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Abstract

This paper studies the optimal Pigouvian tax for correcting pollution when the government

also uses distortionary taxes to raise revenues. When preferences are quasilinear in leisure
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tax exceeds marginal damages if goods have inelastic demands, and vice versa. When

households are heterogeneous so taxes can be redistributive, the Pigouvian tax gives more
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1 Introduction

This paper explores the issue of the optimal tax for correcting externalities from pollution

when the government is raising revenues using distortionary taxes. In particular, will the

Pigouvian component of the tax on a polluting good equal the marginal damages to house-

holds (as it does in a first-best world), and how will the Pigouvian tax change as revenue

requirements rise? The general analysis of optimal taxes in the presence of externalities

has been available in the literature at least since Sandmo’s (1975) seminal paper. Cremer,

et al (1998) and Cremer and Gahvari (2001) have refined the analysis to take account of

nonlinear income taxation and the existence of an abatement technology. However, their

results are somewhat formal and the precise applicability of them to environmental taxa-

tion remains unclear. Partly this is because optimal revenue-raising taxes and Pigouvian

taxes interact in a complicated way in optimal tax characterizations since closed-form so-

lutions are generally not possible: formulas for optimal tax rates are generally only in

implicit terms. This lack of clarity has been stressed in the recent literature on the double

dividend from environmental taxes, which has cast doubt on whether there is, in fact, a full

double dividend: one dividend from correcting externalities, the other from the revenue

raised. Bovenberg and de Mooij (1994), for example, suggest that environmental taxes

might exacerbate the tax distortions that already exist. This would suggest that the envi-

ronmental (Pigouvian) tax should be less than marginal damages to households. Others,

such as Jaeger (2001), have argued the opposite.

Part of the problem, as noted by Cremer et al (2001), lies with identifying precisely what

is the Pigouvian component of the tax on the polluting good. In an optimal tax world,

the tax on a polluting good will comprise both a Ramsey (revenue-raising) effect and a

Pigouvian (corrective) effect, and disentangling them will generally not be possible (since

the imposition of a corrective tax will affect optimal revenue-raising taxes, and vice versa).

Moreover, as Auerbach and Hines (2002) have stressed in their recent survey of optimal

taxation, the interpretation of Pigouvian commodity taxes becomes confounded depending

on whether commodity taxes or income taxes are used for revenue raising. In particular,

this affects the marginal utility of income for the consumer, and therefore the value of the
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numeraire for measuring marginal damages.

To address these issues, we adopt a simple formulation for the household utility function

that allows for a natural separation between Ramsey and Pigouvian taxes and for explicit

solutions to optimal tax rates, similar in spirit to that used by Cremer et al (2001). The

utility function is assumed to be quasilinear in leisure, so that the demand for goods

depends only on own prices relative to the wage rate, and not on either income or other

goods’ prices. We explore the size of the Pigouvian tax relative to the size of marginal

damages to households in a variety of settings. These include the basic case where only

commodity taxes are used, the case where a wage income tax is used, the case where there

is an abatement technology, and the case where households have different wage rates and

a optimal income tax, either linear or nonlinear is used.

2 The Basic Ramsey Optimal Commodity Tax Model

The model we use for our benchmark analysis is the simplest and most transparent one

for our purposes. It consists of a population of identical households with quasilinear pref-

erences in labor/leisure from whom the government must extract a given amount of tax

revenues at the least cost using distorting commodity taxes. It differs from the standard

optimal commodity tax model in that the consumption of one good emits some harm-

ful environmental externality. The choice of quasilinear preferences implies that goods’

demands depend only on own prices and not on the prices of other goods or income, ef-

fectively leading to a quasi-partial equilibrium setting. This formulation is chosen partly

because the disaggregation of taxes into Ramsey (revenue-raising) and Pigouvian (correc-

tive) components can be made as clearly as possible, and also because closed-form solutions

for optimal taxes can be derived.

More formally, the economy consists of N households, each of whose utility function takes

the quasilinear form UC(C)+UD(D)+E−L where UC(C) and UD(D) are increasing and

strictly concave functions. Using mnemonic notation, good C is a clean good, good D is a
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dirty good, E is the quality of the environment and L is labor supplied.1 One can think of

labor supply as being L = T −H, where T is time available and H is leisure. The quality

of the environment is given by E = E − δND, where E is its quality in the absence of

pollution and δ is the marginal damage to the environment per unit of consumption of the

dirty good, with δ assumed for simplicity to be constant. Thus, each person’s consumption

of D affects the quality of the environment enjoyed by all N households. We suppose that

N is large enough that each person treats the quality of the environment E as given, and

thus independent of their own consumption of D.

Production is linear in this economy and we normalize the producer prices of the two goods

to unity. The wage rate is taken to be w, although it too could be normalized as desired.

It is useful for expositional purposes not to set it to unity. The government requires an

amount of resources valued at R, so the economy’s aggregate production constraint is:

NC + ND + R = NwL (1)

Following the Ramsey optimal tax approach (e.g., Atkinson and Stiglitz, 1980), the gov-

ernment cannot levy lump-sum taxes on consumers so must impose taxes on transactions.

In this economy with three goods, C,D and leisure or labor, the government could use

three taxes. However, it is well-known that one tax rate is always redundant (e.g., a tax

on labor is equivalent to proportional taxes on goods). In our basic model, we assume

that the government dispenses with taxes on labor and uses only taxes on the two goods,

denoted tC and tD. Consumer prices are then given by 1 + tC and 1 + tD. The tax on D

takes account of the externality associated with its consumption.

Given that households have no initial endowments, their individual budget constraint can

be written:

(1 + tC)C + (1 + tD)D = wL (2)

Combining the aggregate of (2) for all N households with (1), we immediately obtain the

1 More generally, our analysis applies when there are many clean goods, as in Cremer et al (2001).
Since little insight is gained by having more than one clean good, we aggregate them all into
once composite good C.
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government revenue constraint:

NtCC + NtDD = R (3)

Thus, only two of the economy’s three constraints, (1), (2) and (3), need to be taken

account of explicitly, and the other is implied.

