
j∈N q̂ji) =

q̂iix
′
i(

∑
j∈N q̂ji), the utility maximization yields (q̂ii−D′

i(X))x′
i(

∑
j∈N q̂ji) = 0. Since x′

j(q) < 0

for all j, one must conclude q̃ik = D′
i(X) = q̂ii for all i and k 6= i as the equilibrium prices.

Q.E.D.
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