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Jagannathan and Wang (1996) derive the asymptotic distribution of the Hansen-Jagannathan

distance (HJ-distance) proposed by Hansen and Jagannathan (1997), and develop a specifica-

tion test of asset pricing models based on the HJ-distance. While the HJ-distance has several

desirable properties, Ahn and Gadarowski (2004) find that the specification test based on the

HJ-distance overrejects correct models too severely in commonly used sample size to provide

a valid test. This paper proposes to improve the finite sample properties of the HJ-distance

test by applying the shrinkage method (Ledoit and Wolf, 2003) to compute its weighting

matrix. The proposed method improves the finite sample performance of the HJ-distance
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1 Introduction

Asset pricing models are the cornerstone of finance. They reveal how portfolio returns are

determined and which factors affect returns. Stochastic discount factors (SDF) describe portfolio

returns from another point of view. SDFs display which prices are reasonable given the returns

in the current period. Asset prices can be represented as inner products of payoffs and SDFs. If

asset pricing models were the true data generating process (DGP) of returns, SDFs could price

the returns perfectly.

In reality, asset pricing models are at best approximations. This implies no stochastic dis-

count factors can price portfolios perfectly in general. Therefore, it is important to construct a

measure of pricing errors produced by SDFs so that we are able to compare and evaluate SDFs.

For this purpose, Hansen and Jagannathan (1997) develop the Hansen-Jagannathan distance

(HJ-distance). This measure is in the quadratic form of the pricing errors weighted by the

inverse of the second moment matrix of returns. Intuitively, the HJ-distance equals the maxi-

mum pricing error generated by a model for portfolios with unit second moment. It is also the

least-squares distance between a stochastic discount factor and the family of SDFs that price

portfolios correctly.

The HJ-distance has already been applied widely in financial studies. Typically, when a

new model is proposed, the HJ-distance is employed to compare the new model with alternative

ones. Hereby, the new model can be supported if it offers small pricing errors. This type of

comparison has been adopted in many recent papers. For instance, by using the HJ-distance,

Jagannathan and Wang (1998) discuss cross sectional regression models; Kan and Zhang (1999)

study asset pricing models when one of the proposed factors is in fact useless; Campbell and

Cochrane (2000) explain why the CAPM and its extensions are better at approximating asset

pricing models than the standard consumption-based asset pricing theory; Hodrick and Zhang

(2001) evaluate the specification errors of several empirical asset pricing models that have been

developed as potential improvements on the CAPM; Lettau and Ludvigson (2001) explain the

cross section of average stock returns; Jagannathan and Wang (2002) compare the SDF method

with the Beta method in estimating risk premium; Vassalou (2003) studies models that include
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a factor that captures news related to future Gross Domestic Product (GDP) growth; Jacobs

and Wang (2004) investigate the importance of idiosyncratic consumption risk for the cross

sectional variation in asset returns; Vassalou and Xing (2004) compute default measures for

individual firms; Huang and Wu (2004) analyze the specifications of option pricing models

based on time-changed Levy process; and Parker and Julliard (2005) evaluate the consumption

capital asset pricing model in which an asset’s expected return is determined by its equilibrium

risk to consumption. Some other works test econometric specifications using the HJ-distance,

including Bansal and Zhou (2002) and Shapiro (2002); Dittmar (2002) uses the HJ-distance to

estimate the nonlinear pricing kernels in which the risk factor is endogenously determined and

preferences restrict the definition of the pricing kernel.

The HJ-distance has several desirable properties in comparison to the J-statistic of Hansen

(1982): first of all, it does not reward variability of SDFs. The weighting matrix used in the

HJ-distance is the second moment of portfolio returns and independent of pricing errors, while

the Hansen statistic uses the inverse of the second moment of the pricing errors as the weighting

matrix and rewards models with high variability of pricing errors. Second, as Jagannathan and

Wang (1996) point out, the weighting matrix of the HJ-distance remains the same across various

pricing models, which makes it possible to compare the performances among competitive SDFs

by the relative values of the HJ-distances. Unlike the Hansen statistic, the HJ-distance does

not follow a chi-squared distribution asymptotically. Instead, Jagannathan and Wang (1996)

show that, for linear factor models, the HJ-distance is asymptotically distributed as a weighted

chi-squared distribution. In addition, they suggest a simulation method to develop the empirical

p-value of the HJ-distance statistic.

However, Ahn and Gadarowski (2004) find that the specification test based on the HJ-

distance severely overrejects correct models in commonly used sample size, compared with the

Hansen test which mildly overrejects correct models. Ahn and Gadarowski (2004) attribute

this overrejction to poor estimation of the pricing error variance matrix, which occurs because

the number of assets is relatively large for the number of time-series observations. Ahn and

Gadarowski (2004) report that the rejection probability reaches as large as 75% for a nominal
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5% level test, demonstrating a serious need for an improvement of the finite sample properties

of the HJ-distance test.

In this paper, we propose to improve the finite sample properties of the HJ-distance test via

more accurate estimation of the weighting matrix, which is the inverse of the second moment

matrix of portfolio returns. We justify our method by showing that poor estimation of the

weighting matrix contributes significantly to the poor small sample performance of the HJ-

distance test. When the exact second moment matrix is used, the rejection frequency becomes

comparable to its nominal size.1

Of course, the true covariance matrix is unknown. We employ the idea of the shrinkage

method following Ledoit and Wolf (2003) to obtain a more accurate estimate of the covariance

matrix. The basic idea behind shrinkage estimation is to take an optimally weighted average

of the sample covariance matrix and the covariance matrix implied by a possibly misspecified

structural model. The structural model provides a covariance matrix estimate that is biased but

has a small estimation error due to the small number of parameters to be estimated. The sample

covariance matrix provides another estimate which has a small bias, but a large estimation error.

The shrinkage estimation balances the trade-off between the estimation error and bias by taking

a weighted average of these two estimates.

In this shrinkage method, one needs to choose a structural model serving as the shrinkage

target. Here, because testing a SDF is the purpose of the HJ-distance test, a natural choice of the

structural model is the asset pricing model whose SDF is tested by the HJ-distance test. The

optimally weighted average is constructed by minimizing the distance between the weighted

covariance matrix and the true covariance matrix, and the optimal weight can be estimated

consistently from the data.

We allow both possibilities where the target model is correctly specified and misspecified.

In the former case, the shrinkage target is asymptotically unbiased. In the latter case, the

shrinkage target is biased, but the estimated weight on the shrinkage target converges to zero

in probability as the sample size tends to infinity. Therefore, the proposed covariance matrix
1Jobson and Korkie (1980) also report poor performance of the sample covariance matrix as an estimate of the

population covariance when the sample size is not large enough compared with the dimension of the portfolio.
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estimate is consistent in both cases.

Using this covariance matrix estimate greatly improves the finite sample performance of the

HJ-distance test. We use similar data sets with Ahn and Gadarowski (2004). With 25 portfolios,

the rejection frequencies are close to the nominal size even for the sample sizes of 160. With 100

portfolios, the rejection frequency is sometimes far from the nominal size, but it is much closer

than the case in which the sample covariance matrix is used.

The rest of this paper is organized as follows: section 2 briefly reviews the HJ-distance and

the specification test based on it; section 3 presents the problem of the small sample properties

of the HJ-distance test; section 4 describes the proposed solution to this problem; and section 5

reports the simulation results; section 6 concludes.