To solve the government’s optimal tax problem, consider first household behavior. House-

holds maximize utility, taking E as given, subject to their budget constraint (2). The

Lagrangian is:

Υ (C,D,L, α) = UC(C) + UD(D) + E − L− α
(
(1 + tC)C + (1 + tD)D − wL

)
The first-order conditions on C, D and L are:

U ′
C(C)− α(1 + tC) = 0, U ′

D(D)− α(1 + tD) = 0, −1 + αw = 0

From these, we obtain the demands for C and D and the marginal utility of income α:

C
(1 + tC

w

)
, D

(1 + tD
w

)
, α =

1
w

where C ′(·) < 0 and D′(·) < 0. The fact that α is constant is a consequence of the

quasilinear utility function, and is useful for purposes of interpretation. Notice that because

of the additive utility function, not only do cross-price and income effects disappear, but

also goods demands are independent of environmental quality, E.

The indirect utility function can be written:

V
(1 + tC

w
,
1 + tD

w

)
+ E

where, by the envelope theorem, we have:

∂V (·)
∂tC

≡ VtC
(·) = −αC(·) = −C(·)

w
and

∂V (·)
∂tD

≡ VtD
(·) = −αD(·) = −D(·)

w
(4)

Given the behavior of the households, the government’s problem is to choose tax rates to

maximize the sum of indirect utilities subject to its revenue constraint (3) and treating

the quality of the environment E as endogenous. The government’s Lagrangian is:

L(tC , tD, λ) = N
(
V (·) + E − δND(·)

)
+ λ

(
NtCC(·) + NtDD(·)−R

)
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The first-order conditions on tC and tD, using the envelope conditions (4), are:

−C

w
+ λ

(
C + tC

C ′

w

)
= 0 (5)

−D

w
− NδD′

w
+ λ

(
D + tD

D′

w

)
= 0 (6)

Given that demands for C and D depend only on own relative prices, which depend on

own tax rates, (5) and (6) implicitly determine tax rates as a function of the shadow price

of government revenue, tC(λ) and tD(λ). We shall exploit these relationships below.

First, note that (5) and (6) can be rearranged as follows, using α = 1/w:

tC =
α− λ

λ

Cw

C ′ =
α− λ

λ

1 + tC
ηC

(7)

tD =
α− λ

λ

Dw

D′ +
Nδ

λ
=

α− λ

λ

1 + tD
ηD

+
Nδ

λ
(8)

where, ηC and ηD are elasticities of demand:

ηC ≡ C ′

C

1 + tC
w

< 0, ηD ≡ D′

D

1 + tD
w

< 0 (9)

In the absence of environmental externalities, δ = 0, (7) and (8) are the familiar inverse

elasticity rules for optimal taxation:

tC
1 + tC

=
α− λ

λ

1
ηC

,
tD

1 + tD
=

α− λ

λ

1
ηD

where the tax rates are expressed as ad valorem taxes based on consumer prices.

Note that λ > α when the government is using distortionary taxes. If the government had

access to non-distortionary taxes so λ = α = 1/w, the tax on good D by (8) would be the

first-best Pigouvian tax, tD = Nδ/α. That is, tD would be set equal to marginal damages

measured in terms of household income.

When taxes are distortionary, so λ > α, (8) corresponds to the optimal tax expression

obtained by Cremer et al (1998), albeit here in a much simpler context with homoge-

neous households. (Their analysis involves heterogeneous households and nonlinear income

taxation as well as commodity taxes.) The optimal tax on D consists of two separate
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components, one seeming to involve a ‘Ramsey’ component and the other a ‘Pigouvian’

component. However, the decomposition is incomplete and ambiguous for a couple of rea-

sons. For one, the total tax rate tD, which includes both the Ramsey and the Pigouvian

component, also appears on the right-hand side of (8), including as an argument of ηD.

As well, the second term involving the pollution externality is not exactly the marginal

damages suffered by consumers since it is discounted by the shadow price of funds to the

government, λ. In order to explore this more carefully, we put slightly more structure on

the problem in the following section by assuming elasticities of demand are constant.

3 Pigouvian Taxes in the Basic Model: A Special Case

To facilitate the interpretation of Pigouvian taxes in the above Ramsey optimal commodity

tax model, let us make the following two special assumptions. Assume that the elasticities

of demand for the two goods are constant, and assume that they are equal to one another.

Thus, η = ηC = ηD, where η is a constant. These assumptions are pedagogically useful

since they allow us to solve for the properties of corrective taxes explicitly. Moreover, in

this context, the meaning of the Ramsey component of the tax structure is apparent.2 If the

elasticities of demand are equal, the Ramsey component of the commodity tax structure

would be uniform. We can therefore interpret the difference in commodity tax rates as the

Pigouvian component of the tax on the dirty good, denoted tP = tD − tC .

Given these assumptions, (8) becomes

tC + tP =
α− λ

λ

1 + tC + tP
η

+
Nδ

λ

Using (7) with ηC = η, this can be solved for tP :

tP =
ηNδ

(η + 1)λ− α
(10)

Thus, our assumptions have allowed us to obtain an explicit solution for tP which we can

use to obtain two relevant properties of the Pigouvian tax.

2 Our analysis also applies in the case where ηC and ηD are constant but different in size, but
the analysis is simpler when they are equal. With different elasticities the Ramsey taxes would
be proportional to the ratio of elasticities rather than being identical to one another.
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First, note that if η = −1, (10) reduces to tP = Nδ/α. That is, the Pigouvian tax is

equal to marginal social damages measured in terms of household utility. Furthermore,

differentiating (10) with respect to η, we obtain:

∂tP
∂η

=
(λ− α)Nδ

((η + 1)λ− α)2
> 0 (11)

This implies that tP increases as |η| decreases, implying that tP > Nδ/α for −η < 1 and

vice versa. We summarize this in the following proposition.

