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Abstract

This paper proposes two simple tests that are based on certain time domain properties
of I(d) processes. First, if a time series follows an I(d) process, then each subsample of the
time series also follows an I(d) process with the same value of d. Second, if a time series
follows an I(d) process, then its dth differenced series follows an I(0) process. Simple as they
may sound, these properties provide useful tools to distinguish the true and spurious I(d)
processes.

In the first test, we split the sample into b subsamples, estimate d for each subsample, and
compare them with the estimate of d from the full sample. In the second test, we estimate
d, use the estimate to take the d th difference of the sample, and apply the KPSS test and
Phillips-Perron test to the differenced data and its partial sum. Both tests are applicable to
both stationary and nonstationary I(d) processes.

Simulations show that the proposed tests have good power against the spurious long
memory models considered in the literature. The tests are applied to the daily realized
volatility of the S&P 500 index.

JEL Classification Number: C12, C13, C14, C22
Keywords: long memory; fractional integration; structural breaks; realized volatility.

1 Introduction

Long memory (fractionally integrated, I(d)) processes have been used extensively in modeling the
strong persistence observed in volatility of asset prices. Important contributions include Ding,
Granger and Engle (1993), Baillie, Bollerslev and Mikkelsen (1996), Andersen and Bollerslev
(1997), Breidt et al. (1998), Bollerslev and Wright (2000), Andersen et al. (2003), Deo, Hurvich
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Theory and Applications (SETA), and the seminar at Yokohama National University for helpful comments. The
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and Lu (2005), Hurvich, Moulines, and Soulier (2005), and Christensen and Nielsen (2006), just
to name a few.

At the same time, many studies show that the time series with structural breaks can induce
a strong persistence in the autocorrlation function and hence generate “spurious” long memory
(Diebold and Inoue, 2001, Gourieroux and Jasiak, 2001, Granger and Hyung, 2004, Perron
and Qu, 2006). By providing examples in which long memory can be easily confused with
structural breaks, this literature concludes that it is very difficult to distinguish between true
and spurious long memory processes. We are left with the impression that long memory and
structural breaks are almost observationally equivalent and that long memory may fall into an
“empty box” category. Perron and Qu (2006) analytically show how a stationary short memory
process with level shifts can generate spurious long memory.

On the other hand, there is evidence that long memory processes successfully model some
economics and financial data. Andersen et al. (2003) and Bhardwaj and Swanson (2006) find
that the long memory models provide significantly better out-of-sample predictions than AR,
MA, ARMA, GARCH and related models. Granger and Hyung (2004) also report that long
memory models have better out-of-sample forecasting performance than the occasional break
models, although the evidence is statistically insignificant. Mayoral (2006) develops a time-
domain test of I(d) versus I(0) plus trends and/or breaks, and finds that the null of I(d) is not
rejected with the U.S. inflation data. Hsu (2005) reports that the U.S. inflation rates have strong
dependence even after the breaks in the mean are allowed. Choi and Zivot (2005) estimate the
d of an exchange rate forward discount series after adjusting for breaks in their mean. Choi and
Zivot find that allowing for structural breaks reduces the persistence of the forward discount
but there is still evidence of long memory.

This paper proposes two simple tests that are based on certain time domain properties of
I(d) processes. First, if a time series follows an I(d) process, then each subsample of the time
series also follows an I(d) process with the same value of d. Second, if a time series follows an
I(d) process, then its dth differenced series follows an I(0) process. Simple as they may sound,
these properties provide useful tools to distinguish the true and spurious I(d) processes. Both
tests are applicable to both stationary and nonstationary I(d) processes.

In the first test, we split the sample into b subsamples, estimate d for each subsample, and
compare them with the estimate of d from the full sample. We use the local Whittle (Gaus-
sian semiparametric) estimator (Robinson, 1995) and the exact local Whittle (ELW) estimator
(Shimotsu and Phillips, 2005; Shimotsu, 2006) to estimate d, mainly because of their computa-
tional simplicity and the invariance of their limiting distribution with respect to d. For spurious
I(d) models, it turns out that the averaged estimates from the subsamples tend to differ from the
full sample estimate, and their difference increases as the degree of sample splitting increases.
Even when the spurious I(d) models can generate certain features of the true I(d) models, such
as autocorrelation’s rate of decay, the “implied value” of d from these models depends on their
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parameter values (e.g. the switching probability) and the number of the observations. Once we
split the sample, the combination of the number of observations and parameter values changes,
and it generates a different “implied value” of d. Because this test involves only splitting the
sample and estimating d for each subsample, an empirical researcher can routinely use it as a
reality check before proceeding to a further analysis of the data at hand. We also develop a
formal test statistic that tests the null of parameter constancy.

In the second test, we estimate d on the whole sample, use the estimate to take the dth
difference of the sample, and apply the KPSS test and Phillips-Perron test to the differenced data
and its partial sum. Despite its simplicity, it provides a very powerful tool to distinguish between
the true and spurious I(d) processes. The spurious long memory processes are essentially I(0)
or I(1) in their nature, and taking their dth difference magnifies their non-I(d) properties. The
limiting distribution of these test statistics depends on d, and its simulated critical values are
provided.

Other tests to distinguish between the long memory and structural breaks have been devel-
oped recently. Ohanissian et al. (2004) propose a test of true versus spurious long memory by
comparing the estimates of d obtained from temporally aggregated series with different degrees
of aggregation. It exploits the invariance of the memory parameter under temporal aggregation
proven by Chambers (1998). Other contributions include Berkes et al. (2006), Dolado et al.
(2005), Giraitis et al. (2006), Mayoral (2006), and Perron and Qu (2006). Banerjee and Urga
(2005) provide a comprehensive survey of the literature on both long memory and structural
breaks.

The rest of the paper is organized as follows. Section 2 reviews stationary long memory
processes and local Whittle estimation. Section 3 introduces our sample splitting-based tests.
Section 4 extends the results in Sections 2 and 3 to nonstationary I(d) processes. Section 5
discusses our second test based on the dth differencing. Section 6 reports the simulation results
and applies the proposed tests to the daily realized volatility of the S&P 500 index. Section 7
concludes. Proofs and technical results are collected in Appendix in Section 8.

2 Long-memory process and local Whittle estimation

In this and the following section, we consider covariance stationary long memory processes. We
assume the spectral density f(λ) of the process Xt satisfies

f(λ) ∼ Gλ−2d, as λ → 0+,
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where d ∈ (−1/2, 1/2) and G ∈ (0,∞). The most widely used long memory process is a frac-
tionally integrated process, given by

(1− L)d Xt = ut, (1)

where L is the lag operator and ut is a covariance stationary process whose spectral density is
bounded and bounded away from zero at the zero frequency λ = 0.

Define the discrete Fourier transform (dft) and the periodogram of Xt evaluated at the
fundamental frequencies as

wx (λj) = (2πn)−1/2
n∑

t=1

Xte
itλj , λj =

2πj

n
, j = 1, . . . , n, (2)

Ix (λj) = |wx (λj) |2.

Local Whittle (Gaussian semiparametric) estimation was developed by Künsch (1987) and
Robinson (1995). Specifically, it starts with the following Gaussian objective function, defined
in terms of the parameters d and G

Qm(G, d) =
1
m

m∑
j=1

[
log
(
Gλ−2d

j

)
+

λ2d
j

G
Ix (λj)

]
, (3)

where m is some integer less than n. The local Whittle procedure estimates G and d by mini-
mizing Qm(G, d), so that

(Ĝ, d̂) = arg min
G∈(0,∞),d∈[∆1,∆2]

Qm(G, d),

where ∆1 and ∆2 are numbers such that −1/2 < ∆1 < ∆2 < ∞. It will be convenient in what
follows to distinguish the true values of the parameters by the notation G0 = fu (0) and d0.
Concentrating (3) with respect to G gives

d̂ = arg min
d∈[∆1,∆2]

R(d),

where

R(d) = log Ĝ(d)− 2d
1
m

m∑
1

log λj , Ĝ(d) =
1
m

m∑
1

λ2d
j Ix (λj) .

Robinson (1995) shows
√

m(d̂ − d0) →d N(0, 1/4) as n → ∞ under the conditions stated in
Section 3.
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3 Sample splitting-based diagnosis

This section provides two diagnoses based on sample splitting; one is based on visual exam-
ination, and the other is a formal statistical test. Let b be an integer and split the sample
into b blocks, so that each block has n/b observations. We assume n/b is integer. Define d̂(a),
a = 1, . . . , b, be the local Whittle estimator of d computed from the ath block of the observations,
{Xt : t = (a− 1)n/b + 1, . . . , an/b}.

The choice of m, the number of the periodogram ordinates used in the objective func-
tion, plays an important role in the local Whittle and other semiparametric estimators, be-
cause it determines the width of the frequency band used in estimating d. We set the num-
ber of the periodogram ordinates used in the subsample estimation as m/b. With this choice,
the subsample estimation uses the same amount of frequency domain information as the es-
timation by the total sample. Specifically, the subsample uses the periodogram ordinates
2π/(n/b), . . . , 2π(m/b)/(n/b). This mitigates the effect of short-run dynamics on the test statis-
tic, because the estimates using the subsamples have the same amount of bias from short-run
dynamics of Xt as the estimate using the total sample.

For the ath subsample, define

d̂(a) = arg min
d∈[∆1,∆2]

R(a)(d),

where the objective function is constructed from the ath block of the observations:

R(a)(d) = log Ĝ(a)(d)− 2d
b

m

m/b∑
j=1

log λ̃j , Ĝ(a)(d) =
b

m

m/b∑
j=1

λ̃2d
j I(a)

x

(
λ̃j

)
,

I(a)
x

(
λ̃j

)
= (2πn)−1

∣∣∣∣∣∣
an/b∑

t=(a−1)n/b+1

Xte
itλ̃j

∣∣∣∣∣∣
2

, λ̃j =
2πj

n/b
, j = 1, . . . , n/b.

3.1 Visual examination based on sample-splitting

First, we introduce a simple visual examination of whether a given (possibly spurious long-
memory) process can reproduce one feature of the true long memory process. Consider estimat-
ing d by taking the average of d̂(1), . . . , d̂(b). Then, if Xt is an I(d) process, then the average of
d̂(1), . . . , d̂(b) should be close to d̂. As it turns out, it is not necessarily the case with spurious
long-memory processes.

We introduce assumptions on Xt, f(λ), and m. They are the same as Assumptions A1′-A4′

of Robinson (1995).
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Assumption A1 For some β ∈ (0, 2],

f(λ) ∼ G0λ
−2d0

(
1 + O(λβ)

)
as λ → 0+,

where G0 ∈ (0,∞) and d0 ∈ [∆1,∆2] ∩ (−1/2, 1/2).