2 Hansen-Jagannathan distance

Hansen and Jagannathan (1997) develop a measure of degree of misspecification of an asset

pricing model. This measure, called the HJ-distance, is defined as the least squares distance

between the stochastic discount factor associated with an asset pricing model and the family of

stochastic discount factors that price all the assets correctly. Hansen and Jagannathan (1997)

show that the HJ-distance is also equal to the maximum pricing errors generated by a model on

the portfolios whose second moments of returns are equal to one.

Consider a portfolio of N primitive assets, and let Rt denote the t-th period gross returns

of these assets. Rt is a 1 × N vector. A valid stochastic discount factor (SDF), mt, satisfies

E(mtR
′
t) = 1N , where 1N is a N -vector of ones. If an asset pricing model implies a stochastic

discount factor mt(δ), where δ is a K×1 unknown parameter, then the HJ-distance corresponding

to this asset pricing model is given by

HJ(δ) =
√

E[wt(δ)]′G−1E[wt(δ)],

where wt(δ) = R′
tmt(δ)− 1N denotes the pricing errors and G = E(R′

tRt).

We follow Ahn and Gadarowski (2004) and focus on linear factor pricing models. Linear
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factor pricing models imply the SDF of the linear form mt(δ) = X̃tδ, where X̃t = [1 Xt] is a 1×K

vector of factors including 1; see Hansen and Jagannathan (1997). Note that linear factor pricing

models can accommodate nonlinear function of factors because X̃t may contain polynomials of

factors, and the linearity assumption here is not very restrictive. For example, Bansal, Hsieh,

and Viswanathan (1993), Chapman (1997), and Dittmar (2002) consider nonlinear factor models

of this type. In addition, many successful asset pricing models are in linear forms.2

The HJ-distance can be estimated by its sample analogue

HJT (δ) =
√

wT (δ)′G−1
T wT (δ),

where wT (δ) = T−1
∑T

t=1 wt(δ) = DT δ − 1N , DT = T−1
∑T

t=1 R′
tX̃t and GT = T−1

∑T
t=1 R′

tRt.

Following Jagannathan and Wang (1996), the parameter δ is estimated by minimizing the sample

HJ-distance HJT (δ), giving the estimate δT as

δT = (D′
T G−1

T DT )−1D′
T G−1

T 1N .

The estimator δT is equivalent to a GMM estimator with the moment condition E[wt(δ)] = 0

and the weighting matrix G−1
T .

Jagannathan and Wang (1996) prove that, under the hypothesis that the SDF prices the

returns correctly, the sample HJ-distance follows

T [HJT (δT )]2 →d

N−K∑
j=1

λjυj ,

where υ1,. . . υN−K are independent χ2(1) random variables, and λ1,. . . λN−K are nonzero eigen-

values of the following matrix:

Λ = Ω1/2G−1/2[IN − (G−1/2)′D(D′G−1D)−1D′G−1/2](G−1/2)′(Ω1/2)′.
2For example, the Sharpe (1964)-Lintner (1965)-Black (1972) CAPM, the Breeden (1979) consumption CAPM,

the Adler and Dumas (1983) international CAPM, the Chen, Roll, and Ross (1986) five macro factor model, and
the Fama-French (1992, 1996) three factor model.
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Here Ω = E[wt(δ)wt(δ)′] denotes the variance of pricing errors, and D = E(R′
tX̃t). It can be

proved that A is positive semidefinite with rank N −K. GT and DT can be used to estimate G

and D consistently. Under the hypothesis that the SDF prices the returns correctly, Ω can be

estimated consistently by ΩT = T−1
∑T

t=1 wt(δT )wt(δT )′.

δT is not as efficient as the optimal GMM estimator that uses Ω−1
T (optimal weighting matrix)

as the weighting matrix, defined as

δOPT,T = (D′
T Ω−1

T DT )−1D′
T Ω−1

T 1N .

Associated with δOPT,T and Ω−1
T is the J-statistic of Hansen (1982)

JT (δOPT,T ) = TwT (δOPT,T )′Ω−1
T wT (δOPT,T ),

which is widely used for specification testing. Under the null hypothesis that the SDF prices

the returns correctly, Hansen’s J-statistic is asymptotically χ2-distributed with N −K degrees

of freedom.

The HJ-distance has several desirable properties over the J-statistic. First, it does not reward

the variability of SDFs. The weighting matrix used in the HJ-distance is the second moment of

portfolio returns and independent of pricing errors. On the other hand, the J-statistic uses the

inverse of the second moment of the pricing errors as the weighting matrix and hence rewards

models with high variability of pricing errors. Second, as Jagannathan and Wang (1996) point

out, the weighting matrix of the HJ-distance remains the same across various pricing models,

which makes it possible to compare the performances among competitive SDFs by the relative

values of the HJ-distances for a given dataset.

3 Finite sample properties of the HJ-distance test

In this section, we investigate the finite sample performances of the specification test based on

the HJ-distance (henceforth the HJ-distance test) following the settings of Ahn and Gadarowski

(2004).
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3.1 Simulation design

We simulate three sets of data comparable to those in Ahn and Gadarowski (2004). The first

set is a simple three-factor model with independent factor loadings, where the scale of expected

returns and variability of the factors are roughly matched to those of the actual market-wide

returns. The statistical properties of the factors and idiosyncratic errors are set to be identical

to those in Ahn and Gadarowski (2004). We refer to this model as the Simple model henceforth.

The second set of data is calibrated to resemble the statistical properties of the three-factor

model in Fama-French (1992). The third set of data is calibrated based on the Premium-Labor

model in Jagannathan and Wang (1996). The details of the data generation are provided in the

Appendix.

We simulate each set of the data with 1000 replications. For each replication, we calculate

the HJ-distance and test the null hypothesis that the stochastic discount factor implied by the

DGP prices portfolio returns correctly. Since the stochastic discount factors are derived from

the true DGPs, the actual rejection frequency is supposed to be close to the nominal level. The

critical values of the HJ-distance test are calculated following the algorithm by Jagannathan and

Wang (1996). First, draw M × (N −K) independent random variables from χ2(1) distribution.

Next, calculate uj =
∑N−K

i=1 λivij (j = 1, . . . ,M). Then the empirical p-value of the HJ-distance

is

p = M−1
M∑

j=1

I(uj ≥ T [HJT (δT )]2),

where I(·) is an indicator function which equals one if the expression in the brackets is true and

zero otherwise. In our simulation, we set M = 5, 000.

3.2 Simulation results

Table 1 summarizes the results from this simulation with 25 and 100 portfolios and T =

160, 330, 700. Panel A of this table corresponds to Table 1 of Ahn and Gadarowski (2004),

while Panels B and C correspond to Table 3 of Ahn and Gadarowski (2004). The first column

in each panel is the significance level of the tests. The other columns report the actual rejection

frequencies for different numbers of observations. The results are comparable to those in Ahn
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and Gadarowski (2004).