Proposition 1: In the basic model with elasticities of demand constant for both goods,

the Pigouvian component of the tax on good D will be greater (less) than marginal social

damages to the households if goods are inelastic (elastic) in demand.

The intuition for this seems to be as follows. Imposing a Pigouvian tax on good D requires

deviating from equal taxes on both goods, which involves an efficiency cost. The optimal

tax must trade off this efficiency cost against the benefits of decreasing environmental

damages. Since deviating from equal taxes on both goods involves a greater efficiency cost

when demands are more elastic, the Pigouvian tax will be smaller in this case.

Next, recall that in this case with quasilinear preferences, the first order conditions (5) and

(6), or equivalently (7) and (8) implicitly determine the tax rates tC and tD as a function

of λ respectively, that is, the size of revenue requirements. In the special case where

the elasticities of demand are constant and equal, we can investigate how the Pigouvian

component of the tax on D, tP , varies with revenue requirements. To do so, differentiate

(10) with respect to λ to obtain:

∂tP
∂λ

= − Nδη(η + 1)
((η + 1)λ− α)2

R 0 as 1 R −η (12)

Thus, tP will increase with revenue requirements if the demand for goods is inelastic, and

decrease if demand is elastic. This leads to the following proposition:

Proposition 2: In the basic model with elasticities of demand constant for both goods, the

Pigouvian component of the tax on good D will diverge more from marginal social damages

(positively in the case of inelastic demands, negatively in the case of elastic demands) as

revenue requirements increase.
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The results of this section apply when the government uses only commodity taxes. In the

special case studied here where demand elasticities for both goods are constant and equal,

the government could apply a proportional tax on the consumer purchases of both goods,

such as a uniform VAT, and accompany it with a Pigouvian tax on the consumption of

good D. The Pigouvian tax would then be greater or less than marginal damages to the

consumer according to whether the demands are inelastic or elastic. Next, we investigate

the case where the uniform tax is applied to income (wages) rather than consumption.

4 Pigouvian Taxes Combined with a Wage Tax

We continue to assume that preferences are quasilinear and that demand elasticities are

equal and constant. However, instead of imposing taxes on the two goods, we use a tax

on labor income along with a tax on good D. Let tw be the tax rate on wage income and

tP be the tax on the dirty good, which in this case we can think of as the Pigouvian tax.

Then, the household budget constraint is C +(1+ tP )D = (1− tw)wL, and the Lagrangian

function for the household problem becomes:

Υ (C,D,L, α) = UC(C) + UD(D) + E − L− α
(
C + (1 + tP )D − (1− tw)wL

)
The first-order conditions on C, D and L are now:

U ′
C(C)− α = 0, U ′

D(D)− α(1 + tP ) = 0, −1 + α(1− tw)w = 0

which yield the demands for C and D (and implicitly the supply of labor) and the marginal

utility of income α:

C
( 1

(1− tw)w

)
, D

( 1 + tP
(1− tw)w

)
, α =

1
(1− tw)w

The indirect utility function is:

V
( 1

(1− tw)w
,

1 + tP
(1− tw)w

)
+ E

and the envelope theorem gives:

VtP
(·) = −αD(·) = − D(·)

(1− tw)w
and Vtw

(·) = −αwL(·) = − L(·)
(1− tw)
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Turning to the government’s problem, we first obtain an expression for the government’s

budget constraint. To do so, we can use the resource constraint for the economy, which as

above is NC + ND + R = NwL. Combining this with the aggregate budget constraint of

the consumers, we obtain NtP D + NwtwL = R. From the household budget constraint,

labor income wL is given by:

wL =
C

1− tw
+

1 + tP
1− tw

D

Inserting this into the government budget constraint, we obtain:

N
tw

1− tw
C(·) + N

tw + tP
1− tw

D(·) = R (13)

Given the government’s budget constraint (13), the Lagrangian function for the govern-

ment’s optimal tax problem can be written:

L(tP , tw, λ) = N
(
V (·) + E − δND(·)

)
+ λ

(
N

tw
1− tw

C(·) + N
tP + tw
1− tw

D(·)−R
)

The first-order conditions on tw and tP are:

−NαwL− N2δ(1 + tP )D′

(1− tw)2w
+ λ

(
N

C

(1− tw)2
+ N

tw
1− tw

C ′

(1− tw)2w
+ N

1 + tP
(1− tw)2

D

+N
tP + tw
1− tw

1 + tP
(1− tw)2w

D′
)

= 0

−NαD − N2δD′

(1− tw)w
+ λ

(
N

D

1− tw
+ N

tP + tw
1− tw

D′

(1− tw)w

)
= 0

Using the second equation to eliminate terms from the first equation, the value of L from

the household budget, these two equations simplify to:

−C

w
+ λ

(
C +

tw
1− tw

C ′

w

)
= 0, −D

w
− NδD′

w
+ λ

(
D +

tP + tw
1− tw

D′

w

)
= 0 (14)

Analogously to the basic model, we can use (14) to get an expressions for the Pigouvian

tax tP . First note that, using the relative prices in this case, the common elasticity of

demand η can be written as follows:

η =
C ′

C

1
(1− tw)w

=
D′

D

1 + tP
(1− tw)w
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Using these expressions and the fact that 1/w = (1 − tw)α, the equations in (14) can be

rewritten:

−(1− tw)α + λ(1 + ηtw) = 0, −(1− tw)α− Nδη(1− tw)
1 + tP

+ λ

(
1 +

tP + tw
1 + tP

η

)
= 0 (15)

Combining these two expressions and solving for tP , we obtain:

tP =
ηNδ(1− tw)

(η + 1)λ− (1− tw)α
(16)

which is the analog of (10) in this case.