Assumption A2

Xt − EX0 = C (L) εt =
∞∑

j=0

cjεt−j ,
∞∑

j=0

c2
j < ∞,

where E(εt|Ft−1) = 0, E(ε2
t |Ft−1) = 1 a.s., t = 0,±1,. . . , in which Ft is the σ-field generated by

εs, s ≤ t, and there exists a random variable ε such that Eε2 < ∞ and for all η > 0 and some
K > 0, Pr(|εt| > η ) ≤ K Pr(|ε| > η). Furthermore,

E(ε3
t |Ft−1) = µ3, E(ε4

t |Ft−1) = µ4, a.s., t = 0,±1, . . . ., µ3, µ4 < ∞.

Assumption A3 In a neighborhood (0, δ) of the origin, C(eiλ) is differentiable and

d

dλ
C(eiλ) = O

(
|C(eiλ)|

λ

)
as λ → 0 + .

Assumption A4 As n →∞,

1
m

+
m1+2β log2 m

n2β
→ 0.

The following Lemma is a simple consequence of the results in Robinson (1995):

Lemma 1 Suppose Assumptions A1-A4 hold. Then
√

m(d̄− d0) →d N(0, 1/4) as n →∞.

The limiting variance of d̄ is the same as that of d̂, the estimator of d constructed from the
full (non-split) sample, because d̂(a) for different a are asymptotically independent due to the
asymptotic uncorrelatedness of I

(a)
x (λ̃j). As shown in the simulation below, in finite samples d̄

has a larger variance than d̂. We cannot use
√

m(d̂− d̄) to construct a test statistic, because it
has a degenerate limiting distribution as shown in Section 3.2. However, even a simple visual
examination provides useful information regarding the nature of the data.

We compare the behavior of d̄ for true and spurious long memory processes through sim-
ulations. We consider three processes that have been shown to exhibit spurious long memory
properties by Diebold and Inoue (2001) and Granger and Hyung (2004). The first is the mean-
plus-noise model, which is given by

Xt = µt + εt, µt = µt−1 + vt, vt =

{
0 with probability 1− p,

wt with probability p,
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where εt ∼ iidN(0, σ2
ε) and wt ∼ iidN(0, 1). The second model is the stochastic permanent

break (STOPBREAK) model (Engle and Smith, 1999):

Xt = µt + εt, µt = µt−1 +
ε2
t−1

γ + ε2
t−1

εt−1, εt ∼ iidN(0, 1).

The third model is the Markov-switching model:

Xt =

{
N(0, σ2) if st = 0,

N(1, σ2) if st = 1,
M =

(
p00 1− p00

1− p11 p11

)
,

where st is a first-order Markov process taking the value 0 or 1 and the with transition probability
matrix is given by M.

Figures 1 and 2 plot kernel estimates of the density of d̄ for an I(0.4) process given by
(1) with ut ∼ iidN(0, 1) and the three spurious long memory processes. We choose d = 0.4,
since the typical estimates of d from realized volatility data lie around 0.4. The sample size
is set to n = 5, 000. This approximates the number of daily observations in 20 years. m and
b are chosen as m = 200 and b = {1, 2, 4, 8}. b = 1 corresponds to no sample splitting. The
parameter values of the spurious long memory processes are chosen so that the mean of d̄ when
b = 1 is approximately equal to 0.4. The upper panel of Figure 1 shows the density of d̄ with
I(0.4) process. The mean of d̄ remain unchanged even when b changes, but the distribution of
d̄ becomes more dispersed as b increases. The second panel of Figure 1 shows the density of d̄

when Xt is generated by the mean-plus-noise model. As b increases, the distribution of d̄ shifts
toward left and appears to more concentrate around its peak. Figure 2 shows the density of d̄ for
STOPBREAK and Markov-switching models. With the STOPBREAK model, the distribution
of d̄ changes similarly to the mean-plus-noise model. As illustrated by Diebold and Inoue (2001),
both models are I(1), and sample splitting appears to reduce their I(1) characteristics. With
the Markov-switching models, the density of d̄ does not appear to shift significantly but is more
concentrated around its peak for larger values of b.

In sum, the behavior of d̄ from spurious long memory models differs substantially from the
behavior of d̄ from a true long-memory process. In the following, we develop a formal test
statistic to test the null of the constancy of d across subsamples.

3.2 Test statistic for the parameter constancy

We construct a test statistic for formally testing true I(d) versus spurious I(d). It tests the
hypothesis H0 : d0 = d0,1 = · · · = d0,b, where d0,a is the true value of d from the ath subsample.
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Define a b + 1 vector d̂b and a b× (b + 1) matrix A as

d̂b =


d̂− d0

d̂(1) − d0

...
d̂(b) − d0

 , A =


1 −1 · · · 0
...

...
. . .

...
1 0 · · · −1

 .

In the proof of Lemma 2, we show that, under H0,

√
md̂b = Zn + bias(m), Zn →d N

(
0,

1
4
Ω
)

, Ω =

(
1 ι′b
ιb bIb

)
,

where Ib is a b× b identity matrix and ιb is a b× 1 vector of ones. We ignore the bias term for
the moment. Ω is singular with rank b, and simple algebra shows AΩA′ = bIb − ιbι

′
b, which has

rank b− 1. Define the Wald statistic for testing H0 as

W = 4mAd̂b(AΩA′)+(Ad̂b)′,

where (AΩA′)+ denotes a generalized inverse of AΩA′. Then W has a chi-squared limiting
distribution with b− 1 degrees of freedom.

Hurvich and Chen (2000, p. 164) report that the finite sample variance of the local Whittle
estimator tends to be larger than 1/(4m) and the Wald test based on the asymptotic variance
tends to overreject the null. Hurvich and Chen find that replacing m in the variance estimate
by a number cm improves approximation, where cm is defined as1

cm =
m∑

j=1

ν2
j , νj = log λj −

1
m

m∑
j=1

log λj = log j − 1
m

m∑
j=1

log j.

Since cm/m → 1 as m →∞, this modification does not alter the asymptotic distribution of the
test statistic. Following Hurvich and Chen, we introduce the adjusted Wald statistic2

Wc = 4m(cm/b/(m/b))Ad̂b(AΩA′)+(Ad̂b)′.

One feature of our test is that each subsample-based estimator uses the same amount of
frequencies. This implies that the bias of the all elements of d̂b are the same and allows us to
choose larger values of m than in estimating d.

We introduce two additional assumptions. Assumption A1′ strengthens Assumption A1, and
1Hurvich and Chen use 2 sin(λj/2) instead of λj , but their difference is small for λj ∼ 0. For more details, see

Hurvich and Chen (2000).
2We also experimented with more detailed modifications using both cm and cm/b, but the resulting test statistics

did not improve over Wc.
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Assumption A4′ relaxes Assumption A4 slightly. The maximum allowable expansion rate of m

when β = 2 is n6/7−δ for any δ > 0, contrary to the rate n4/5−δ allowed in Assumption A4.

Assumption A1′ For some β ∈ (0, 2],

f(λ) = G0λ
−2d0(1 + Eβλβ + O(λβ+1)) as λ → 0+,

where G0, Eβ ∈ (0,∞) and d0 ∈ [∆1,∆2] ∩ (−1/2, 1/2).

Assumption A4′ As n →∞,

1
m

+
m1+3β log30 m

n3β
→ 0.

The following Lemma establishes the limiting distribution of W.

Lemma 2 Suppose Assumptions A1′, A2, A3, and A4′ hold. Then W,Wc →d χ2(b − 1) as
n →∞.

A result corresponding to Lemma 2 but using the parametric Whittle estimator (Fox and
Taqqu, 1986; Giraitis and Surgailis, 1990) has been proven by Beran and Terrin (1994). Beran
and Terrin (1994) also suggest the possibility of extending their results to the log-periodogram
regression estimator, albeit without a formal justification.

Ohanissian et al. (2004) propose a test of true against spurious long memory by comparing
the estimates of d obtained from temporally aggregated series with different degrees of aggrega-
tion. While they report very good power of their test, their results are not directly comparable
to ours. Their test compares the memory parameter estimates that use (n/a)0.5 periodogram
ordinates, where a is the degree of temporal aggregation. Therefore, they compare the memory
parameter estimates that use different amount of frequency domain information depending on
the degree of temporal aggregation. Second, they are interested in analyzing 5-minute returns
with around 600,000 observations.

4 Extension to nonstationary I(d) processes

In this section, we extend Lemmas 1 and 2 to I(d) processes with initialization at t = 0 (the so-
called Type II processes). Type II processes are attractive in empirical applications, because of
their ability to accommodate both (asymptotically) stationary and nonstationary I(d) processes
in a single dgp.
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Assumption B0

Xt − µ0 = (1− L)−d0ut1{t ≥ 1}, (4)

where µ0 is a non-random unknown finite number, 1{·} is the indicator function, ut is stationary
with zero mean and spectral density fu(λ), and d0 ∈ (−1/2, 2).

Assumption B1 fu(λ) ∼ G0(1 + O(λβ)) as λ → 0 for some β ∈ (0, 2] and G0 ∈ (0,∞).

Assumption B2 ut satisfies Assumption A2.

Assumption B3 Assumption A3 holds.

Assumption B4 Assumption A4 holds, and
∑

j≥k E(utut+j) = O((log(k +1))−4),
∑

j≥k cj =
O((log(k + 1))−4) uniformly in k = 0, 1, . . ..

Assumption B5 (a) For any γ > 0,

1
m

+
m(1+2β) log2 m

n2β
+

log n

mγ
→ 0 as n →∞,

and (b) the spectral density of ut is bounded.
With Xt defined by (4), we can use both the local Whittle estimator and the exact local

Whittle estimator of Shimotsu and Phillips (2005), albeit the local Whittle estimator requires
d0 ∈ (−1/2, 3/4). Phillips and Shimotsu (2005, 2006) show that the local Whittle estimator
is consistent and asymptotically N(0, 1/4) for d0 ∈ (−1/2, 3/4). As shown by Shimotsu and
Phillips (2005), the exact local Whittle estimator is consistent and asymptotically N(0, 1/4)
for d0 ∈ (∆1,∆2) if ∆2 − ∆1 ≤ 9/2 and µ0 = 0. Shimotsu (2006) extends the exact local
Whittle estimator to develop the two-step feasible exact local Whittle (FELW) estimator that
accommodates unknown µ0 and a polynomial time trend in Xt.