[Table 1 around here]

The HJ-distance test overrejects the correct null under all combinations of the DGPs, the

number of portfolios, and sample sizes. In the Simple model and Fama-French model, the size

distortion is noticeable except for the combination of T = 700 and 25 portfolios. The size

distortion is particularly large with 100 portfolios but improves as T increases. In the Premium-

Labor model, the HJ-distance test is severely oversized both with 25 and 100 portfolios and for all

sample sizes. As suggested by Ahn and Gadarowski (2004), this excessive rejection frequencies

for the HJ-distance may be due to a feature of the data based on the Premium-Labor model not

present in the other data, possibly the temporal dependence of the factors.

Ahn and Gadarowski (2004) investigate the source of this overrejection and find that one

of its sources is the poor estimation of the variance matrix of the pricing errors, Ω. They

find that repeating their simulations using the exact pricing error variance matrix Ω removes

most of the upward bias in the size of the HJ-distance test. However, the exact pricing error

matrix in unknown, and hence it is impossible to use this method in practice and the problem

of overrejection has remained unsolved.

We examine other possible sources of overrejection. It is well-known that the accuracy of

the weighting matrix has a significant effect on the finite sample property of the GMM-based

Wald tests (e.g., Burnside and Eichenbaum, 1996). We conjecture another possible source of

the overrejection is the poorly estimated weighting matrix. Jagannathan and Wang (1996)

use T−1
∑T

t=1 R′
tRt = V̂ ar(Rt) + Ê(Rt)′Ê(Rt) as an estimate of G = E(R′

tRt) = V ar(Rt) +

E(Rt)′E(Rt). While E(Rt) can be estimated accurately by the sample mean for the sample size

of our interest, the sample covariance matrix can be a very inaccurate estimate of V ar(Rt) when

the number of observation is not large enough relative to the number of portfolios, as pointed

out by Jobson and Korkie (1980). In our case, with 25 portfolios, G has (26 × 25)/2 = 325

elements. Consequently, the poor estimation of G may be another main reason for the poor

small sample performance of the HJ-distance test.
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We confirm this conjecture by repeating the simulations in Table 1 but replacing GT with

the exact second moment matrix G. Table 2 shows the resulting rejection frequencies of the

HJ-distance test. We approximate G by the sample second moment matrix from 10,000 time-

series observations. In all cases, the rejection rates of the HJ-distance test improve dramatically.

The HJ-distance test now has good small sample properties in the Simple model and the Fama-

French model. In particular, with 25 portfolios, the actual size is close to the nominal size for

all T . Comparing it with Table 1 suggests that the improvement of the size of the original

HJ-distance test with large T occurs mainly through a more accurate estimation of G. In the

Premium-Labor model, there still remains size distortion, but its magnitude is much smaller

than those in Panel C of Table 1.

[Table 2 around here]

4 Improved estimation of covariance matrix by shrinkage

The simulation evidence in the previous section reveals that the finite sample performance of

the HJ-distance test improves significantly when one employs a better estimate of the second

moment matrix of portfolio returns, or equivalently, a better estimate of the covariance matrix

of portfolio returns. In this section, we explore the possibility of improved estimation of the

portfolio covariance matrix by the shrinkage method following the approach of Ledoit and Wolf

(2003).

4.1 Shrinkage method and the HJ-distance

The shrinkage method dates back to the seminal paper by Stein (1956). The basic idea behind

the shrinkage method is to balance the trade-off between bias and variance by taking a weighted

average of two estimators. If one estimator is unbiased but has a large variance while the other

estimator is biased but has a small variance, then taking a properly weighted average of the

two estimators can outperform both estimators in terms of accuracy (mean squared error). The

biased estimator is called the shrinkage target to which the unbiased estimator with a large

variance is shrunk.
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In our context, the sample covariance matrix is an unbiased estimator of the true covariance

matrix but has a large variance. Note that the purpose of the HJ-distance test is to test if

a SDF can price the returns correctly. Therefore, a natural choice of the shrinkage target is

the covariance matrix implied by the factor model which implies the SDF of interest. Factor

pricing models explain asset returns in terms of a few factors and uncorrelated residuals, thereby

imposing a low-dimensional factor structure to the returns. Since the parameters of a factor

model can be estimated with a small variance, the estimate of the asset covariance matrix implied

by the factor model has a small variance, although it is a biased estimate when the factor model

is misspecified.

One might argue for using the asset covariance matrix implied by the factor model alone,

without combining it with the sample covariance. We advocate the shrinkage method in this

paper because the HJ-distance test is often used to compare the fit of different SDFs. Comparing

different SDFs by the HJ-distance requires one to use the same weighting matrix across all

candidate SDFs, but one does not know which SDF is the correct SDF a priori. Using the

shrinkage method allows one to use the same weighting matrix across different SDFs without

assuming one particular SDF is the correct one.

4.2 Optimal shrinkage intensity

Shrinkage method assigns α weight to a covariance matrix implied by a factor model and the

other 1 − α weight to the sample covariance matrix. Using the shrinkage method requires the

determination of α, which is called the shrinkage intensity. Ledoit and Wolf (2003) derive the

analytical formula for the optimal α and discuss its estimation when the shrinkage target is a

single-factor model and is a misspecified model of asset returns. We extend their method to

multiple-factor shrinkage targets as well as to the case where the shrinkage target is the correct

model of asset returns.

As in Section 2, let Rt denote a 1 × N vector of the t-th period gross returns of N assets,

and let Xt denote a 1×K∗ vector of factors not including a constant, where K∗ = K − 1. Let

Rti denote the t-th period gross return of the i-th asset, so that Rt = (Rt1, . . . , RtN ).
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Suppose the following K-factor linear asset pricing model is used to construct the shrinkage

target. It is not necessary that the model generates the actual stock returns.

Rti = µi + Xtβi + εti, t = 1, . . . , T, (1)

where βi is a K∗ × 1 vector of slopes for the ith asset, and εti is the mean-zero idiosyncratic

error for asset i in period t. εti has a constant variance δii across time, and is uncorrelated to

εtj with j 6= i and to the factors. The model (1) may be the asset pricing model corresponding

to the SDF we test, but any other linear factor model can be used. Let β = (β1, . . . , βN ) denote

the K∗ × N matrix of the slopes, µ = (µ1, . . . , µN ) be the 1 × N vector of the intercepts, and

εt = (εt1, . . . , εtN ). Then the factor model (1) is written as

Rt = µ + Xtβ + εt, V ar(εt) = ∆ = diag(δii), t = 1, . . . , T. (2)

We impose the following assumptions on the stock returns and factors.

Assumption 1 Stock returns Rt and factors Xt are independently and identically distributed

over time.

Assumption 2 Rt and Xt have finite fourth moment, and Var(Rt) = Σ.

The iid assumption is used in Ledoit and Wolf (2003). We may allow Rt and Xt to be

heteroskedastic and/or serially correlated by assuming they satisfy conditions such as mixing

or near-epoch dependence without affecting the logic underlying our argument. We use the iid

assumption because it is an acceptable first-cut approximation and relaxing it adds substantial

notational complexity.

The asset pricing model (2) implies the following covariance matrix of Rt:

Φ = β′V ar(Xt)β + ∆.

We can estimate Φ by estimating its components. Regressing the i-th portfolio returns on an

intercept and the factors, we obtain the least squares estimate of βi and the residual variance
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estimate. Let bi and dii denote these estimates of βi and δii, respectively. Let b = (b1, . . . , bN )

and D = diag(dii), then the estimate of Φ is

F = b′V̂ ar(Xt)b + D, (3)

where V̂ ar(Xt) is the sample covariance matrix of the factors.