Proceeding as before, we see that when η = −1, tP = Nδ/α so the Pigouvian tax equals

marginal social damages to the household. Moreover, differentiating (16) by η, we find

that
∂tP
∂η

=
(λ− (1− tw)α)Nδ(1− tw)

((η + 1)λ− (1− tw)α)2
> 0

This the analog of (11), so Proposition 1 applies. Similarly, differentiating (16) with respect

to λ, we obtain:

∂tP
∂λ

= − Nδη(1− tw)(η + 1)
((η + 1)λ− (1− tw)α)2

R 0 as 1 R −η

This is equivalent to (12) implying that Proposition 2 also applies. Not surprisingly, our

results are independent of whether the government uses a set of differential commodity

taxes or a wage tax combined with a tax on good D.3

5 Pigouvian Taxes with Pollution Abatement

So far we have assumed that the externality is proportional to the output of the dirty good.

Let us now suppose that pollution emissions arising from the use of good D can be reduced

by an abatement technology, as in Cremer and Gahvari (2001). Pollution abatement is

modeled is the simplest way consistent with making the point. Let A be total abatement

such that ND−A are total emissions of pollution by the dirty good industry. The quality

3 The analysis would be slightly more complicated if the elasticities of demand were different for
the two goods since then the Ramsey taxes would not be equal to one another.
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of the environment then becomes E = E − δ(ND−A), following the above notation. The

total cost of abatement borne by producers is given by Z(A), where Z ′(A), Z ′′(A) > 0.

We revert to the commodity tax model of Section 3, but in addition to commodity taxes

tC and tD imposed on the sales of goods C and D, there is also a per unit tax tE imposed

on emissions by producers.

Given the level of abatement A, the tax tE applies on incremental production of output

D. Assuming A < ND, the producer price of D is therefore 1+ tE . Producer costs include

inputs into the production of D, which given unit costs are simply ND, as well as taxes

on emissions and the cost of abatement. Given the producer price, 1 + tE , profits of the

producers in industry D are therefore:

Π ≡ (1 + tE)ND −ND − tE(ND −A)− Z(A) = tEA− Z(A) (17)

Producers will choose A to maximize their profits, which leads to the first-order condition

tE = Z ′(A), whose solution is A(tE) with A′(tE) > 0. We assume for simplicity that the

government taxes these profits fully.

Consumer prices for C and D are 1+tC and 1+tD +tE , and as before the wage rate is fixed

at w. The consumer budget constraint is (1 + tC)C + (1 + tD + tE)D = wL. Consumers

maximize utility, given E, subject to their budget constraint. The Lagrangian is:

Υ (C,D,L, α) = UC(C) + UD(D) + E − L− α
(
(1 + tC)C + (1 + tD + tE)D − wL

)
Proceeding as earlier, the solution gives the demand functions and indirect utility function:

C

(
1 + tC

w

)
, D

(
1 + tD + tE

w

)
and V

(
1 + tC

w
,
1 + tD + tE

w

)
+ E

with α = 1/w. Applying the envelope theorem yields:

VtC
= −αC = −C

w
and VtD

= VtE
= −αD = −D

w
(18)

The resource constraint for the economy is NC + ND + Z(A) + R = NwL + Π, where Π

satisfies (17). Together with the aggregate household budget constraint, this leads to the
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government revenue constraint NtCC + NtDD + tE(ND − A) + Π = R. Given this, the

Lagrangian expression for the problem of the government, using (17), is:

L = NV (·) + N
(
E− δND(·) + δA(tE)

)
+ λ

(
NtCC(·) + N(tD + tE)D(·)−Z(A(tE))−R

)
The first-order conditions for tC , tD and tE , using tE = Z ′(A) from the abatement decision

of producers, are:

−C

w
+ λ

(
C +

tCC ′

w

)
= 0 (19)

−D

w
− δND′

w
+ λ

(
D +

(tD + tE)D′

w

)
= 0 (20)

−N
D

w
− δN2D′

w
+ NδA′(tE) + λ

(
ND +

N(tD + tE)D′

w
− tEA′(tE)

)
= 0 (21)

Assume that the elasticities of demand for C and D are identical and constant, so

η =
C ′

C

1 + tC
w

=
D′

D

1 + tD + tE
w

Then, using α = 1/w, we can rewrite conditions (19) and (20), respectively, as:

tC =
α− λ

λ

1 + tC
η

(22)

tD + tE =
α− λ

λ

1 + tD + tE
η

+
Nδ

λ
(23)

which are analogous to (7) and (8) in our base case. In this case, the total tax on good D is

tD+tE , and following the earlier logic, the Pigouvian tax can be defined as tP ≡ tD+tE−tC .

By (23), we have

tC + tP =
α− λ

λ

1 + tC + tP
η

+
Nδ

λ

which reduces using (22) to:

tP =
ηNδ

(η + 1)λ− α
(24)

This Pigouvian component of the total tax on good D is the same as in the basic case

without abatement, given by (10). The same analysis as before leads to the analogs of

Propositions 1 and 2 in this case, given the definition of the Pigouvian tax used here.
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In this case, the Pigouvian component is more complicated than earlier since now it includes

the tax on emissions tE as well as the difference in commodity taxes tD − tC . We can use

the first-order condition (21) on tE to give further insight. Substituting (20) into (21), we

obtain immediately:

tE =
Nδ

λ
(25)

This component of the Pigouvian tax is lower than marginal damages Nδ/α, since λ > α.

The other component tD − tC is given by combining (24) and (25) to yield:

tD − tC =
Nδ

λ

(
α− λ

λη − (α− λ)

)
Thus, tD > tC if λη− (α−λ) < 0 (since the numerator is negative). In fact, this condition

is satisfied as can be seen from (22), which can be written:

tC
1 + tC

=
λ− α

−λη

Therefore, assuming tC > 0, this implies that λ − α < −λη, which in turn implies that

tD > tC . This means that the Pigouvian tax incorporates not just a tax on emissions, but

also a differential tax on tD.

Note further that if the government could levy a non-distorting lump-sum tax, then α = λ,

so there would be no differential tax on D (tC = tD), and the tax on emissions would equal

marginal damages to the consumers tE = Nδ/α = Nδ/λ. We can summarize these results

in the following proposition.