Assumptions B1-B3 are analogous to assumptions A1-A3 except that they are imposed on
ut rather than Xt. The summability condition in Assumption B4 is fairly mild and allows for
poles and discontinuity of fu(λ) at λ 6= 0; see Shimotsu and Phillips (2006, p. 217). The rate
condition in Assumption B5(a) is slightly stronger than Assumption A5. Assumption B5(b)
excludes the poles in fu(λ) outside the origin. The FELW estimator uses the objective function

RF (d) = log ĜF (d)− 2d
1
m

m∑
j=1

log λj , ĜF (d) =
1
m

m∑
j=1

I∆d(x−eµ(d))(λj),

where I∆d(x−eµ(d))(λj) denotes the periodograms of (1− L)d(Xt − µ̃ (d)). µ̃ (d) is an estimate of
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µ0 defined by
µ̃ (d) = w(d)X + (1− w(d))X1,

where w(d) is a twice continuously differentiable weight function such that w(d) = 1 for d ≤ 1
2

and w(d) = 0 for d ≥ 3
4 . This form of µ̃ (d) is chosen so that the effect of estimation of µ0 on

estimation of d becomes negligible. See Shimotsu (2006) for details. The FELW estimator is
defined as

d̂F = d̃−RF (d̃)′/RF (d̃)′′, (5)

where d̃ is a first-stage m1/2-consistent estimator of d, for example the tapered estimators of
Velasco (1999) Hurvich and Chen (2003). The tapered estimators are m1/2-consistent but not
as efficient as the FELW estimator. A polynomial trend in Xt can be handled by detrending Xt

and applying the FELW estimator to the detrended data.
The following assumption corresponds to Assumptions A1′.

Assumption B1′ fu(λ) satisfies Assumption A1′ with d0 = 0.

The following lemmas show we can apply the asymptotic results of Lemmas 1 and 2 to Xt

generated by (4). We may use both the local Whittle and FELW estimator. Part (b) of Lemma
4 is proven only under the “standard” rate condition m = o(n2β/(2β+1)), which is stronger than
Assumption A4′. This is because of the difficulty in deriving the higher-order asymptotics for
the FELW estimator, although we conjecture that Lemma 4 (b) holds under Assumption A4′.

Lemma 3 (a) Suppose Assumptions B0-B4 hold and d0 ∈ (−1/2, 3/4). Then
√

m(d̄ − d0) →d

N(0, 1/4) as n → ∞. (b) Suppose Assumptions B0-B3 and B5 hold. Then
√

m(d̄F − d0) →d

N(0, 1/4) as n →∞, where d̄F is defined analogously to d̄ using the FELW estimator.

Lemma 4 (a) Suppose Assumptions B0, B1′, B2, B3, B4 and A4′ hold. Then W,Wc →d

χ2(b− 1) as n →∞. (b) Suppose Assumptions B0-B3 and B5 hold and we construct W and Wc

using the FELW estimator. Then W,Wc →d χ2(b− 1) as n →∞.

5 Test using dth differencing

The second test utilizes another time-domain property of an I(d) process; if an I(d) process
is differenced d times, then the resulting time series is an I(0) process. While this may seem
trivial, some spurious long-memory processes do not mimic this property.

We propose a test statistic that uses the Zt unit root test (Phillips and Perron, 1988) and
KPSS test (Kwiatkowski et al., 1992). The idea is simple; we first demean the data, then apply
the Zt and KPSS tests to its d̂th difference, where d̂ is a consistent estimate of d. The demeaning
needs to be done carefully, however, if we want to allow for nonstationary processes.
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We assume Xt follows a truncated I(d) process with initialization at t = 0, as in Assumption
B0:

Xt − µ0 = (1− L)−d0ut1{t ≥ 1},

where µ is a non-random unknown finite number. We use this specification, because it accom-
modates both (asymptotically) stationary and nonstationary Xt in a single model, and the d̂th
difference of Xt − µ0 is a truncated I(d − d̂) process for any pair of (d, d̂). Here, µ is the mean
of the process Xt in the sense EXt = µ0, but when d > 1/2 it may be better interpreted as the
initial condition of Xt.

We need to subtract an estimate of µ0 from Xt before taking its d̂th difference. When d0 is
known to be no larger than 1, we can use the sample average X = n−1

∑n
t=1 Xt as an estimate

of µ0. When d0 ≥ 1, however, using the sample average induces a nonnegligible error. This is
because X − µ0 = Op(nd0−1/2) and, as shown in the proof,

(1− L)d0(Xt −X) = ut + Op(nd0−1/2t−d0).

If d0 ≥ 1, the second term on the right has a nonnegligible effect on the sample statistics of
(1−L)d0(Xt −X), in particular, the sample variance and autocovariances. Following Shimotsu
(2006), we use X1 as an estimate of µ0 when d0 takes a large value. Although X1 is not a
consistent estimate of µ0, it turns out

(1− L)d0(Xt −X1) = ut + Op(t−d0),

and the error from estimating µ0 becomes negligible.
As in Shimotsu (2006), we use a linear combination of X and X1 to estimate µ0 :

µ̂ (d) = w(d)X + (1− w(d))X1,

where w(d) is a smooth (twice continuously differentiable) weight function such that w(d) = 1
for d ≤ 1/2 and w(d) = 0 for d ≥ 3

4 . An example of w(d) for d ∈ [1/2, 3/4] is (1/2)[1+cos(4πd)].
Then the difference between (1 − L)d0(Xt − µ̂ (d0)) and ut becomes negligible for any value of
d0.

With this estimate of µ0 in hand, define the dth differenced series as

ût = (1− L)d̂(Xt − µ̂(d̂)) =
t−1∑
k=0

Γ(−d̂ + k)

Γ(−d̂)k!
(Xt−k − µ̂(d̂)). (6)

We then apply the Zt and KPSS tests to ût. The Zt test with an intercept term is applied to
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the partial sum process of ût. The KPSS test statistic is defined as

η̂µ = n−2
n∑

t=1

S2
t /s2(l), St =

t∑
k=1

ek, s2(l) =
1
n

n∑
t=1

e2
t +

2
n

l∑
s=1

(
1− s

l + 1

) n∑
t=s+1

etet−s,

where et is the residuals from regressing ût on an intercept, i.e., et = ût − n−1
∑n

t=1 ût. s2(l)
is a consistent estimate of the long-run variance of (1 − L)d0(Xt − µ0). Including an intercept
stabilizes the finite sample behavior of the test statistic.

Assumption C1 Xt satisfies Assumption B0.

Assumption C2 d̂− d0 = op((log n)−1).

Assumption C3 For 0 ≤ r ≤ 1,

n−d0−1/2

[nr]∑
t=1

Xt ⇒ ω

Γ(d0 + 1)
Wd0+1(r), Wd(r) ≡

∫ r

0
(r − s)d−1dW (s), (7)

n−1/2

[nr]∑
t=1

ut ⇒ ωW (r), (8)

where W (r) is a standard Brownian motion, ω2 = 2πfu(0), and ⇒ signifies weak convergence
in the space D[0, 1].

Assumption C4 (a) l(d̂ − d0) →p 0. (b) s̃2(l) →p ω2, where s̃2(l) is the version of s2(l)
constructed with ut instead of ût.

Under Assumptions B0-B5, the local Whittle estimator satisfies Assumption C2 by Theorem
4.1 of Phillips and Shimotsu (2006), and the FELW estimator satisfies Assumption C2 by The-
orem 5 of Shimotsu (2006). Marrinuchi and Robinson (2000) show the convergence (7) when∑∞

j=1 j|cj | < ∞ and εt is iid with E|εt|q < ∞, where q = max{2, 2/(2d0 + 1)}. In our context,
q = 2 suffices in most cases, because d0 < 0 is unlikely to occur. Hosoya (2005, Theorems 2
and 3) show that the convergence (7) holds when ut is a white noise (not necessarily iid) with
E|ut|q < ∞ and has a bounded fourth-order cumulant spectra density. The convergence (8)
holds under weaker assumptions on ut than those required for (7) in general. Assumption C4(a)
limits the divergence rate of l when the convergence rate of d̂ is slow. A similar condition be-
tween the expansion rate of the bandwidth and the convergence rate of an estimator is employed
in other works on estimation of ω2, e.g. Hansen (1992) and de Jong and Davidson (2000). The
convergence s̃2(l) →p ω2 has been shown under various conditions on the temporal dependence
of ut (for example, Hansen (1992), de Jong and Davidson (2000)).

13



If ût were a level-stationary process without a linear time trend, then it follows from Phillips
and Perron (1988) and Kwiatkowski et al. (1992) that Zt →d P (W (r)) and η̂µ →d K(W (r)) =∫ 1
0 (W (r) − rW (1))2dr, where P (W (r)) denotes the standard Dickey-Fuller (DF) distribution

when an intercept is included. The following lemma establishes the limiting distribution of Zt

and η̂µ when they are applied to ût.

Lemma 5 Suppose Assumptions C1-C4 hold. Then Zt and η̂µ converge to P (W (r; d0)) and
K(W (r; d0)) in distribution as n →∞, where

W (r; d) = W (r)− w(d)(Γ(2− d)Γ(d + 1))−1r1−dWd+1(1).

The limiting distribution of Zt and η̂µ is affected by the limiting behavior of µ̂(d0). When
d = 0, W (r; d) reduces to a standard Brownian bridge. Table 1 lists the 1%, 5% and 10%
lower tail quantiles of P (W (r; d)) and the upper tail quantiles of K(W (r; d)) with w(d) =
(1/2)[1 + cos(4πd)] for d ∈ [1/2, 3/4] from 500,000 replications. We set n = 5, 000 and use the
true value of d in taking the dth difference of Xt. For small d, the critical values are similar
to those of the DF distribution and the ones in Table 1 of Kwiatkowski et al. (1992). As d

increases, the critical values decrease in the absolute value initially, then increases once d is
larger than 0.6, and changes little for d ≥ 1. Figure 3 plots the density estimate of P (W (r; d))
for some values of d. The distribution of P (W (r; d)) is more concentrated to the left than that
of P (W (r)).

When Xt has a linear time trend

Xt − µ0 − β0t = (1− L)−d0ut1{t ≥ 1},

we simply apply the above procedure to the demeaned and detrended data. First, let Ẋt denote
the demeaned detrended data:

Ẋt = Xt − µ̃− β̃t,

where µ̃ = n−1
∑n

t=1 Xt − β̃t̄, β̃ = (
∑n

t=1(t− t̄)2)−1
∑n

t=1(t− t̄)Xt, and t̄ = n−1
∑n

t=1 t. Then,
apply the Zt and KPSS test to

ũt = (1− L)d̂(Ẋt − µ̇(d̂)) =
t−1∑
k=0

Γ(−d̂ + k)

Γ(−d̂)k!
(Xt−k − µ̇(d̂)), (9)

where µ̇(d̂) = w(d)n−1
∑n

t=1 Ẋt + (1 − w(d))Ẋ1. The FELW estimator satisfies assumption C2
if applied to Ẋt (Shimotsu, 2006, Theorem 5). The following lemma provides the limiting
distribution of Zt and η̂µ in this case.