We estimate Σ by a weighted average of F and the sample covariance of Rt, S, with the

weight (shrinkage intensity) α assigned to the shrinkage target F. We choose the shrinkage

intensity α so that it minimizes a risk function. Let ||Z|| be the Frobenius norm of an N ×N

matrix Z, so

‖Z‖2 = Trace(Z
′
Z) =

N∑
i=1

N∑
j=1

z2
ij .

Following Ledoit and Wolf (2003), we use the following risk function

Q(α) = E[L(α)],

where L(α) is a quadratic measure of the distance between the true and estimated covariance

matrices

L(α) = ‖αF + (1− α)S − Σ‖2.

Let sij , fij , σij , and φij denote the (i, j)-th element of S, F, Σ, and Φ, respectively. It follows

that

Q(α) =
∑N

i=1

∑N
j=1 E(αfij + (1− α)sij − σij)2

=
∑N

i=1

∑N
j=1{V ar(αfij + (1− α)sij) + [E(αfij + (1− α)sij − σij)]2}

=
∑N

i=1

∑N
j=1{α2V ar(fij) + (1− α)2V ar(sij) + 2α(1− α)Cov(fij , sij) + α2(φij − σij)2}.

The optimal α can be derived by differentiating Q(α) with respect to α. The second order

condition is satisfied since Q(α) is concave. Solving the first order condition for α gives the

optimal α as

α∗ =

∑N
i=1

∑N
j=1 V ar(sij)−

∑N
i=1

∑N
j=1 Cov(fij , sij)∑N

i=1

∑N
j=1 V ar(fij − sij) +

∑N
i=1

∑N
j=1(φij − σij)2

,
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which is the same as (3) in Ledoit and Wolf (2003). Multiplying both the numerator and the

denominator by T , we obtain

α∗ =

∑N
i=1

∑N
j=1 V ar(

√
Tsij)−

∑N
i=1

∑N
j=1 Cov(

√
Tfij ,

√
Tsij)∑N

i=1

∑N
j=1 V ar(

√
Tfij −

√
Tsij) + T

∑N
i=1

∑N
j=1(φij − σij)2

. (4)

As in Ledoit and Wolf (2003), define π =
∑N

i=1

∑N
j=1 AsyV ar[

√
Tsij ], ρ =

∑N
i=1

∑N
j=1

AsyCov[
√

Tfij ,
√

Tsij ], and let γ =
∑N

i=1

∑N
j=1(φij − σij)2 denote the measure of the misspeci-

fication of the factor model (2). Define η =
∑N

i=1

∑N
j=1 AsyV ar[

√
T (fij − sij)]. We consider the

limit of α∗ as T → ∞ in two cases separately, depending on whether Φ = Σ. First, consider

the case where Φ 6= Σ. Since S is consistent while F is not, the optimal shrinkage intensity α∗

converges to 0 as T →∞. Ledoit and Wolf (2003) prove in their Theorem 1 that

Tα∗ → π − ρ

γ
, as T →∞. (5)

When Φ = Σ, both S and F are consistent for Σ, but they have different variance. In this

case, the optimal shrinkage intensity α∗ converges to a non-degenerate limit

α∗ → π − ρ

η
, as T →∞. (6)

This case is not considered in Ledoit and Wolf (2003), but the proof of (6) follows from the proof

of Theorem 1 of Ledoit and Wolf (2003, pp. 610-611). From (5) and (6), the shrinkage estimate

αF + (1− α)S is consistent for Σ under both Φ 6= Σ and Φ = Σ. Note that (π − ρ)/η does not

necessarily equal 1. (π − ρ)/η = 1 if F is an asymptotically efficient estimator of Σ.

4.3 Estimation of the optimal shrinkage intensity

Since π, ρ, µ and γ in the formula for α∗ are unobservable, we must find estimators for

them. Define πij = AsyV ar[
√

Tsij ], ρij = AsyCov[
√

Tfij ,
√

Tsij ], γij = (φij − σij)2, and

ηij = AsyV ar[
√

T (fij − sij)], so that π =
∑N

i=1

∑N
j=1 πij , ρ =

∑N
i=1

∑N
j=1 ρij , γ =

∑N
i=1∑N

j=1 γij , and η =
∑N

i=1

∑N
j=1 ηij . In the following, we present consistent estimates of these

13



quantities and show the asymptotic behavior of our estimate of α∗.

4.3.1 πij and γij

¿From Lemma 1 of Ledoit and Wolf (2003), a consistent estimator for πij is given by

pij =
1
T

T∑
t=1

[(Rti −mi)(Rtj −mj)− sij ]2,

where mi = T−1
∑T

t=1 Rti is the sample average of the return of the i-th asset. Define cij =

(fij − sij)2, then cij →p γij follows from Lemma 3 of Ledoit and Wolf (2003).

4.3.2 ρij

When i = j, note that fii = sii. Thus we can use pii to estimate ρii. When i 6= j, first define

M = I − T−111′, where I is a T × T identity matrix and 1 is a T × 1 vector of ones. Collect

the factors into a T ×K∗ matrix X: X = (X ′
1, . . . , X

′
T )′. We use R·i to denote a T × 1 vector

of the i-th asset return. Recall that (see (3))

F = b′V̂ ar(Xt)b + D,

where b = (b1, . . . , bN ), and bi is given by bi = (X ′MX)−1X ′MR·i. D is a diagonal matrix of

residual variance estimates.

Define Sxi = T−1R′
·iMX, which is the 1×K∗ sample covariance vector between Xt and Rtj ,

and define Sxx = T−1X ′MX, which is the K∗ ×K∗ sample covariance matrix of Xt. Then we

can express fij for i 6= j as

fijR
′
·iMX(X ′MX)−1T−1(X ′MX)(X ′MX)−1X ′MR·j = Sxi(Sxx)−1(Sxj)′. (7)

Let X̄ = T−1
∑T

t=1 Xt = 1 × K∗ vector of the sample average of the factors; σxj = 1 × K∗

covariance vector between Xt and Rtj ; σxx = K∗ ×K∗ covariance matrix of Xt.

The following lemma provides a consistent estimator of ρij . Recall that sij denotes the

14



(i, j)-th element of S and is equal to the sample covariance between Rti and Rtj .

Lemma 1 A consistent estimator of ρij is given by rij, defined as follows: for i = j, set

rii = pii, and for i 6= j, set rij as

rij = ZiS
−1
xx (Sxj)′ + SxiS

−1
xx (Zj)′ − SxiS

−1
xx ZxS−1

xx (Sxj)′,

where Zi and Zx are consistent estimates of AsyCov[
√

TSxi,
√

Tsij ] and AsyCov[
√

TSxx,
√

Tsij ],

respectively, and they take the form

Zi = T−1
T∑

t=1

[
(Rti −mi)(Xt − X̄)− Sxi

]
[(Rti −mi)(Rtj −mj)− sij ] ,

Zx = T−1
T∑

t=1

[
(Xt − X̄)′(Xt − X̄)− Sxx

]
[(Rti −mi)(Rtj −mj)− sij ] .