Proposition 3: When producers can reduce emissions of pollution by costly abatement,

1. the Pigouvian component of the second-best commodity tax system includes both a tax

on emissions and a differential tax on sales of the dirty good,

2. the second-best tax on emissions is less that its first-best level, while the differential

tax on D exceeds its first-best level, which is zero, and

3. the composite Pigouvian tax satisfies Propositions 1 and 2.

A final apparent implication of this analysis is that if the government uses a wage tax

rather than commodity taxes on tD and tC , it can only achieve the second-best optimum
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by imposing a two-component Pigouvian corrective tax. One component is the tax on

emissions, while the other is a tax on sales of good D.

6 Pigouvian Taxes and Linear Progressive Taxation

Suppose now that households are heterogeneous. Following the optimal income tax liter-

ature, we assume that they differ only in their wage rates, but otherwise the model used

above applies. It suffices to restrict our attention to two wage-types, w1 and w2 with

w2 > w1, where N1 and N2 are the numbers of the two types. The government is assumed

to be able to observe income wiLi, i = 1, 2, but neither the wage rate wi nor labor supply

L. We begin with the case where the government uses a linear progressive income tax

as well as a Pigouvian tax tP on the polluting good D. The income tax consists of a

constant marginal tax rate tw combined with an equal per capita subsidy s. The budget

constraint for a household with wage rate wi becomes Ci + (1 + tP )Di = (1− tw)wiLi + s.

The household maximizes utility subject to this budget constraint, and the solution gives

analogous demand functions and marginal utility of income to the wage tax case:

Ci

( 1
(1− tw)wi

)
, Di

( 1 + tP
(1− tw)wi

)
, αi =

1
(1− tw)wi

The indirect utility function for the type−i household is now:

V i
( 1

(1− tw)wi
,

1 + tP
(1− tw)wi

, s
)

+ E

where E is now E − δ(N1D1 + N2D2). The envelope theorem gives:

V i
tP

(·) = −αiDi(·) = − Di(·)
(1− tw)wi

, V i
tw

(·) = −αiwiLi(·) = − Li(·)
(1− tw)

, V i
s = αi

Using the aggregate household budget constraint and the economy’s resource constraint

as before, the government revenue constraint can be written

tw
1− tw

(N1C1 + N2C2) +
tw + tP
1− tw

(N1D1 + N2D2) = R +
N1 + N2

1− tw
s

The government problem is treated as a Pareto maximizing one, and we can take the

objective function to be ρ1N1(V 1(·)+E)+ ρ2N2(V 2(·)+E). The social weights ρ1, ρ2 are
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arbitrary, although it is useful to suppose that they are chosen such that the government

wants to redistribute from the high-wage to the low-wage types. That implies that the

marginal social utility of income of the latter exceeds the marginal social utility of income

of the former, or ρ1α1 > ρ2α2 in the optimum. If the government could use lump-sum

taxation, it would equate these marginal social utilities in a first-best optimum. The latter

serves as a useful benchmark below.

The government maximizes its objective function subject to its revenue constraint. Using

the first-order condition on s, the first-order conditions with respect to tw and tP reduce

to the following after some simplification:

−ρ1N1C1

w1
− ρ2N2C2

w2
+ λ

(
N1C1 + N2C2 +

tw
1− tw

(N1C
′
1

w1
+

N2C
′
2

w2

))
= 0 (26)

−ρ1N1D1

w1
− ρ2N2D2

w2
−Nδ

(N1D
′
1

w1
+

N2D
′
2

w2

)
+λ

(
N1D1 + N2D2 +

tw + tP
1− tw

(N1D
′
1

w1
+

N2D
′
2

w2

))
= 0 (27)

where N ≡ ρ1N1 + ρ2N2. These are the analogs of (14) above in the wage tax case. Let

us again assume a constant elasticity of demand, so:

η =
C ′

1

C1

1
(1− tw)w1

=
C ′

2

C2

1
(1− tw)w2

=
D′

1

D1

1 + tP
(1− tw)w1

=
D′

2

D2

1 + tP
(1− tw)w2

Using these definitions, (26) and (27) can be written:

−(1− tw)αC +λ(1+ twη) = 0, −(1− tw)αD −Nδη
1− tw
1 + tP

+λ

(
1 +

tw + tP
1 + tP

η

)
= 0 (28)

where

αC =
ρ1α1N1C1 + ρ2α2N2C2

N1C1 + N2C2
, αD =

ρ1α1N1D1 + ρ2α2N2D2

N1D1 + N2D2
(29)

These are weighted averages of the marginal social utilities of income of the two wage

types, weighted by their shares of consumption of the two goods.4

4 The expressions αC and αD are analogous to the distributive weights for optimal commodity
taxes (or public sector prices) defined by Feldstein (1972).
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Given our assumption about utility functions, preferences are homothetic in C and D and

separable from leisure, which implies that C1/D1 = C2/D2, so that αC = αD ≡ α. Then,

the equations in (28) are the same as those in (15) in the homogeneous-consumer case

when α replaces α and N replaces N , so the same derivation yields the analog of (16):

tP =
ηNδ(1− tw)

(η + 1)λ− (1− tw)α
(30)

The analogs of Propositions 1 and 2 then apply. In particular, when η = −1, tP = Nδ/α,

while tP is increasing in η. As well, ∂tP /∂λ R 0 as 1 R −η.