Lemma 6 Suppose Assumptions C1-C4 hold. Then Zt and η̂µ constructed with ũt in place of
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ût converge to P (W2(r; d0)) and K(W2(r; d0)) in distribution as n →∞, where

W2(r; d) = W (r) +
r2−dξ(d)
Γ(3− d)

+
w(d)r1−d

Γ(2− d)

[
Wd+1(1)
Γ(d + 1)

− ξ(d)
2

]
,

where ξ(d) = 12(Γ(d + 1))−1[−
∫ 1
0 Wd+1(r)dr + (1/2)Wd+1(1)].

Table 2 lists the 1%, 5% and 10% lower tail quantiles of P (W2(r; d)) and the upper tail
quantiles of K(W2(r; d)) with w(d) = (1/2)[1 + cos(4πd)] for d ∈ [1/2, 3/4]. Again, the critical
values are similar to those of the DF distribution and the ones in Table 1 of Kwiatkowski et al.
(1992) for small d.

6 Simulations and application to S&P 500 realized volatility

6.1 Simulation results from sample-splitting

Tables 3 and 4 report the mean of d̂ and d̄ and the rejection frequencies of the tests based on
W and Wc with 5% asymptotic critical values for n = 5, 000 and selected values of m. 10,000
replications were used.

Table 3 shows the simulation results when Xt follows an I(d) process. The local Whittle
estimator with [∆1,∆2] = [−1/2, 1] is used in the first and second panels, and the FELW
estimator is used in the third panel. The first panel report the results when Xt = (1−L)−0.4ut

with ut ∼ iidN(0, 1). Concurring Lemma 1, the mean of d̂ and d̄ are close to each other. The
unmodified Wald statistic W tends to overreject, and its size distortion is substantial when
b = 8. The modified Wald statistic Wc also tends to overreject, but its size distortion is much
smaller than that of W, and it has a good size except when b = 8 and m is small. As discussed
in Section 3, the test is expected to be relatively robust against the bias in semiparametric
estimation arising from the short-run dynamics of the data. The second panel of Table 3 shows
the results when Xt = (1−L)−0.1(1−0.6L)ut. The bias in d̂ is substantial, exceeding 0.2 when m

is large. On the other hand, the difference between d̂ and d̄ is small and not severely affected by
the short-run dynamics. The test is not completely free from the effect of short-run dynamics,
however, as the size distortion of W and Wc is larger than those in the first panel for larger
values of m. The third panel of Table 3 shows the results when Xt follows a unit root process:
Xt = (1−L)−1ut1{t ≥ 1}. The rejection frequencies of the W and Wc tests are similar to those
in the first panel and not affected by the value of d0.

Table 4 shows the results when Xt is generated by spurious I(d) processes. The local Whittle
estimator with [∆1,∆2] = [−1/2, 1] is used in estimating d. The first panel report the results
when Xt follows the mean-plus-noise model. The value of σ2

ε is fixed to 2, and the value of p

is adjusted depending on m so that the mean of d̂ is close to 0.4. The mean of d̄ decreases
monotonically as b increases, and the change in d̄ is larger when m is smaller. The difference
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between the mean of d̂ and d̄ becomes as large as 0.2 when m ≤ 400 and b = 8. The test based
on Wc appears to have a good power. The power of the test does not increase substantially
even when m increases. The test has larger power for larger b, but, in view of the size distortion
documented in Table 3, the test with b = 8 may not be very useful.

In the second panel, Xt is generated by the STOPBREAK model with σ2
ε = 2. The value of

γ is changed depending on m so that the mean of d̂ is close to 0.4. Similar to the first panel,
the mean of d̄ decreases monotonically as b increases, and the change in d̄ is larger when m

is smaller. Again, the difference between the mean of d̂ and d̄ is close to 0.2 when b = 8 and
m = 200. The power of the test is weaker than in the first panel, particularly for small values
of m. Interestingly, larger values of b do not necessarily lead to increases in the power. This
reinforces the view that choosing b = 2 or 4 may be preferable.

The third panel reports the results from the Markov-switching model. As in the other
spurious long-memory models, the mean of d̄ decreases as b increases, but its magnitude is
smaller than the other two models. Despite the smaller difference between the mean of d̂ and d̄,

the test based on Wc has good power, particularly when m is moderate to large. This is because
the value of each d̂(a) differs more across a in the Markov switching model than in other models.

Gourieroux and Robert (2005) develop a stochastic unit root model. This model has two
regimes, a random walk regime and a stationary regime, and the time spent in each regime is
determined endogenously. Specifically, Xt is modeled by

Xt =

{
µ + Xt−1 + εt, with probability πrw(Xt−1),
µ + εt with probability 1− πrw(Xt−1),

where εt is iid with mean zero, and πrw(x) is a cadlag increasing function with limx→−∞ πrw(x) >

0 and limx→∞ πrw(x) < 1. Gourieroux and Robert (2005) show that this model can produce
hyperbolically decaying autocorrelogram of Xt. The fourth panel shows the results when Xt is
generated by a stochastic unit root model with µ = 0, εt ∼ iidN(0, 1) and πrw(x) = α(1 −
x−2)1{x ≥ 1} (cf. Gourieroux and Robert, 2005, p. 18). The results are similar to those in the
third panel. The difference between the mean of d̂ and d̄ is small, but test based on Wc has
good power.

6.2 Simulation results from dth differencing

Table 5 reports the size of the test based on Zt and η̂µ for the three types I(d) processes used
in Table 3. Lag length l is set to m0.4, and the critical values are chosen by interpolating the
critical values in Table 1. The first panel shows the results when Xt = (1−L)−0.4ut1{t ≥ 1} with
ut ∼ iidN(0, 1). The test has good size overall, albeit they are undersized in some cases. The
underrejection is due to the error in estimating d, and it improves for larger m. The second panel
shows the results with Xt = (1−L)−0.2εt1{t ≥ 1} with (1−0.6L)εt ∼ iidN(0, 1). The estimates
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of d are upwardly biased from the short-run dynamics of the process, and the bias increases as m

increases. The tests correctly reject the null of I(d̂) with those biased values of d̂. This suggests
the possibility of using the dth differencing tests to check whether an (semiparametric) estimate
of d is contaminated from short-run dynamics. The third panel reports the results when Xt

follows a unit root process. The rejection frequencies are similar to those in the first panel.
Table 6 reports the rejection frequencies when Xt is generated by spurious I(d) processes.

In this table, the value of the tuning parameters such as p and γ is fixed across different m.

The mean of d̂ changes as m changes, which is another feature of spurious I(d) processes. As
shown in the first and second panels, the KPSS test has very strong power against the mean-
plus-noise model and the STOPBREAK model, while the Zt test has no power. This is because
these processes are essentially I(1) processes, and the residuals ût from d̂th differencing are
I(α) processes with α > 0. Consequently, the KPSS test correctly rejects the null of I(0) of
ût. On the other hand, the partial sums of ût behave like an unstable AR(1) process, and the
majority of the Zt statistic take positive values. The third and fourth panels show the results
with the Markov-switching model and the stochastic unit root model. Zt test has very strong
power, but the KPSS test has no power. This is because these processes are essentially an I(0)
process, and its d̂th difference is an overdifferenced process.

In sum, combining the Zt and KPSS test provides a powerful test against both types (I(0)
and I(1)) of spurious long memory models.

6.3 Simulation results with n = 240

Although the primary motivation of the proposed tests is application to financial datasets, we
investigate their applicability to datasets with a smaller sample size, n = 240. Table 7 reports
the rejection frequency of the proposed tests with the three types of I(d) processes used in Table
5. The overall results are similar to those in Tables 3 and 5. The modified Wald statistic Wc

tends to overreject but is relatively robust against the bias arising from the short-run dynamics.
The test based on Zt and η̂µ tend to underreject and also correctly reject the null of I(d̂) when
d̂ is biased.

Table 8 reports the rejection frequency with spurious I(d) processes. Not surprisingly, the
test based on Wc does not have strong power, with the exception of the stochastic unit root
model. The Zt and KPSS tests are able to detect spurious I(d) models, however, in particular
when m ≥ 40.

6.4 Application to S&P 500 realized volatility

We apply the proposed tests to the logarithm of the realized volatility of the S&P 500 index.
We construct a realized volatility series (Andersen et al. (2001a)) from thirty-minute intraday
returns on the S&P 500 index obtained from Tick Data, Inc. Thirty-minute interval was chosen
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to balance between the accuracy of the approximation of the continuous record asymptotics and
the bias from market microstructure problems (see Andersen et al. (2003), Deo et al. (2006)).

The returns are computed as the difference of the logarithm of the prices using the closing
prices from 10:00 a.m. to 3:00 p.m. Let pτ denote the logarithm of the price of the S&P 500
index at time τ, and define the h-period return at time τ as rτ+h,h = pτ+h − pτ . Then, the
realized daily volatility of day t is calculated as v2

t =
∑1/∆

j=1 r2
t+j∆,∆ (Andersen et al. (2001b)).

In other words, the realized volatility of day t is defined as the sum of the squares of 11 returns
in day t, where the 11th return is defined as the overnight return computed using the closing
price at 3:00 p.m. on day t and the 10:00 a.m. closing price on day t + 1. The dataset consists
of 5,000 observations spanning from 1/2/1985 to 10/25/2004.

Table 9 shows the estimates d̂ and d̄, the value of Wc, Zt, and η̂µ statistic from Xt = log |vt|
for various values of m ∈ [200, 800] and b = {1, 2, 4}. The value of d̂ and d̄ are close to each
other, and the Wc test rejects the null of the constancy of d only for m = 600. The Zt and η̂τ

statistic reject the null of I(d) only with d ≤ 0.41. Overall, the evidence against true I(d) is
not strong in view of the results in Table 4. However, both d̂ and d̄ decrease as m increases,
which is consistent with the mean-plus-noise model and STOPBREAK model. This suggests a
possibility of a presence of jumps and/or structural breaks in the data.

In Table 10, we split the data into five subperiods of length 1,000 and apply the same tests as
in Table 9 to each subperiod. The estimates of d vary across subperiods, partly due to sampling
variation and small m. Note that the asymptotic standard error is 0.155 and 0.098 for m = 40
and 160, respectively. The Zt and η̂τ statistic do not reject the null of I(d̂) in most cases, but
the null of the constancy of d is strongly rejected in the first and fourth subperiods.