Proof For i = j, the stated result follows from fii = sii. For i 6= j, from (7), fij converges to

σxiσ
−1
xx (σxj)′ in probability. Expanding

√
Tfij around

√
Tσxiσ

−1
xx (σxj)′ gives

√
Tfij =

√
Tσxiσ

−1
xx (σxj)′ +

√
T (Sxi − σxi)σ−1

xx (σxj)′ +
√

Tσxiσ
−1
xx (Sxj − σxj)′

−σxiσ
−1
xx

√
T (Sxx − σxx)σ−1

xx (σxj)′ + op(1),

where the third term follows from ∂(X(θ)−1)/∂θ = −X(θ)−1(∂X(θ)/∂θ)X(θ)−1. It follows that

AsyCov
[√

Tfij ,
√

Tsij

]
= AsyCov

[√
TSxi,

√
Tsij

]
σ−1

xx (σxj)′ + σxiσ
−1
xx AsyCov

[√
T (Sxj)′,

√
Tsij

]
− σxiσ

−1
xx AsyCov

[√
TSxx,

√
Tsij

]
σ−1

xx (σxj)′.

Since (Xt, Rt) is iid, the three asymptotic covariances on the right-hand side are estimated

consistently by Zi, (Zj)′, and Zx, respectively. The required result follows because Sxj and Sxx

are consistent estimates of σxj and σxx. �
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4.3.3 ηij

A similar analysis gives the following lemma. Its proof follows from the proof of lemma 1 and

hence omitted. Let {A}kl denote the (k, l)-th element of matrix A, and let {a}k denote the k-th

element of vector a.

Lemma 2 A consistent estimator of ηij is given by hij = wij + pij − 2rij, where wij is a

consistent estimator of AsyV ar[
√

Tfij ]. For i = j, we set wii = pii. For i 6= j, wij is given by

wij = SxjS
−1
xx Za

iiS
−1
xx (Sxj)′ + SxiS

−1
xx Za

jjS
−1
xx (Sxi)′ + 2SxiS

−1
xx Za

jiSxx(Sxj)′

+
K∑

k=1

K∑
l=1

[
{SxiS

−1
xx }k{SxjS

−1
xx }lSxiS

−1
xx Zb

klS
−1
xx (Sxj)′

]
− 2

K∑
k=1

K∑
l=1

[
{SxiS

−1
xx }k{SxjS

−1
xx }l

(
Zc

i,klS
−1
xx (Sxj)′ + Zc

j,klS
−1
xx (Sxi)′

)]

where Za
ij, Zb

kl, Zc
i,kl are consistent estimates of AsyCov[

√
TSxi,

√
TSxj ], AsyCov[

√
TSxx,

√
T{Sxx}kl],

and AsyCov[
√

TSxi,
√

T{Sxx}kl], respectively, and they take the form

Za
ij = T−1

T∑
t=1

[(Rti −mi)(Xt − X̄)′ − (Sxi)′][(Rtj −mj)(Xt − X̄)− Sxj ],

Zb
kl = T−1

T∑
t=1

[(Xt − X̄)′(Xt − X̄)− Sxx][{(Xt − X̄)′(Xt − X̄)− Sxx}kl],

Zc
i,kl = T−1

T∑
t=1

[(Rti −mi)(Xt − X̄)− Sxi][{(Xt − X̄)′(Xt − X̄)− Sxx}kl].

4.3.4 Estimate of α∗ and its asymptotic behavior

We construct an estimate of the optimal shrinkage intensity by replacing the unknowns in α∗ in

(4) with their estimates:

α̂ =

∑N
i=1

∑N
j=1 pij −

∑N
i=1

∑N
j=1 rij∑N

i=1

∑N
j=1 hij + T

∑N
i=1

∑N
j=1 cij

. (8)
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We analyze the asymptotic behavior of α̂ for the following two cases:

Case 1. Φ 6= Σ.

Case 2. The stock returns are generated by the factor model (2), and εt is independently

and identically distributed over time with finite fourth moment.

These two cases cover most situations of practical interest. They leave out only a small case in

which Φ = Σ but the stock returns are not generated by the factor model (2).

The following lemma shows that, in Case 1, T α̂ converges in probability to the limit of Tα∗,

while in Case 2, α̂ converges to a random variable which is smaller than α∗. Since 0 < α0 < α∗

and Q(α) is concave, the shrinkage estimator has a smaller risk than the sample covariance

matrix. The simulations in the following section show that using the shrinkage estimator leads

to a substantial improvement of the finite sample performance of the HJ-distance test.

Lemma 3 As T →∞, we have

T α̂ →p
π − ρ

γ
= lim

T→∞
Tα∗, in Case 1 ,

α̂ →d α0 =
π − ρ

η + ξ
< α∗, in Case 2 ,

where ξ =
∑N

i=1,i6=j

∑N
j=1(ξij)2 and {ξij}i,j=1,··· ,N,i6=j are jointly normally distributed with mean

zero.

Indeed, an estimate of α∗ that is consistent in both Case 1 and Case 2 is given by

α̃ =

∑N
i=1

∑N
j=1 pij −

∑N
i=1

∑N
j=1 rij∑N

i=1

∑N
j=1 hij + T a

∑N
i=1

∑N
j=1 cij

, a ∈ (0, 1). (9)

By downweighting
∑N

i=1

∑N
j=1 cij , this estimate favors the possibility that Φ = Σ. From the

proof of Lemma 3, it follows straightforwardly that α̃ →p 0 in Case 1 and α̃ →p (π − ρ)/η in

Case 2. However, α̃ converges to 0 at a slower rate than α∗ in Case 1. This reflects a trade-off

between the consistency in both cases and the higher-order consistency in Case 1. Our preference
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of α̂ over α̃ and our choice of a conservative position regarding this trade-off seems appropriate,

because we expect that simple factor models are used as a shrinkage target in practice and those

models are neither likely to nor meant to provide a complete description of the observed data.

Proof In Case 1, rewrite T α̂ as

T α̂ =

∑N
i=1

∑N
j=1 pij −

∑N
i=1

∑N
j=1 rij

(1/T )
∑N

i=1

∑N
j=1 hij +

∑N
i=1

∑N
j=1 cij

.

Then the stated result follows from pij →p πij and cij →p γij (Ledoit and Wolf (2003), Lemmas

1 and 3), and Lemmas 1 and 2.

In Case 2, it follows from pij →p πij and Lemmas 1 and 2 that

α̂ =

∑N
i=1

∑N
j=1 pij −

∑N
i=1

∑N
j=1 rij∑N

i=1

∑N
j=1 hij + T

∑N
i=1

∑N
j=1 cij

=
π − ρ + op(1)

η + op(1) +
∑N

i=1

∑N
j=1 Tcij

.

We proceed to derive the asymptotic distribution of Tcij = T (fij − sij)2. Recall cij = 0 for

i = j. For i 6= j, we have, from the definition of sij and (7),

sij = T−1R′
·iMR·j , fij = T−1R′

·iMX(X ′MX)−1X ′MR·j . (10)

Define ε·i = (ε1i, . . . , εTi)′, and rewrite the model (2) as R·i = µi1 + Xβi + ε·i for i = 1, . . . , N .