To interpret this, consider the first-best outcome with lump-sum redistributive taxes and a

Pigouvian tax. The lump-sum taxes are used to equate marginal social utilities of income

to the shadow price of government revenue, while the Pigouvian tax is set equal to the

sum of marginal damages to the households:

ρ1α1 = ρ2α2 = λ, tP =
N1δ

α1
+

N2δ

α2
(31)

With linear progressive taxes, marginal social utilities of income cannot be equated. In

these circumstances, we can use tP = Nδ/α obtained when η = −1 as a benchmark and

interpret it by rewriting it in the following way, using N = ρ1N1 + ρ2N2:

tP |η=−1 =
N1δ

α/ρ1
+

N2δ

α/ρ2

Using (29) for α and recalling that ρ1α1 > ρ2α2, we have:

α

ρ1
= α1

N1C1 + ρ2α2
ρ1α1

N2C2

N1C1 + N2C2
< α1,

α

ρ2
= α2

ρ1α1
ρ2α2

N1C1 + N2C2

N1C1 + N2C2
> α2

The implication is that, compared with the first best, the Pigouvian tax puts more weight

on marginal damages to the low-wage persons than to the high-wage persons, thus taking on

some redistibutive role to complement the linear income tax system. This is reminiscent of

the result of Sandmo (2006) that in the absence of full international redistributive transfers,

low-income countries should have lower pollution taxes than high-income countries. We

can summarize these results in the following proposition, which is related to Propositions

1 and 2.
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Proposition 4: Suppose households differ in wage rates but have the same quasilinear-

in-leisure preferences, and the government uses a linear progressive income tax.

1. When the elasticity of demand for goods is unity, tP = ρ1N1δ/α + ρ2N2δ/α, which

differs from social marginal damages by putting relatively more weight on damages to

low-wage persons and less weight on damages to high-wage persons.

2. The Pigouvian tax tP falls with the absolute value of the elasticity of demand.

3. The Pigouvian tax increases with revenue requirements if η < −1, and vice versa.

7 Pigouvian Taxes and a Nonlinear Income Tax

Suppose now that the government levies a nonlinear tax on income. Let the before-tax

income of a household with wage rate wi be Yi = wiLi. Given that the government can

observe Yi, it is useful to transform the utility function into one involving income rather

than labor supply as follows:

Ωi(C,D, Y ) + E ≡ UC(C) + UD(D)− Y/wi + E (32)

where Ωi is type-specific.

While the government can observe income, it cannot observe individual purchases of C and

D. It can therefore levy a non-linear income tax on Y , but only impersonal indirect taxes

on commodity purchases. From an analytical perspective, it suffices to consider only a tax

on D: proportionate taxes on C and D can be subsumed into the income tax function so

we can normalize one commodity tax rate to be zero. Let tD be the per unit tax rate on

commodity D, so the consumer price is qD = 1 + tD. Suppose that T (Y ) is a nonlinear

tax function applied to pre-tax income. We can then define I as disposable income (total

consumption expenditures), where I = Y −T (Y ). Although the government cannot observe

how I is divided between C and D, it does know the consumer utility function. If it knew

a person’s type, it could infer a household’s labor supply from its income and would

therefore know how each household spends its income. However, households of one type

can mimic one another’s (I, Y ) bundle, which precludes the government from inferring L

17



and constrains government policy. All this is well known from optimal income tax theory

(e.g., Stiglitz, 1987).

As above, we first characterize household behavior and then turn to the government. A

household of type i maximizes Ωi(C,D, Y )+E subject to a budget constraint C + qDD =

I = Y − T (Y ). It turns out to be useful for the purposes of analysis to disaggregate

household behavior into two successive stages. In the first stage, they choose their labor

supply, and therefore the combination of Y and I. In the second stage, they allocate I

between C and D. The analysis of household behavior is considered in reverse order.

In stage 2, I and Y have been determined and are taken as given. From the household’s

budget constraint, C = I − qDD. Therefore, the problem of a representative household of

a given type can be written (with superscripts suppressed): max{D} Ω(I−qDD,D, Y )+E.

The first-order condition is −qDΩC + ΩD = 0, which yields the demand for D with the

following properties (where E is separable so does not affect demand):

D(qD, I, Y ) :
∂D

∂qD
< 0,

∂D

∂I
> 0,

∂D

∂Y
= 0

The sign of ∂D/∂Y depends on the substitute/complement relations between D and L.

Since preferences are separable, labor supply and thus income do not affect preferences for

C and D. So, given I, a change in Y will not affect the demand for D. Therefore, we can

write the demand for D as simply D(qD, I).

The maximum value function for the consumer—the indirect utility function—is denoted

W (qD, I, Y ) + E. Applying the envelope theorem to this problem, we obtain:

WqD
= −DΩC = −DU ′

C(C), WI = ΩC = U ′
C(C), WY = ΩY = − 1

w
(33)

For a given value of qD, consumer indifference curves in Y and I can be drawn. They have

a slope of −WY /WI = 1/(wU ′
C) and satisfy the single crossing property: −W 1

Y /W 1
I >

−W 2
Y /W 2

I .

As mentioned, households of a given type may mimic the consumption-income (I, Y ) bun-

dles of the other type. If we assume that the government will redistribute from the high-

to the low-wage types starting in the laissez faire, the case of interest for us is where the
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high-wage types are tempted to mimic the low-wage types. Let Ω̂2(I1 − qDD,D, Y1) + E

denote the utility of the type 2’s when they are mimicking the consumption-income

bundle of the type 1’s. The problem for the high-wage mimickers in stage 2 is then:

max{D} Ω̂2(I1 − qDD,D, Y1) + E. This yields the demand function D̂2(qD, I, Y ) which

has the same properties as for the non-mimickers. The indirect utility function for the

mimickers is denoted Ŵ 2(qD, I1, Y1) + E.

The relationship between D1 and D̂2 is important in what follows. Both type 1’s and

mimicking type 2’s will have the same consumption expenditures and incomes, while labor

supply is lower for the mimicker (since the same income can be earned with lower L).

Therefore, since consumption goods are separable from leisure in the utility function,

D1 = D̂2 in our case. If D had been more complementary than C with leisure, D1 < D̂2,

and vice versa.

Turn now to stage 1. In this stage, households choose their labor supply, or equivalently,

their income. If effect, they choose the most preferred bundle (I, Y ) from the budget

constraint I = Y − T (Y ). Given this behavior, the government chooses its tax policies,

both T (Y ) and tD. Following the optimal income tax approach, instead of analyzing the

government choice of T (Y ), we use the direct approach and let the government offer the

bundles (I1, Y1), (I2, Y2) for the two household types. Then households faced with the

bundles offered choose their most preferred.