The results in Tables 9 and 10 do not show a strong evidence against true I(d), even though
they suggest a strong possibility of local variation in d. They also suggest some possibility of the
presence of jumps and/or structural breaks, but not as overwhelming as would be observed if
the data were generated by those spurious I(d) models suggested in the literature. These results
appear to concur with the view of Granger and Hyung (2004) and Zivot and Choi (2005); a pure
I(d) process may not explain all of the persistence in the logarithm of the realized volatility, but
the data do not support an extreme view that structural breaks account for all the observed
persistence.

7 Conclusion

This paper proposes two simple tests to distinguish true and spurious I(d) processes that ac-
commodate both (asymptotically) stationary and nonstationary I(d) processes. The proposed
tests are based on certain time domain properties of true I(d) processes which spurious I(d)
processes do not mimic. Simulation results show that both tests have good power for the sample
size of 5,000. One of the tests has good power even with a sample size as small as 240.
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When applied to the daily realized volatility of the S&P 500 index, these test show some
evidence of infrequent structural breaks in the data. The evidence against true I(d) is not
strong, however, and the overall results suggest that the data generating process is somewhere
in between these two polar models of observed long memory property. Conducting a similar
experiment to Zivot and Choi (2005) with a realized volatility dataset may provide further
insight in this respect.

8 Appendix: Proofs and technical results

8.1 Proof of Lemma 1

The stated result follows if we show

√
m/b


d̂(1) − d0

...
d̂(b) − d0

→d N

(
0,

1
4
Ib

)
.

From the Cramér-Wald device, this holds if, for any b× 1 vector η = (η1, . . . , ηb)′,

√
m/b

(
η1(d̂(1) − d0) + · · ·+ ηb (d̂(b) − d0)

)
→d N

(
0,

1
4
(
η2
1 + · · ·+ η2

b

))
. (10)

Since each subsample and the bandwidth m/b satisfy Assumptions A1′-A4′ of Robinson
(1995), we can apply the arguments in Robinson (1995) leading to its page 1644 to obtain, for
a = 1, . . . , b,

√
m/b(d̂(a) − d0) = −

(
1
4

+ op(1)
)

2(m/b)−1/2

m/b∑
j=1

ν̃j

(
2πI(a)

ε (λ̃j)− 1
)

, (11)

where ν̃j = log j−(m/b)−1
∑m/b

j=1 log j with
∑m/b

j=1 ν̃j = 0 and I
(a)
ε (λ̃j) = (2πn)−1|

∑an/b
t=(a−1)n/b+1 εte

itλ̃j |2.
From Robinson (1995, p.1644),

(m/b)−1/2

m/b∑
j=1

ν̃j

(
2πI(a)

ε (λ̃j)− 1
)

=
an/b∑

t=(a−1)n/b+1

z
(a)
t + op(1), (12)

where z
(a)
(a−1)n/b+1 = 0 and, for (a − 1)n/b + 2 ≤ t ≤ an/b, z

(a)
t = εt

∑t−1
s=(a−1)n/b+1 εsc̃t−s and

c̃s = 2(n/b)−1(m/b)−1/2
∑m/b

j=1 ν̃j cos(sλ̃j).
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Hence, (10) follows if we show

b∑
a=1

ηa

an/b∑
t=(a−1)n/b+1

z
(a)
t →d N

(
0,
(
η2
1 + · · ·+ η2

b

))
. (13)

By a standard martingale CLT, (13) follows if

b∑
a=1

η2
a

an/b∑
t=(a−1)n/b+1

E((z(a)
t )2|Ft−1)−

(
η2
1 + · · ·+ η2

b

)
→ p0, (14)

b∑
a=1

an/b∑
t=(a−1)n/b+1

E
(
(z(a)

t )21{|zt| > δ}
)

→ 0 for all δ > 0, (15)

where 1{·} is the indicator function. Replacing (n, m) in the proof of equations (4.12) and
(4.13) of Robinson (1995) with (n/b, m/b) and applying it to

∑an/b
t=(a−1)n/b+1 E((z(a)

t )2|Ft−1) and∑an/b
t=(a−1)n/b+1 E((z(a)

t )21{|zt| > δ}) gives

an/b∑
t=(a−1)n/b+1

E((z(a)
t )2|Ft−1)− 1 →p 0,

an/b∑
t=(a−1)n/b+1

E
(
(z(a)

t )21{|zt| > δ}
)
→ 0 for all δ > 0,

for a = 1, . . . , b. Therefore, (14) and (15) follow, and we establish (10). �

8.2 Proof of Lemma 2

From Slutzky’s theorem and Theorem 9.2.2 of Rao and Mitra (1971), W and Wc have the stated
limiting distribution if, for some constant B,

√
m


d̂− d0

d̂(1) − d0

...
d̂(b) − d0

 =
Zn

2
+ Bn + op(1), Zn →d N (0,Ω) , Bn = Bιb+1m

1/2+βn−β. (16)

Let DR0 = ((∂/∂d)R(d0), (∂/∂d)R(1)(d0), · · · , (∂/∂d)R(b)(d0))′. Using Taylor expansion, (16) is
proven if we show

DR0 = 2Zn + 4Bιb+1m
1/2+βn−β + op(1), (17)

(∂2/∂2d)R(d̃) = 4 + Op(m−1/6), d̃ ∈ [d̂, d0] (18)

(∂2/∂2d)R(a)(d̃(a)) = 4 + Op(m−1/6), d̃(a) ∈ [d̂(a), d0], a = 1, . . . , b. (19)
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The order of magnitude, Op(m−1/6), on the right hand side of (18) and (19) is required so that
m1/2+βn−β[(∂2/∂2d)R(d̃)− 4]−1 →p 0 holds.

We prove (18) and (19) first. Define Êk(d) = m−1
∑m

j=1(log j)kj2dIx(λj), which corresponds
to Êk(H) on p. 1641 of Robinson (1995) with d = H−1/2. Then, as in (4.3) in Robinson (1995),
we obtain

(∂2/∂2d)R(d) = 4[Ê2(d)Ê0(d)− Ê2
1(d)]/Ê2

0(d).

Consequently, if we show

Êk(d̃)− Êk(d0) = op(n2d0m−1/6 log−k m), (20)

then (18) follows from repeating the argument in pp. 1643-44 of Robinson (1995) in conjunction
with m−1

∑m
j=1(log j)2−(m−1

∑m
j=1 log j)2 = 1+O(m−1 log2 m), which follows straightforwardly

from the Euler-Maclaurin summation formula. See Andrews and Sun (2004, p. 600) for the
explanation on why the term log−k m is necessary on the right hand side of (20).

In order to show (20), fix ε > 0 first. Following the argument in Robinson (1995) p. 1642,
on the set M = {d : m1/6(log m)5|d− d0| ≤ ε} we have

|Êk(d)− Êk(d0)| ≤ 2eεm−1/6 logk−4 mÊ0(d0).

Therefore, in place of (4.4) of Robinson (1995), we have

Pr
(
|Êk(d̃)− Êk(d0)| > η(2π/n)−2d0(log m)−km−1/6

)
≤ Pr

(
Ĝ(d0) > η(2eε)−1 log4−2k m

)
+ Pr

(
m1/6(log5 m)|d̃− d0| > ε

)
. (21)

The first probability in (21) tends to 0 for sufficiently small ε because Ĝ(d0) →p G0. In view of
(4.4), (4.5), and (3.4) of Robinson (1995), the second probability in (21) tends to 0 if

sup
d∈Θ1

|[Ĝ(d)−G(d)]/G(d)| = op(m−1/3 log−10 m), (22)

where G(d) = G0m
−1
∑m

j=1 λ2d−2d0
j and Θ1 = {d : d0 − 1/2 + ∆ ≤ d ≤ ∆2} for arbitrary small

∆ > 0. (22) follows from equations (4.7), (4.8) and (4.9) of Robinson (1995) and the assumption
mβ+1/3n−β log10 m → 0, and we show (20). (19) is proven in the same way.

We proceed to show (17). Taking the derivative of R(d0) and R(a)(d0) and using Ĝ(d0) =
G0 + Op(m−1/6) (from (22)) gives
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√
m

∂R(d0)
∂d

= (G0 + Op(m−1/6))−12m−1/2
m∑

j=1

νjλ
2d0
j Ix(λj), (23)

√
m/b

∂R(a)(d0)
∂d

= (G0 + Op(m−1/6))−12(m/b)−1/2

m/b∑
j=1

ν̃j λ̃
2d0
j I(a)

x (λ̃j), (24)

where νj = log j−m−1
∑m

j=1 log j with
∑m

j=1 νj = 0, and ν̃j is defined in the proof of Proposition

1. Define Z
(0)
n = m−1/2

∑m
j=1 νj(2πIε(λj)−1) and Z

(a)
n = bm−1/2

∑m/b
j=1 ν̃j(2πI

(a)
ε (λ̃j)−1). Then,

(17) follows if we show, for a = 1, . . . , b,

G−1
0 m−1/2

m∑
j=1

νjλ
2d0
j Ix(λj) = Z(0)

n + 2Bm1/2+βn−β + op(1), (25)

bG−1
0 m−1/2

m/b∑
j=1

ν̃j λ̃
2d0
j I(a)

x (λ̃j) = Z(a)
n + 2Bm1/2+βn−β + op(1), (26)

and we show
(Z(0)

n , Z(1)
n , · · · , Z(b)

n )′ →d N(0,Ω). (27)

We show (25) by showing

G−1
0 m−1/2

m∑
j=1

νjλ
2d0
j Ix(λj)−m−1/2

m∑
j=1

νjf(λj)−1Ix(λj) = 2Bm1/2+βn−β + op(1), (28)

m−1/2
m∑

j=1

νjf(λj)−1Ix(λj)−m−1/2
m∑

j=1

νj2πIε(λj) = op(1). (29)

Since f(λ) = G0λ
−2d(1 + Eβλβ + O(λβ+1)), the left hand side of (28) is

m−1/2Eβ

m∑
j=1

νjλ
β
j f(λj)−1Ix(λj) + m−1/2

m∑
j=1

νjO(λβ+1
j )f(λj)−1Ix(λj).

The second term is Op(m3/2+βn−1−β log m) = op(1). Rewrite the first term as

m−1/2Eβ

m∑
j=1

νjλ
β
j

[
f(λj)−1Ix(λj)− 2πIε(λj)

]
+ m−1/2Eβ

m∑
j=1

νjλ
β
j 2πIε(λj). (30)

Using the proof of (4.8) in Robinson (1995, p. 1648), we can show, for 1 ≤ r ≤ m,

r∑
j=1

(
f(λj)−1Ix(λj)− 2πIε(λj)

)
= Op(r1/3(log r)2/3 + r1/2n−1/4). (31)
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Applying (31), (4.9) of Robinson (1995), and summation by parts, we deduce that (30) equals
(cf. Henry and Robinson, 1996, p. 223, Phillips and Shimotsu, 2004, p. 686)

m−1/2Eβ

m∑
j=1

νjλ
β
j + op(1) = m1/2 Eββ

(β + 1)2
λβ

m + op(1),

and (28) holds with 2B = (β +1)−2Eββ(2π)β. (29) follows from (31), and we establish (25). An
identical argument gives (26).