Substituting this into (10), we can express the difference between fij and sij as

fij − sij = T−1(Xβi + ε·i)′MX(X ′MX)−1X ′M(Xβj + ε·j)− T−1(Xβi + ε·i)′M(Xβj + ε·j)

= T−1ε′·iMX(X ′MX)−1X ′Mε·j − T−1ε′·iMε·j

= T−1(T−1/2ε′·iMX)(T−1X ′MX)−1(T−1/2X ′Mε·j)− T−1ε′·iMε·j .

Since T−1/2ε′·iMX = T−1/2
∑T

t=1 εtiXt−(T−1/2
∑T

t=1 εti)(T−1
∑T

t=1 Xt) = Op(1), T−1X ′MX →p

σxx, and T−1/2ε′·iMε·j = T−1/2
∑T

t=1 εtiεtj−(T−1/2
∑T

t=1 εti)(T−1
∑T

t=1 εtj) = T−1/2
∑T

t=1 εtiεtj+
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op(1), it follows that
√

T (fij − sij) = T−1/2
T∑

t=1

εtiεtj + op(1).

Since εtiεtj is iid with mean 0 and finite variance, an (N2−N)×1 vector {T−1/2
∑T

t=1 εtiεtj}i,j=1,...,N,i6=j

converges to a normally distributed random vector in distribution. �

The following theorem is a simple consequence of Lemma 3:

Theorem 1 Define the shrinkage covariance matrix estimate Σ̂ as

Σ̂ = α̂F + (1− α̂)S.

Then Σ̂ →p Σ as T → ∞, because if Φ 6= Σ then α̂ → 0 and if Φ = Σ then both F and S are

consistent for Σ.

5 Simulation results with the shrinkage method

With the shrinkage covariance matrix estimate Σ̂ constructed in the previous section, we define

the shrinkage estimate of the second moment of the asset returns as

Ĝ = Σ̂ + (
1
T

R′1)(
1
T

R′1)′.

In this section, we examine the finite sample performance of the HJ-distance test when the

inverse of Ĝ is used as the weighting matrix. The other settings of the Monte Carlo experiments

are the same as in Section 2. In order to avoid overshrinkage or negative shrinkage, we set 0

and 1 as the lower and upper bound for α̂.

Table 3 reports the rejection frequencies of the HJ-distance test with Ĝ. Compared with

Table 1, we find that the rejection frequencies improve in all cases. For example, for the Simple

model and Fama-French model with 25 portfolios, the rejection frequency of the HJ-distance

test in Table 1 is more than twice the nominal level for T = 160 and 330, whereas the rejection

frequencies in Table 3 are close to the nominal level for all T. With 100 portfolios, the HJ-

distance test with Ĝ still tends to overreject the correct null, but the degree of overrejection is
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much smaller than in Table 1.

[Table 3 around here]

Kan and Zhou (2004) derive the exact distribution of the HJ-distance under the normality

assumption. Their Tables I and III report the rejection frequency of the asymptotic HJ-distance

test and that of the feasible version of their exact test, respectively. We compare their Table III

with the results for the Fama-French model in our Table 3.3 With 25 portfolios, the HJ-distance

test with shrinkage performs as well as the exact test, and the actual sizes of both tests are close

to the nominal size. With 100 portfolios, the exact test performs substantially better than the

shrinkage version. This is probably due to a poor chi-squared approximation. However, very few

applications use as many as 100 portfolios; of the applications of the HJ-distance tests surveyed

in the Introduction, all of them but Jagannathan and Wang (1996) use fewer than 25 portfolios.

Therefore, we may conclude that the HJ-distance test with shrinkage performs as well as the

exact test for most portfolio sizes of practical interest.

Table 4 reports the summary statistics of the estimated optimal shrinkage intensity α̂. Figure

1 shows the kernel density estimate of α̂ for the Simple model. This corresponds to the case

where Φ = Σ in Lemma 3. The results with the other factor models are similar and thus not

reported here. From Table 4 and Figure 1, we can see that α̂ is centered around 0.8 ∼ 1 and the

estimated covariance matrices are much closer to F than the sample covariance matrix when

Φ = Σ. Figure 2 shows the kernel density estimate of α̂ when the data are simulated from the

Simple model with 100 portfolios, but only two of the three factors are used in constructing F .

This corresponds to the case where Φ 6= Σ in Lemma 3. Figure 2 shows that α̂ is converging to

zero, corroborating Lemma 3.

[Table 4 and Figures 1 and 2 around here]

One important feature of the shrinkage method is that it provides a better estimate of

the HJ-distance itself. Table 5 reports the MSE of the HJ-distance with two estimates of G

3Although Kan and Zhou (2004) describe their factors as the Premium-Labor factors when K = 3, the rejection
frequencies of the asymptotic test in their Table I for K = 3 are too small compared with the results with the
Premium-Labor model in our Table 1 and Table 3 of Ahn and Gadarowski (2004). In fact, their results for K = 3
in Table I are more compatible with our results with the Fama-French model.
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relative to the HJ-distance computed with the true value of G. The MSE of the HJ-distance

with shrinkage is less than half of and substantially smaller than the MSE of the HJ-distance

with sample covariance. Therefore, the shrinkage method provides a more accurate comparison

of the HJ-distance across different models. Note that this feature is not present with the exact

distribution approach.

[Table 5 around here]

We are also interested in the sensitivity of the shrinkage method to the overspecification

and/or underspecification of the factor model used in constructing F. Tables 6 and 7 report

the results of the following simulation experiment. For each model, we conduct the HJ-distance

test as in Table 3 but we use an overspecified or underspecified factor model to estimate the

factor model (1) and construct the shrinkage target F. For the overspecified case, we generate

two additional factors with the same statistical properties as the original factors, and use the

five-factor model to estimate F. In the underspecified case, we drop one factor randomly from

the original three factors, and use the two-factor model to estimate F. In the overspecified case,

F is still consistent for Σ but suffers from extra sampling error, while F is inconsistent for Σ

and the shrinkage estimate should converge to the sample covariance in the underspecified case.

[Table 6 and Table 7 around here]

Table 6 reports the results with the overspecified target factor model. The rejection frequen-

cies reported in Table 6 are close to those in Table 3, and using an overspecified shrinkage target

causes little deterioration in the performance of the HJ-distance test. On the other hand, the

results with the underspecified target factor model reported in Table 7 are substantially worse

than those in Table 3. However, they still improve upon those in Table 1, in particular with the

Fama-French and Premium-Labor models. Therefore, when conducting the HJ-distance test, a

researcher can benefit significantly from using the shrinkage method with a possibly overspecified

shrinkage target to estimate G.

We also examine the rejection frequencies when we use the factor models to estimate G

without shrinkage. Table 8 reports the results with a three-factor model, i.e., the correct model,
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to estimate G. Not surprisingly, the results are better than the results with shrinkage (Table

3). However, the difference between Table 3 and Table 8 is small for models with 25 portfolios.

This is also consistent with Figure 1, which shows that the estimated shrinkage intensity α̂ is

close to one when the factor model is correctly specified. Table 9 reports the results with an

underspecified model in which one factor is randomly dropped. Using an underspecified model

to estimate G severely distorts the size of the HJ-distance test. Therefore, it is important to

guard against misspecification by using the shrinkage.

6 Conclusion

The HJ-distance test rejects correct SDFs too often in the finite sample, which limits its practical

use. We find that one reason for this phenomenon is a poorly estimated covariance matrix of

the asset returns. We propose to use the shrinkage method to construct an improved estimate

of this matrix.