As before, we characterize a Pareto optimal tax policy, focusing on those Pareto optimal

outcomes for which the incentive constraint on the type 2’s is binding. (This will be

consistent with a social welfare function that exhibits aversion to inequality.) The optimal

policy problem for the case where the incentive constraint applies only to the high-ability

types is as follows, where ρ1 + ρ2 = 1 with no loss of generality:

max
{Ii,Yi,tD}

ρ1N1

(
W 1(qD, I1, Y1) + E

)
+ ρ2N2

(
W 2(qD, I2, Y2) + E

)
subject to

W 2(qD, I2, Y2) + E ≥ Ŵ 2(qD, I1, Y1) + E (γ)

N1

(
Y1 − I1 + tDD1(qD, I1)

)
+ N2

(
Y2 − I2 + tDD2(qD, I2)

)
= R (λ)
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where, recall, qD = 1 + tD and E = E − δ
(
N1D1(qD, I1) + N2D2(qD, I2)

)
, while γ and λ

refer to the Lagrange multipliers in the respective constraints.

The first-order conditions on I1, Y1, I2, Y2 and tD are:

ρ1N1W
1
I − γŴ 2

I −NδN1
∂D1

∂I1
− λ

(
N1 −N1tD

∂D1

∂I1

)
= 0 (34)

ρ1N1W
1
Y − γŴ 2

Y + λN1 = 0 (35)

(ρ2N2 + γ)W 2
I −NδN2

∂D2

∂I2
− λ

(
N2 −N2tD

∂D2

∂I2

)
= 0 (36)

(ρ2N2 + γ)W 2
Y + λN2 = 0 (37)

ρ1N1W
1
qD

+ (ρ2N2 + γ)W 2
qD

− γŴ 2
qD

−Nδ

(
N1

∂D1

∂qD
+ N2

∂D2

∂qD

)
+λ

(
N1D1 + N1tD

∂D1

∂qD
+ N2D2 + N2tD

∂D2

∂qD

)
= 0 (38)

where, as before, N = ρ1N1 + ρ2N2. These conditions give the structure of the nonlinear

income tax system as well as the optimal tax on D, tD. Given the assumptions about the

form of the utility function, the so-called Atkinson and Stiglitz (1976) Theorem applies.

That is, in the absence of environmental externalities, there would be no differential tax

on goods. That implies that we can interpret tD as the Pigouvian tax.

To determine the value of tD, combine (34), (36) and (38), using W i
qD

= −DiW
i
I from (33)

and D1 = D̂2 to obtain:

(λtD −Nδ)
(

N1

(∂D1

∂qD
+ D1

∂D1

∂I1

)
+ N2

(∂D2

∂qD
+ D2

∂D2

∂I2

))
= 0

Since that terms in the large brackets are non-zero, this implies that the Pigouvian tax

satisfies:

tD =
Nδ

λ
=

(ρ1N1 + ρ2N2)δ
λ

(39)

In words, the Pigouvian tax is the marginal damages (ρ1N1 + ρ2N2)δ in terms of the

marginal value of government revenue λ. We return to the interpretation of this below.

First, consider the marginal tax rate on the high-wage households. Condition (36) can be

written:

(ρ2N2 + γ)W 2
I − λN2 − (Nδ − λtD)N2

∂D2

∂I2
= 0
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Using (39), this becomes (ρ2N2 + γ)W 2
I − λN2 = 0. Combining this with (37), we obtain

−W 2
Y /W 2

I = 1, implying that the marginal tax rate at the top is zero. This familiar

condition thus continues to apply when pollution taxes are set optimally. Similar reasoning

shows that the marginal tax rate on the low-wage types has the standard form: it is positive

but less than 100 percent.

Consider now the interpretation of the Pigouvian tax tD given by (39). As a benchmark,

it is useful to recall the first-best case where taxes are non-distortionary. In this context,

the incentive constraint is not binding, so γ = 0. Then, from the first-order conditions

(35) and (37) and using the envelope conditions (33), we obtain

λ = −ρ1Ω
1
Y = −ρ2Ω

2
Y =

ρ1

w1
=

ρ2

w2
= ρ1α1 = ρ2α2

Thus, the government equates social utility of income for both types. Condition (39) can

therefore be written:

tD =
N1δ

α1
+

N2δ

α2
(40)

The optimal Pigouvian tax equals the sum of marginal damages measured in terms of the

income of each consumer.

When the income tax is distorting so the incentive constraint binds, the government can

no longer equate marginal social utilities of income because γ 6= 0. Combining (35) and

(37) now yields:

ρ1N1W
1
Y + ρ2N2W

2
Y + γ(W 2

Y − Ŵ 2
Y ) = −λ(N1 + N2)

By (33), W 2
Y = Ŵ 2

Y = −1/w2 and W 1
Y = −1/w1. Therefore, we obtain:

λ = −ρ1N1W
1
Y + ρ2N2W

2
Y

N1 + N2
=

ρ1N1/w1 + ρ2N2/w2

N1 + N2
=

N1ρ1α1 + N2ρ2α2

N1 + N2

Thus, the shadow value of public funds, λ, is a weighted average of marginal social utilities

of income. To compare the second-best Pigouvian tax with the first best, rewrite (36) as

follows:

tD =
N1δ

λ/ρ1
+

N2δ

λ/ρ2
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Using the above expression for λ and noting that in the second best, marginal social utility

of income will be higher for the low-wage types, ρ1α1 > ρ2α2, we obtain:

λ

ρ1
= α1

N1 + ρ2α2
ρ1α1

N2

N1 + N2
< α1,

λ

ρ2
= α2

ρ1α1
ρ2α2

N1 + N2

N1 + N2
> α2

The implication is that, compared with the first best, the Pigouvian tax puts more weight

on marginal damages to the low-wage persons than to the high-wage persons, thus taking

on some redistibutive role to complement the nonlinear income tax system. This might

be contrasted with the results of the basic model whereby the Pigouvian tax deviates

systematically from marginal damages depending on the elasticity of demand.