It remains to show (27). From (12) and Robinson (1995, p. 1644), for a = 1, . . . , b,

Z(0)
n =

n∑
t=1

zt + op(1), Z(a)
n = b1/2

an/b∑
t=(a−1)n/b+1

z
(a)
t + op(1),

where z1 = 0 and, for t ≥ 2, zt = εt
∑t−1

s=1 εsct−s with cs = 2n−1m−1/2
∑m

j=1 νj cos(sλj). z
(a)
t

is defined in the proof of Proposition 1. Therefore, it suffices to show, for any b × 1 vector
η = (η1, . . . , ηb)′,

n∑
t=1

zt +
b∑

a=1

ηa

an/b∑
t=(a−1)n/b+1

b1/2z
(a)
t →d N (0,H(b, η)) , (32)

where H(b, η) = 1+2(η1 + · · ·+ηb)+ b(η2
1 + · · ·+η2

b ). By a standard martingale CLT, (32) holds
if

b∑
a=1

an/b∑
t=(a−1)n/b+1

E((zt + ηab
1/2z

(a)
t )2|Ft−1)−H(b, η) → p0, (33)

b∑
a=1

an/b∑
t=(a−1)n/b+1

E
(
(zt + z

(a)
t )21{|zt + z

(a)
t | > δ}

)
→ 0 for all δ > 0. (34)

(34) follows from (4.13) of Robinson (1995) and (15). Because
∑b

a=1

∑an/b
t=(a−1)n/b+1 E(z2

t |Ft−1) →p

1 from (4.12) of Robinson (1995), and
∑b

a=1

∑an/b
t=(a−1)n/b+1 E(ηab

1/2z
(a)
t )2|Ft−1) →p b(η2

1 + · · ·+
η2

b ) from (14), we establish (32) if we show, for a = 1, . . . , b,

an/b∑
t=(a−1)n/b+1

E(ztb
1/2z

(a)
t |Ft−1) →p 1. (35)

From Proposition 1, the left hand side is equal to b1/2
∑an/b−1

t=(a−1)n/b+1

∑an/b−t
s=(a−1)n/b+1 csc̃s + op(1),

which converges to 1 in probability from Proposition 2. Thus we show (32) and complete the
proof. �
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8.3 Proof of Lemma 3

For part (a), it suffices to show that (11) holds when Xt is generated by (4). The Taylor
expansion gives

0 = ∂R(a)(d̂(a))/∂d = ∂R(a)(d0)/∂d + [∂2R(a)(d̆)/∂d2](d̂(a) − d0),

where d̆ ∈ [d̂(a), d0] . Shimotsu and Phillips (2006, pp. 230-231) show ∂2R(a)(d̆)/∂d2 →p 4.

Shimotsu and Phillips (2006) show in line 13 on page 232 that

∂R(a)(d0)/∂d = 2(m/b)−1/2

m/b∑
j=1

ν̃j

(
2πI(a)

ε (λ̃j)− 1
)

+ op(1),

and (11) follows.
For part (b), it suffices to show that (11) holds when Xt is generated by (4) and d̂(a) is the

FELW estimator from the ath subsample. The Taylor expansion gives

d̂(a) − d0 = −
∂R

(a)
F (d0)/∂d

∂2R
(a)
F (d̆)/∂d2

+

[
1−

∂2R
(a)
F (d̆)/∂d2

∂2R
(a)
F (d̃)/∂d2

]
(d̃− d0).

where R
(a)
F (d) is constructed using the ath subsample and d̆ ∈ [d̂(a), d0]. From the proof of

Theorem 5 of Shimotsu (2006, p. 12), we have ∂2R
(a)
F (d)/∂d2 →p 4 for all d such that |d− d0| ≤

|d̃− d0|. Consequently, we obtain d̂(a) − d0 = −(1/4 + op(1)) ∂R
(a)
F (d0)/∂d + op(m−1/2).

We derive the limit of ∂R
(a)
F (d0) in two steps. Let R

(a)
E (d) denote the objective function

R
(a)
F (d) when µ̃(d) = µ0, i.e., when the mean is known. In other words, R

(a)
E (d) is the objective

function of the exact local Whittle estimator from the ath subsample. First, Shimotsu and
Phillips (2005, p.1918) show (m/b)1/2∂R

(a)
E (d0) = 2(m/b)−1/2

∑m/b
j=1 ν̃j(2πI

(a)
ε (λ̃j)− 1). Second,

the proof of Theorem 3b of Shimotsu (2006, p. 23) in conjunction with its proof of Theorems
1b and 2b shows ∂R

(a)
F (d0) = ∂R

(a)
E (d0) + op(m−1/2). Therefore, (11) follows. �

8.4 Proof of Lemma 4

We show part (a) first. In view of the proof of Lemma 2, it suffices to show (17)-(19) hold under
the current set of assumptions. First, note that (18) and (19) follow if (22 ) holds. To show (22),
the equation in the last line of page 230 of Shimotsu and Phillips (2006) provide a counterpart
of (4.8) of Robinson (1995) for Xt generated by (4):

E

∣∣∣∣∣∣
r∑

j=1

(G−1
0 λ2d0

j Ix(λj)− 2πIε(λj))

∣∣∣∣∣∣ = O(r1/2 log r + rβ+1n−β). (36)
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Since (4.7) and (4.9) of Robinson (1995) still hold under the current set of assumptions, (22)
follows from combining (36) with (4.7) and (4.9) of Robinson (1995).

The proof of part (a) completes if we show (17), which holds if (25) and (26) hold with Z
(0)
n

and Z
(a)
n defined above them. First, observe that (25) holds if λ2d0

j Ix(λj) is replaced with Iu(λj),
because ut satisfies Assumptions A1′, A2 and A3 with d0 = 0. Second, we have (from Shimotsu
and Phillips, 2006, pp. 231-232 for d0 ∈ (−1/2, 1/2), and from Shimotsu and Phillips, 2005, pp.
685-686 for d0 ∈ (1/2, 3/4))

m∑
j=1

νjλ
2d0
j Ix(λj)−

m∑
j=1

νjIu(λj) = op(m−1/2).

Therefore, (25) follows. An identical argument gives (26), and we complete the proof of part
(a).

For part (b), let d̂ denote the FELW estimator, and let d̂(a) denote the FELW estimator
from the ath subsample. The stated result follows if we show

√
m(d̂− d0, d̂

(1) − d0, · · · d̂(b) − d0)′ = Wn/2 + op(1), Wn →d N (0,Ω) . (37)

From the proof of Lemma 3, we have, for a = 1, . . . , b,

√
m/b(d̂(a) − d0) = −1

2
(m/b)−1/2

m/b∑
j=1

ν̃j(2πI(a)
ε (λ̃j)− 1) + op(1),

and using a similar argument gives
√

m(d̂− d0) = −(1/2)m−1/2
∑m

j=1 νj(2πIε(λj)− 1) + op(1).

Consequently, the left hand side of (37) can be written as −(W (0)
n ,W

(1)
n , · · · ,W

(b)
n )/2 + op(1),

where W
(0)
n = m−1/2

∑m
j=1 νj(2πIε(λj) − 1) and W

(a)
n = bm−1/2

∑m/b
j=1 ν̃j(2πI

(a)
ε (λ̃j) − 1). The

stated result then follows because (W (0)
n ,W

(1)
n , · · · ,W

(b)
n ) →d N (0,Ω) from (27) in the proof of

Lemma 2. �

8.5 Proof of Lemma 5

From Phillips and Perron (1988) and Kwiatkowski et al. (1992), the stated result follows if

n−1/2

[nr]∑
t=1

[
(1− L)d̂(Xt − µ̂(d̂))

]
⇒ ωW (r; d0), ω2 = 2πfu(0), r ∈ [0, 1], (38)

s2(l) → pω
2. (39)
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First, we show (38). Assume µ0 = 0 without loss of generality. Since Xt = (1−L)−d0ut1{t ≥ 1},
we have

X = n−1
n∑

t=1

Xt = n−1(1− L)−d0−1un1{t ≥ 1}.

Define θ = d̂− d0 and vt = 1{t ≥ 1}. If we apply (1−L)d̂ to (Xt − µ̂(d̂)), its partial sum equals

[nr]∑
t=1

[
(1− L)d̂(Xt − µ̂(d̂))

]
= (1− L)θ−1u[nr]1{t ≥ 1} − µ̂(d̂)(1− L)d̂−1v[nr]. (40)

Therefore, (38) follows if we show

n−1/2(1− L)θ−1u[nr]1{t ≥ 1} ⇒ ωW (r), r ∈ [0, 1], (41)

n−1/2µ̂(d̂)(1− L)d̂−1v[nr] ⇒ w(d0)(Γ(2− d0)Γ(d0 + 1))−1ωr1−d0Wd0+1(1). (42)

We show (41) first. Define ak(θ) = (1 − θ)k/k! − 1 = Γ(1 − θ + k)/[Γ(1 − θ)Γ(k + 1)] − 1,

then the left hand side of (41) is

n−1/2(1− L)θ−1u[nr]1{t ≥ 1} = n−1/2

[nr]−1∑
k=0

ak(θ)u[nr]−k + n−1/2

[nr]−1∑
k=0

u[nr]−k.

The second term on the right converges to ωW (r) from (8 ). For the first term on the right,
summation by parts gives

[nr]−1∑
k=0

ak(θ)u[nr]−k =
[nr]−2∑
k=0

(ak(θ)− ak+1(θ))
k∑

q=0

u[nr]−q + a[nr]−1(θ)
[nr]−1∑
q=0

u[nr]−q. (43)

From Phillips and Shimotsu (2004, p. 670),

ak(θ)− ak+1(θ) =
θΓ(k + 1− θ)

Γ(1− θ)Γ(k + 2)
.