The sample covariance matrix is often used to estimate the covariance matrix of asset returns.

When the number of portfolios is large, however, this estimate suffers from a large estimation

error. The shrinkage method uses another estimate that imposes some structure onto this high

dimensional estimation problem, and combines it optimally with the sample covariance matrix.

Our simulation results show that the shrinkage method significantly mitigates the overrejection

problem of the HJ-distance test.

A few questions remain to be addressed in future research. First, the shrinkage method

mitigates but does not completely solve the overrejection problem of the HJ-distance test, in

particular when the portfolio size is as large as 100. A further improvement would be desirable.

Second, it would be interesting to investigate how to choose the shrinkage target optimally and

how to obtain a better estimate of the optimal shrinkage intensity. Third, the estimation of

the covariance matrix plays an important role in many tests in empirical finance. It would

be worthwhile to examine whether the method proposed in this paper can improve the finite

properties of those tests.
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A Appendix

A.1 Simple model

The first Simple model is generated by following the procedure of Ahn and Gadarowski (2004).

Specifically, the data are generated by the following data generating process:

Rti = µ + Xt1β1i + Xt2β2i + Xt3β3i + eti,

where i is the index of individual portfolio returns, and t is the index of time. Rti is the gross

return of portfolio i at time t. Xtj (j=1,2, and 3) is the common factor for time t, drawn from a

normal distribution with mean equal to 0.0022 and variance equal to 6.944× 10−5. βki (k=1,2,

and 3) is the corresponding beta of factor Xk for portfolio i, and they are drawn from uniform

distribution U [0, 2]. eit is the idiosyncratic error that is normally distributed with mean zero

and variance 6.944× 10−5. µ, β and X are chosen at values which make the mean and variance

of gross returns roughly consistent with historical data in the US stock market.

A.2 Fama-French and Premium-Labor models

We follow the procedure of Ahn and Gadarowski (2004) to generate data sets calibrated to

resemble the statistical properties of the Fama-French and Premium-Labor models. First, we

collect 330 time-series observations of monthly returns of the Fama-French portfolios and the

Fama-French factors between July 1963 and December 19904. For the Premium-Labor model,

we follow the steps in Jagannathan and Wang (1996) to obtain the portfolio returns and the

factors.

Second, we apply the two-pass estimation following Shanken (1992). Specifically, we regress

the portfolio returns on the corresponding factors by OLS, obtain the estimates of βki, and

collect the residuals. We then compute the diagonal sample covariance matrix of the residuals.
4URL is http : //mba.tuck.dartmouth.edu/pages/faulty/ken.french/data library.html
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Subsequently, we run the following cross sectional regression:

E[Rti] = µ + (E(Xt1) + η1)β1i + (E(Xt2) + η2)β2i + (E(Xt3) + η3)β3i.

This gives the estimates of the risk-free rate, µ, and the factor-mean adjusted risk prices, ηk.

Finally, we simulate the factors from normal distribution with the mean and the covariance

equal to the sample mean and the sample covariance matrix derived from the actual data of the

corresponding factors. The error terms, eti, are drawn from normal distribution with the mean

equal to zero and the variance equal to the sample covariance of the residuals. The calibrated

portfolio returns are generated by the following equation:

Rti = µ + (Xt1 + η1)β1i + (Xt2 + η2)β2i + (Xt3 + η3)β3i + eti

The risk-adjusted prices are incorporated in order to simulate the portfolio return close to the

true data.
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Table 1: Rejection frequencies of the specification test using the HJ-distance

Number of Observations T=160 T=330 T=700
(A)Simple Model
25 Portfolios

1% 4.5 2.4 1.9
5% 15.1 8.7 7.7
10% 23.8 16.4 13.4

100 Portfolios
1% 99.6 51.3 11.7
5% 99.9 71.8 27.4
10% 99.9 81.3 39.3

(B)Fama-French Model
25 Portfolios

1% 5.8 3.3 1.1
5% 15.1 10.6 7.1
10% 23.9 18.9 12.8

100 Portfolios
1% 99.8 53.7 13.8
5% 100.0 76.0 30.8
10% 100.0 84.3 44.6

(C)Premium-Labor Model
25 Portfolios

1% 14.9 11.3 9.2
5% 31.9 26.0 19.5
10% 42.7 34.4 29.0

100 Portfolios
1% 99.7 79.1 36.8
5% 99.9 90.1 59.1
10% 99.9 94.3 69.6

This table shows the rejection rates over 1000 trials using the p-values for the HJ-distance. For Panel
(A), factors and returns are simulated to make the mean and variance of gross returns roughly consistent
with historical data in the US stock market. For Panel (B) and (C), factors and returns are simulated
using either the Fama-French (1993) model or the Premium-Labor model per Jagannathan and Wang
(1996).



Table 2: Rejection frequencies of the specification test using the HJ-distance with the exact
weighting matrix G

Number of Observations T=160 T=330 T=700
(A)Simple Model
25 Portfolios

1% 0.9 1.2 1.3
5% 5.4 5.8 6.8
10% 12.4 11.8 12.1

100 Portfolios
1% 0.8 1.2 1.2
5% 4.4 5.7 5.7
10% 11.6 10.9 10.9

(B)Fama-French Model
25 Portfolios

1% 1.0 1.2 0.7
5% 4.9 5.7 5.0
10% 9.9 11.8 11.9

100 Portfolios
1% 1.1 1.6 1.3
5% 7.4 7.4 5.8
10% 16.8 14.7 13.6

(C)Premium-Labor Model
25 Portfolios

1% 4.5 6.7 6.9
5% 15.2 20.3 16.3
10% 24.3 29.7 25.9

100 Portfolios
1% 3.1 7.3 8.2
5% 14.2 22.3 23.0
10% 26.5 35.1 36.3

This table shows the rejection rates over 1000 trials using the p-value of the HJ-distance, but approximat-
ing the weighting matrix, G, by the sample second moment matrix from 10,000 time-series observations.



Table 3: Rejection frequencies of the specification test using the HJ-distance with shrinkage
estimation of G

Number of Observations T=160 T=330 T=700
(A)Simple Model
25 Portfolios

1% 1.6 1.3 0.8
5% 6.6 6.8 5.4
10% 13.4 12.8 10.4

100 Portfolios
1% 3.9 1.3 0.9
5% 15.1 7.2 5.3
10% 28.4 13.7 11.1

(B)Fama-French Model
25 Portfolios

1% 1.3 1.2 0.7
5% 5.8 5.1 4.0
10% 9.9 9.8 9.6

100 Portfolios
1% 23.3 7.7 2.8
5% 49.9 22.9 11.2
10% 64.3 33.6 20.5

(C)Premium-Labor Model
25 Portfolios

1% 6.6 9.7 5.4
5% 18.8 20.8 13.5
10% 28.7 32.4 23.4

100 Portfolios
1% 31.5 19.5 11.2
5% 59.0 42.4 28.8
10% 73.0 58.4 40.0

This table shows the rejection rates over 1000 trials using the p-value of the HJ-distance, but approx-
imating the weighting matrix, G, by shrinkage method, which average the sample covariance and the
structure covariance with an optimal weight.