With more general preferences, the tax on good D would deviate from zero according to

the substitute-complement relationship between the demand for D and leisure, as analyzed

by Edwards et al (1994) and Nava et al (1996). In this case, the formula for tD would

include not just a Pigouvian component but also a component reflecting the role of the

indirect tax system as a part of the government’s redistribution policy, as in Cremer et al

(1998). The issue of disaggregating the Pigouvian tax component and the redistributive

component would raise issues similar to those in earlier sections.

Finally, suppose we introduce the possibility of costly abatement into the nonlinear tax

model using the same abatement technology as in Section 5. As before, the producer price

in industry D is 1 + tE , and aggregate profits are Π = tEA−Z(A), which are taxed away

by the government. The consumer price for D is qD = 1 + tD + tE . The outcome of stage

2 of the consumers’ utility maximization is exactly as before, yielding consumer demands

Di(qD, Ii) for i = 1, 2, demand D̂2(qD, I1) for the mimicker, indirect utilities W i(qD, Ii, Yi)

and Ŵ 2(qD, I1, Y1), and the envelope results (33).

The government policy problem is the same as before with tD + tE replacing tD and profits

added to the government budget constraint. The Lagrangian expression becomes:

L = ρ1N1W
1(qD, I1, Y1) + ρ2N2W

2(qD, I2, Y2) + N
(
E − δN1D1(qD, I1)− δN2D2(qD, I2)

)
+NδA(tE) + γ

(
W 2(qD, I2, Y2)− Ŵ 2(qD, I1, Y1)

)
+λ

(
N1(Y1−I1 +(tD +tE)D1(qD, I1))+N2(Y2−I2 +(tD +tE)D2(qD, I2))−Z(A(tE))−R

)
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The first-order conditions on I1,Y1, I2, Y2 and tD are the same as (34)–(38) with tD + tE

replacing tD, where qD = 1 + tD + tE . The first-order condition on tE is:

ρ1N1W
1
qD

+ (ρ2N2 + γ)W 2
qD

− γŴ 2
qD

−Nδ

(
N1

∂D1

∂qD
+ N2

∂D2

∂qD
−A′(tE)

)
+λ

(
N1D1 + N1(tD + tE)

∂D1

∂qD
+ N2D2 + N2(tD + tE)

∂D2

∂qD
− Z ′(A)A′(tE)

)
= 0 (41)

Substituting the first-order condition for tD (the analog of (38)) into (41) and using tE =

Z ′(A), we obtain:

tE =
Nδ

λ
(42)

Next, proceed exactly as in the previous section by combining the first-order conditions

on I1, I2 and tD to obtain the analog of (39):

tD + tE =
Nδ

λ
=

(ρ1N1 + ρ2N2)δ
λ

(43)

Then, since tE = Nδ/λ by (42), we obtain tD = 0. Thus, unlike in the linear tax case, the

Pigouvian tax consists only of a tax on emissions: no tax on D is required. Moreover, the

interpretation of the Pigouvian tax is the same as above. More weight is put on marginal

damages to the low-wage than the high-wage persons.

We can summarize these results of Pigouvian taxation in the presence of nonlinear income

taxation as follows.

Proposition 5: When households differ in wage rates but have the same quasilinear-in-

leisure preferences, and the government can use a nonlinear income tax

1. the Pigouvian component of the second-best commodity tax system is a tax on good

D which differs from social marginal damages by putting relatively more weight on

damages to low-wage persons and less weight on damages to high-wage persons,

2. the structure of the optimal nonlinear income tax is the same as in the absence of

pollution, and

3. when a costly abatement technology is available, the Pigouvian tax applies only to

emissions and not to the output of the dirty good, and differs from social marginal

damages in the same way as 1. above.
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8 Concluding Remarks

Our purpose in this paper has been to study how Pigouvian taxes differ from marginal

damages to households when the taxes are levied alongside distortionary taxes. Because

taxes used for corrective purposes and taxes used for revenue-raising, which we refer to as

Ramsey taxes, are interdependent, it is generally not possible to disentangle one from the

other. We have specified a model in which Pigouvian taxes can readily be disaggregated

from Ramsey taxes and used that to determine how the former deviates from marginal

social damages, and how that deviation varies with the amount of revenue that must

be raised. The formulation we use involves household preferences that are quasilinear in

leisure so that demands for goods depend only on own prices. In this setting, qualitatively

clear results emerge.

When the government relies only on commodity taxes, the Pigouvian component of the

tax is the deviation from uniformity of commodity taxes on the clean and dirty goods. The

Pigouvian component will exceed marginal damages when goods’ demands are inelastic,

and vice versa. Not surprisingly, the same result applies when, instead of commodity

taxes, a labor income tax is used along with a tax on the dirty good. When an abatement

technology is introduced into the basic setting, the Pigouvian component of taxation follows

the same pattern as in the basic model. However, while damage is now a result of emissions,

the Pigouvian component includes both a tax on emissions and a tax on the sales of the

dirty good, even though in a first-best world, only the former would be used. Finally,

when households are heterogeneous and the tax system is used not just for revenue-raising

but also for redistribution, matters change. In the case where the government uses all

the instruments at its disposal and levies a nonlinear income tax, there is no longer a

presumption that the Pigouvian tax will be either higher or lower than marginal social

damages. Instead, the tax is set equal to a sum of damages to the low- and high-wage

persons in the economy but with relatively more weight put on marginal damages to the

former and less to the latter compared with social damages. The addition of abatement

possibilities changes little in this case. Unlike with linear taxation, only a tax on emissions

should be used and not a tax on total use of the dirty good.
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Our analysis relies on some important simplifying assumptions, particularly the quasilin-

earity of preferences. As mentioned, these preferences were used to facilitate the clean

separation of corrective from revenue-raising components of taxation. In a more compli-

cated setting, analytical solutions would generally be hard to come by, so one may have to

resort to computational methods.
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