Recall, if |θ| ≤ 1/ log n, for 1 ≤ k ≤ n we have k|θ| ≤ k1/ log n ≤ n1/ log n = e. Since Γ(k+α)/Γ(k+
β) = kα−β(1 + O(k−1)) (Erdélyi, 1953, p.47), we have

ak(θ)− ak+1(θ) = θ ·O(k−θ−1) = θ ·O(k−1) for |θ| ≤ 1/ log n,

and Taylor expansion gives ak(θ) = (Γ(1−θ))−1k−θ(1+O(k−1))−1 = θ ·O(log(k+1))+O(k−1).
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In view of E(
∑q

k=0 u[nr]−k)2 = O(q) for q = 1, . . . , [nr]− 1, it follows that

[nr]−1∑
k=0

ak(θ)u[nr]−k = θ ·Op

[nr]−2∑
k=0

(k + 1)−1/2 + n1/2 log n

+ Op

(
n−1/2

)
= op

(
n1/2

)
,

and (41) follows.
For (42), first note that

n1/2−d0 µ̂(d̂) = n1/2−d0w(d̂)X + n1/2−d0(1− w(d̂))X1.

n1/2−d0w(d̂)X →d w(d0)(Γ(d0+1))−1ωWd0+1(1) from (7) and d̂ →p d0. Furthermore, n1/2−d0(1−
w(d̂))X1 →p 0 because X1 = Op(1), w(d0) = 1 if d0 ≤ 1/2, and d̂ →p d0. Therefore, n1/2−d0 µ̂(d̂) →d

w(d0)(Γ(d0 + 1))−1ωWd0+1(1). Furthermore, applying Phillips and Shimotsu (2004, p.676, line
10) with replacing their −α + 1 with d̂− 1 gives

(1− L)d̂−1v[nr] =
(2− d̂)[nr]−1

([nr]− 1)!
=

Γ(1− d̂ + [nr])

Γ(2− d̂)Γ([nr])
= (Γ(2− d̂))−1[nr]1−d̂(1 + O([nr]−1))(44)

= (Γ(2− d0))−1(nr)1−d0(1 + op(1)),

and (42) follows.
For (39), define bk(θ) = Γ(−θ + k)/[Γ(−θ)Γ(k + 1)], then we obtain

ût = (1− L)θut1{t ≥ 1} − µ̂(d̂)(1− L)d̂vt

=
t−1∑
k=0

Γ(−θ + k)
Γ(−θ)Γ(k + 1)

ut−k − µ̂(d̂)(1− L)d̂vt

= ut +
t−1∑
k=1

bk(θ)ut−k − µ̂(d̂)(1− L)d̂vt. (45)

Applying summation by parts as in (43), proceeding as above, and using −θΓ(−θ) = Γ(1 −
θ) gives

∑t−1
k=1 bk(θ)ut−k =

∑t−2
k=1 θO(k−θ−2)

∑k
q=1 ut−q + O(t−θ−1)

∑t−1
q=1 ut−q. Then, it follows

from Minkowski’s inequality that E sup|θ|≤1/ log n |
∑t−1

k=1 bk(θ)ut−k|2 ≤ C(θ2 + t−1) for a finite
constant C and for all t. The third term on the right of (45) is Op(nd0−1/2t−d01{d0 < 3/4}) +
Op(t−d01{d0 > 1/2}), because (1 − L)d̂vt = (Γ(1 − d̂))−1t−d̂(1 + O(t−1)) from (44) and µ̂(d̂) =
Op(nd0−1/21{d0 < 3/4}) + Op(1{d0 > 1/2}). Therefore, the sample autocovariances of ût are
equal to those of ut up to on op(1) term, and s2(l)− s̃2(l) = op(1) and (39) follow. �
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8.6 Proof of Lemma 6

The stated result follows if

n−1/2

[nr]∑
t=1

[
(1− L)d̂(Ẋt − µ̇(d̂))

]
⇒ ωW2(r; d0), (46)

s2(l) → pω
2. (47)

Assume µ0 = β0 = 0 without loss of generality. First, we derive the limit of β̃. For β̃, applying
summation by parts and (7) gives

n−d0−3/2
n∑

t=1

(t− t̄)Xt = n−d0−3/2

[
−

n−1∑
t=1

t∑
k=1

Xk + (n− t̄)
n∑

k=1

Xk

]
→d (1/12)ωξ(d0).

Since n−3
∑n

t=1(t− t̄)2 → 1/12, it follows that n−d0+3/2β̃ → ωξ(d0).
We proceed to show (46). Substituting the definition of Ẋt into µ̇(d̂) gives

Ẋt − µ̇(d) = Xt − µ̃− β̃t− w(d)(X̄ − µ̃− β̃t̄)− (1− w(d))(X1 − µ̃− β̃)

= Xt − β̃t− w(d)(X̄ − β̃t̄)− (1− w(d))(X1 − β̃)

= Xt − β̃(t− 1)− w(d)[X̄ − β̃(t̄− 1)]− (1− w(d))X1.

Since
∑[nr]

t=1(1 − L)d̂vt = (1 − L)d̂−1v[nr] = (Γ(2 − d0))−1(nr)1−d0(1 + op(1)) from (44 ) and∑[nr]
t=1(1−L)d̂(t− 1) = (1−L)d̂−2v[nr]−1 = (Γ(3− d0))−1(nr)2−d0(1+ op(1)), it follows from (41)

and the limit of β̃ that

n−1/2

[nr]∑
t=1

(1− L)d̂Xt ⇒ ωW (r),

n−1/2

[nr]∑
t=1

β̃(1− L)d̂(t− 1) ⇒ ω

Γ(3− d0)
r2−d0ξ(d0),

n−1/2

[nr]∑
t=1

(1− L)d̂w(d̂)[X̄ − β̃(t̄− 1)] ⇒ ωw(d0)r1−d0

Γ(2− d0)

[
Wd0+1(1)
Γ(d0 + 1)

− ξ(d0)
2

]
,

and n−1/2
∑[nr]

t=1(1−L)d̂(1−w(d))X1 = Op(n1/2−d01{d0 > 1/2}) = op(1). Therefore, (46) follows.
For (47), we obtain the limit of ũt similarly to ût as (note that (1− L)dt = (1− L)d−1vt)

ũt = (1− L)d̂Xt − β̃(1− L)d̂(t− 1)− w(d̂)[X̄ − β̃(t̄− 1)](1− L)d̂vt − (1− w(d))X1(1− L)d̂vt

= ut + Op(θ + t−1/2) + Op(nd0−3/2t1−d0)

+Op(nd0−1/2t−d01{d0 < 3/4}) + Op(t−d01{d0 > 1/2}),
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and (47) follows. �

8.7 Auxiliary results

The following technical results that are used in the proof of Lemma 2.

Proposition 1
∑an/b

t=(a−1)n/b+1 E(ztb
1/2z

(a)
t |Ft−1) = b1/2

∑an/b−1
t=(a−1)n/b+1

∑an/b−t
s=(a−1)n/b+1 csc̃s+op(1)

for a = 1, . . . , b.

Proof The left hand side is equal to

b1/2

an/b∑
t=(a−1)n/b+1

t−1∑
s=(a−1)n/b+2

ε2
sct−sc̃t−s − 1

+ b1/2

an/b∑
t=(a−1)n/b+1

∑
r 6=s

∑
εsεrct−sc̃t−r, (48)

where
∑∑

r 6=s in the second term sums over r = 1, . . . , t− 1 and s = (a− 1)n/b + 1, . . . , t− 1
with r 6= s. The second term in (48 ) has mean zero and variance

an/b∑
t=(a−1)n/b+2

an/b∑
u=(a−1)n/b+2

min(t−1,u−1)∑
r=1,r 6=s

ct−rcu−r

min(t−1,u−1)∑
s=(a−1)n/b+1

c̃t−sc̃u−s

=
an/b∑

t=(a−1)n/b+2

t−1∑
r=1

t−1∑
s=(a−1)n/b+1

c2
t−r c̃

2
t−s

+2
an/b∑

t=(a−1)n/b+3

t−1∑
u=(a−1)n/b+2

u−1∑
r=1

u−1∑
s=(a−1)n/b+1

ct−rcu−r c̃t−sc̃u−s.

Note that c̃s satisfies |c̃s| = O(n−1m−1/2 log m), |c̃s| = O(m−1/2s−1 log m) for 1 ≤ s ≤ n/2b and∑n/b
s=1 c̃2

s = O(n−1 log2 m) (Robinson, 1995). In view of the order of cs (Robinson, 1995) and c̃s,

the first term is O(n−1 log4 m). The second term is bounded by

O

(
n∑

r=1

c2
r

)
4

an/b∑
t=(a−1)n/b+3

t−1∑
u=(a−1)n/b+2

 u−1∑
s=(a−1)n/b+1

c̃2
u−s

1/2 u−1∑
s=(a−1)n/b+1

c̃2
t−s

1/2

= O
(
n−3/2(log m)3

)
4

an/b∑
t=(a−1)n/b+3

t−1∑
u=(a−1)n/b+2

t−(a−1)n/b+1∑
r=t−u+1

c̃2
r

1/2

= O

n−3/2(log m)3
an/b∑

t=(a−1)n/b+3

t−1∑
u=(a−1)n/b+2

log m

m1/2(t− u)1/2

 = O(m−1/2 log4 m),

and hence the second term in (48) is op(1).
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The first term in (48) isb1/2

an/b−1∑
t=(a−1)n/b+1

(ε2
t − 1)

an/b−t∑
s=(a−1)n/b+1

csc̃s

+ b1/2

an/b−1∑
t=(a−1)n/b+1

an/b−t∑
s=(a−1)n/b+1

csc̃s − 1.

The first term is op(1) by using the bound on cs and c̃s and applying the argument of Robinson
(1995, p. 1546), and the stated result follows. �

Proposition 2 b1/2
∑an/b−1

t=(a−1)n/b+1

∑an/b−t
s=(a−1)n/b+1 csc̃s → 1 for a = 1, . . . , b.

Proof Set a = 1. The proof for the other values of a follow the same argument. Observe that

b1/2

n/b−1∑
t=1

n/b−t∑
s=1

csc̃s =
4b2

mn2

m∑
j=1

m/b∑
k=1

νj ν̃k

n/b−1∑
t=1

n/b−t∑
s=1

cos(sλj) cos(sλ̃k)

=
4b2

mn2

m/b∑
k=1

νbkν̃k

n/b−1∑
t=1

n/b−t∑
s=1

cos(sλbk) cos(sλ̃k) (49)

+
4b2

mn2

m/b∑
k=1

m∑
j 6=bk

νj ν̃k

n/b−1∑
t=1

n/b−t∑
s=1

cos(sλj) cos(sλ̃k) (50)

We show (49) → b−1 and (50) → 1 − b−1. For (49), since νbk = log(bk) − m−1
∑m

j=1 log j =

log k − log m/b + 1 + o(log−2 m) = ν̃k + o(log−2 m),
∑n/b−1

t=1

∑n/b−t
s=1 cos(sλ̃k)2 = (n/b − 1)2/4

(Robinson, 1995, p.1654), and (b/m)−1
∑m/b

k=1 ν̃2
k → 1, we have

(49) =
4b2

mn2

m/b∑
k=1

(ν̃k + o((log m)−2))ν̃k

n/b−1∑
t=1

n/b−t∑
s=1

cos(sλ̃k)2

=
4b−1

(m/b)(n/b)2

m/b∑
k=1

ν̃2
k

[
n2

4b2
+ O(n)

]
+ o(1) → 1

b
.