Table 4: Summary statistics of α̂

Number of Observations T=160 T=330 T=700
(A)Simple Model
25 Portfolios

mean 0.8290 0.8757 0.8981
standard deviation 0.1287 0.1040 0.0895

100 Portfolios
mean 0.8180 0.8722 0.8951

standard deviation 0.0953 0.0679 0.0532
(B)Fama-French Model
25 Portfolios

mean 0.9280 0.9462 0.9605
standard deviation 0.0780 0.0631 0.0533

100 Portfolios
mean 0.6324 0.6443 0.6514

standard deviation 0.0909 0.0875 0.0844
(C)Premium-Labor Model
25 Portfolios

mean 0.8120 0.8152 0.8199
standard deviation 0.0832 0.0780 0.0753

100 Portfolios
mean 0.7304 0.7326 0.7340

standard deviation 0.0297 0.0238 0.0206

This table shows the mean and the standard deviation of the estimated optimal shrinkage intensity α̂ for
each model.



Table 5: The mean squared error of the HJ-distance from two estimation methods of G

Number of Observations T=160 T=330 T=700
(A)Simple Model
25 Portfolios

sample covariance 0.0084 0.0017 0.00046
shrinkage estimation 0.0033 0.0009 0.00032

100 Portfolios
sample covariance 0.5630 0.0394 0.0040

shrinkage estimation 0.0424 0.0067 0.0009
(B)Fama-French Model
25 Portfolios

sample covariance 0.00440 4.9618× 10−4 6.4341× 10−5

shrinkage estimation 0.00098 1.1522× 10−4 1.4838× 10−5

100 Portfolios
sample covariance 0.5606 0.0385 0.0036

shrinkage estimation 0.0511 0.0077 0.0009
(C)Premium-Labor Model
25 Portfolios

sample covariance 0.0049 7.4934× 10−4 1.1823× 10−4

shrinkage estimation 0.0009 1.6685× 10−4 2.9242× 10−5

100 Portfolios
sample covariance 0.5139 0.0366 0.0038

shrinkage estimation 0.0331 0.0054 0.0007

This table compares the HJ-distances when the sample covariance or the shrinkage covariance is used as
the weighting matrix. Here, we report the mean squared error.



Table 6: Rejection frequencies of the HJ-distance test with shrinkage estimation of G using five
factors

Number of Observations T=160 T=330 T=700
(A)Simple Model
25 Portfolios

1% 1.3 1.3 0.8
5% 6.6 6.4 5.3
10% 12.8 12.3 10.4

100 Portfolios
1% 3.5 1.3 0.9
5% 14.9 7.1 5.2
10% 28.0 13.2 11.0

(B)Fama-French Model
25 Portfolios

1% 1.2 1.2 0.7
5% 5.4 4.9 3.9
10% 9.6 9.6 9.4

100 Portfolios
1% 23.4 7.8 2.5
5% 49.7 22.3 10.8
10% 63.0 33.7 20.4

(C)Premium-Labor Model
25 Portfolios

1% 6.3 9.6 5.4
5% 17.9 20.5 13.4
10% 28.8 31.4 23.2

100 Portfolios
1% 28.5 21.0 11.6
5% 55.5 44.9 30.0
10% 70.4 57.0 42.0

This table shows the rejection rates over 1000 trials using the p-value of the HJ-distance. We simulate
the factors and returns in the same way as we have done in Table 1, but we use two additional factors
when we estimate the factor model and compute the shrinkage target. They are simulated with the same
statistic properties of the first two factors in the original three factors.



Table 7: Rejection frequencies of the HJ-distance test with shrinkage estimation of G using two
factors

Number of Observations T=160 T=330 T=700
(A)Simple Model
25 Portfolios

1% 4.2 1.8 1.2
5% 13.1 9.8 7.1
10% 23.0 17.2 11.8

100 Portfolios
1% 97.2 45.0 11.0
5% 99.6 69.8 28.4
10% 99.9 81.3 41.4

(B)Fama-French Model
25 Portfolios

1% 3.3 2.1 0.9
5% 10.6 7.8 5.9
10% 18.5 13.2 12.0

100 Portfolios
1% 48.5 23.5 6.0
5% 66.3 38.9 19.6
10% 79.3 50.5 29.6

(C)Premium-Labor Model
25 Portfolios

1% 7.5 10.4 5.4
5% 20.9 22.6 14.7
10% 29.3 31.7 24.7

100 Portfolios
1% 53.7 46.8 18.7
5% 78.2 65.0 38.6
10% 85.8 74.7 51.4

This table shows the rejection rates over 1000 trials using the p-value of the HJ-distance. We simulate the
factors and returns in the same way as we have done in Table 1, but we use only two randomly selected
factors when we estimate the factor model and compute the shrinkage target.



Table 8: Rejection frequencies of the HJ-distance test with the estimation of G using a three-
factor structure model

Number of Observations T=160 T=330 T=700
(A)Simple Model
25 Portfolios

1% 1.1 1.3 0.8
5% 6.3 6.7 5.3
10% 12.1 12.4 10.5

100 Portfolios
1% 0.9 1.0 0.9
5% 9.8 6.4 5.4
10% 20.5 13.1 10.9

(B)Fama-French Model
25 Portfolios

1% 1.3 1.3 0.7
5% 5.5 5.1 4.1
10% 9.6 9.8 9.5

100 Portfolios
1% 7.1 3.6 2.3
5% 29.0 15.1 8.4
10% 46.5 25.6 16.0

(C)Premium-Labor Model
25 Portfolios

1% 6.2 9.7 5.4
5% 17.8 20.7 13.5
10% 28.6 32.3 23.5

100 Portfolios
1% 21.5 18.5 9.4
5% 47.3 40.4 28.0
10% 62.5 53.3 39.5

This table shows the rejection rates over 1000 trials using the p-value of the HJ-distance. We use three
(correct) factors to estimate the structure model, and use the structure covariance as the weighting
matrix.



Table 9: Rejection frequencies of the HJ-distance test with the estimation of G using a two-factor
structure model

Number of Observations T=160 T=330 T=700
(A)Simple Model
25 Portfolios

1% 0.0 0.0 0.0
5% 0.0 0.0 0.0
10% 0.1 0.2 0.0

100 Portfolios
1% 0.0 0.0 0.0
5% 0.0 0.0 0.0
10% 0.0 0.0 0.0

(B)Fama-French Model
25 Portfolios

1% 0.0 0.0 0.0
5% 0.0 0.1 0.0
10% 0.0 0.3 0.0

100 Portfolios
1% 0.0 0.0 0.0
5% 0.6 0.6 0.4
10% 3.3 2.5 1.6

(C)Premium-Labor Model
25 Portfolios

1% 3.5 5.9 3.7
5% 12.1 13.4 9.3
10% 17.7 20.7 15.6

100 Portfolios
1% 12.6 10.6 6.2
5% 29.8 24.0 15.6
10% 42.8 38.8 25.6

This table shows the rejection rates over 1000 trials using the p-value of the HJ-distance. We randomly
select two factors from the three factors and estimate the factor model. Then we compute the structure
covariance and use it as the weighting matrix.
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Figure 1: The density functions for α̂ in the Simple Model of 100 Portfolios
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Figure 2: The density functions for α̂ in a misspecified Simple Model of 100 Portfolios