For (50), from (4.18) of Robinson (1995), for j 6= bk,

n/b−1∑
t=1

n/b−t∑
s=1

cos(sλj) cos(sλ̃k) =
1
2

n/b−1∑
t=1

n/b−t∑
s=1

[
cos
{

s(λj + λ̃k)
}

+ cos
{

s(λj − λ̃k)
}]

= Ajk + Bjk,
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where

Ajk = −n

2
+

1
2

1− cos(n(λj + λ̃k)/b)
4 sin2((λj + λ̃k)/2)

= −n

2
+ O(n2(j + kb)−2),

Bjk =
1
2

1− cos(n(λj + λ̃k)/b)
4 sin2((λj − λ̃k)/2)

=
1
2

n2

(2π)2
1− cos(n(λj + λ̃k)/b)

(j − bk)2
+ O (1) .

Therefore,

4b2

mn2

m/b∑
k=1

m∑
j 6=bk

νj ν̃kAjk = O

 log2 m

mn2

m/b∑
k=1

m∑
j=1

(
n + n2(j + kb)−2

) = o(1),

4b2

mn2

m/b∑
k=1

m∑
j 6=bk

νj ν̃kBjk =
2b2

m(2π)2

m/b∑
k=1

m∑
j 6=bk

νj ν̃k
1− cos(n(λj + λ̃k)/b)

(j − bk)2
+ o(1),

and it follows that

(50) =
2b2

m(2π)2

m/b∑
k=1

∑
j 6=bk

νj ν̃k
1− cos(n(λj + λ̃k)/b)

(j − bk)2
+ o(1)

=
2b2

m(2π)2

m/b∑
k=1

m∑
j≥b+1,j 6=bk

νj ν̃k
1− cos(n(λj + λ̃k)/b)

(j − bk)2
+ o(1).

Observe that

2b2

m(2π)2

m/b∑
k=1

m∑
j≥b+1,j 6=bk

1− cos(2π(j − bk)/b)
(j − bk)2

+ o(1)

=
4b2

m(2π)2

m−b∑
h=1

(
m

b
−
[
h

b

])
1− cos(2πh/b)

h2
+ o(1), h = j − bk

=
4b

(2π)2

(
π

2
2π

b
− 1

4
(2π)2

b2

)
+ o(1) → 1− 1

b
,

where [h/b] denotes the integer part of h/b, and the fourth line follows from
∑∞

h=1 cos(hx)/h2 =
π2/6− πx/2 + x2/4 (Gradshteyn and Ryzhik, 1994, 1.443.3).

Hence, (50)→ 1− b−1 follows if

1
m

m/b∑
k=1

m∑
j≥b+1,j 6=bk

(νj ν̃k − 1)
1− cos(2π(j − bk)/b)

(j − bk)2
→ 0. (51)

Define h = j − bk and ah = h−2(1− cos(2πh/b)), and note that 0 ≤ ah ≤ h−2. Rewrite the left
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hand side of (51) as

1
m

m−b∑
h=1

m/b−[h/b]∑
k=1

ah (νbk+hν̃k − 1) +
1
m

−1∑
h=−m+b

m/b∑
k=[−h/b]+1

ah (νbk+hν̃k − 1) (52)

The first term in (52) is equal to

1
m

m−b∑
h=1

ah

m/b−[h/b]∑
k=1

(
ν̃k

{
log(k + h/b) + log b− log m + 1 + O(m−1 log m)

}
− 1
)

=
1
m

m−b∑
h=1

ah

m/b−[h/b]∑
k=1

(ν̃k log(k + h/b)− 1) + o(1),

because
∑m/b−[h/b]

k=1 ν̃k =
∑[h/b]−1

k=1 ν̃k = O(h log m). Since ν̃k = log k−log(m/b)+1+O(m−1 log m)
and log(k + h/b) = log k + O(k−1h), we have

ν̃k log(k + h/b)

= log2 k − log(m/b) log k + log k + O(k−1h log m) + O(m−1 log2 m).

It follows that

1
m

m−b∑
h=1

ah

m/b−[h/b]∑
k=1

(ν̃k log(k + h/b)− 1)

=
1
m

m−b∑
h=1

ah

m/b−[h/b]∑
k=1

[
log2 k − log(m/b) log k + log k − 1

]
+ o(1)

=
1
m

m−b∑
h=1

ah

m/b∑
k=1

[
log2 k − log(m/b) log k + log k − 1

]
+ o(1)

=
1
m

m−b∑
h=1

ahO
(
log2 m

)
+ o(1) = o(1),

where the second line follows from
∑n

k=1 log2 k = n log2 n − 2n log n + 2n + O(log2 n) and∑n
k=1 log k = n log n − n + O(log n). The second term in (52) is o(1) by a similar argument,

giving (51) and the stated result follows. �
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Table 1. Simulated critical values

Zt KPSS
d 10% 5% 1% 10% 5% 1%

0.0 -2.750 -3.025 -3.556 0.347 0.460 0.736
0.1 -2.710 -2.989 -3.532 0.344 0.460 0.737
0.2 -2.678 -2.960 -3.500 0.342 0.453 0.731
0.3 -2.640 -2.932 -3.469 0.337 0.446 0.715
0.4 -2.600 -2.893 -3.432 0.335 0.440 0.702
0.5 -2.558 -2.850 -3.398 0.334 0.435 0.699
0.6 -2.475 -2.767 -3.336 0.321 0.419 0.661
0.7 -2.550 -2.838 -3.430 0.340 0.451 0.721
0.8 -2.568 -2.855 -3.430 0.348 0.463 0.743
0.9 -2.563 -2.849 -3.428 0.347 0.462 0.736
1.0 -2.563 -2.849 -3.424 0.347 0.460 0.737
1.1 -2.564 -2.850 -3.425 0.347 0.460 0.735
1.2 -2.565 -2.851 -3.426 0.347 0.460 0.735
1.3 -2.564 -2.852 -3.427 0.346 0.460 0.736
1.4 -2.564 -2.852 -3.425 0.346 0.460 0.736

Table 2. Simulated critical values

Zt (detrended) KPSS (detrended)
d 10% 5% 1% 10% 5% 1%

0.0 -2.989 -3.260 -3.806 0.120 0.148 0.219
0.1 -3.036 -3.308 -3.854 0.121 0.150 0.221
0.2 -3.065 -3.343 -3.879 0.126 0.157 0.232
0.3 -3.087 -3.360 -3.905 0.133 0.168 0.252
0.4 -3.090 -3.362 -3.913 0.143 0.182 0.275
0.5 -3.083 -3.359 -3.892 0.155 0.199 0.305
0.6 -2.959 -3.217 -3.734 0.186 0.238 0.371
0.7 -3.021 -3.237 -3.670 0.289 0.380 0.604
0.8 -3.181 -3.429 -3.897 0.330 0.439 0.703
0.9 -3.211 -3.489 -4.027 0.342 0.454 0.730
1.0 -3.128 -3.405 -3.954 0.347 0.460 0.737
1.1 -2.995 -3.264 -3.799 0.344 0.458 0.733
1.2 -2.870 -3.144 -3.672 0.340 0.446 0.717
1.3 -2.770 -3.052 -3.596 0.332 0.435 0.693
1.4 -2.692 -2.979 -3.523 0.325 0.424 0.669
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Table 3. Simulation results with I(d) processes: n = 5, 000

m mean(d̂) mean(d̄) rejection freq. (W ) rejection freq. (Wc)
b = 2 b = 4 b = 8 b = 2 b = 4 b = 8 b = 2 b = 4 b = 8

Xt = (1− L)−0.4ut

200 0.401 0.401 0.399 0.394 0.082 0.137 0.310 0.060 0.070 0.097
400 0.401 0.401 0.401 0.399 0.068 0.105 0.194 0.056 0.066 0.081
600 0.399 0.400 0.400 0.399 0.062 0.083 0.149 0.053 0.057 0.075
800 0.397 0.397 0.397 0.397 0.063 0.079 0.134 0.055 0.057 0.071

Xt = (1− L)−0.2(1− 0.6L)ut

200 0.225 0.225 0.224 0.222 0.079 0.133 0.301 0.060 0.069 0.095
400 0.285 0.287 0.290 0.294 0.068 0.103 0.191 0.056 0.064 0.079
600 0.354 0.357 0.361 0.367 0.070 0.093 0.164 0.059 0.069 0.081
800 0.420 0.423 0.427 0.434 0.080 0.105 0.170 0.070 0.080 0.096

Xt = (1− L)−1ut1{t ≥ 1}
200 0.999 0.997 0.993 0.987 0.073 0.129 0.272 0.053 0.067 0.076
400 1.000 1.000 0.998 0.994 0.063 0.093 0.176 0.052 0.057 0.070
600 1.004 1.003 1.002 1.000 0.061 0.088 0.149 0.054 0.062 0.071
800 1.007 1.007 1.006 1.005 0.059 0.077 0.122 0.054 0.057 0.065

Table 4. Simulation results with spurious I(d) processes: n = 5, 000

m mean(d̂) mean(d̄) rejection freq. (Wc)
b = 2 b = 4 b = 8 b = 2 b = 4 b = 8

p Xt ∼ mean-plus-noise model, σ2
ε = 2

200 0.002 0.424 0.359 0.268 0.167 0.456 0.748 0.796
400 0.004 0.397 0.350 0.285 0.201 0.445 0.725 0.881
600 0.006 0.379 0.338 0.283 0.211 0.482 0.725 0.895
800 0.010 0.388 0.352 0.304 0.242 0.493 0.728 0.878

γ Xt ∼ STOPBREAK model
200 180 0.423 0.377 0.316 0.239 0.265 0.286 0.242
400 120 0.398 0.358 0.307 0.243 0.351 0.444 0.408
600 90 0.392 0.356 0.309 0.251 0.414 0.544 0.556
800 70 0.395 0.362 0.319 0.266 0.459 0.620 0.656

p00, p11 Xt ∼ Markov-switching model
200 0.93 0.389 0.381 0.370 0.362 0.479 0.603 0.620
400 0.86 0.414 0.406 0.395 0.384 0.596 0.774 0.839
600 0.75 0.390 0.384 0.374 0.362 0.622 0.813 0.884
800 0.66 0.414 0.408 0.401 0.391 0.670 0.861 0.933

α Xt ∼ stochastic unit root model
200 0.96 0.394 0.374 0.344 0.304 0.540 0.800 0.886
400 0.92 0.377 0.365 0.347 0.321 0.566 0.843 0.955
600 0.90 0.395 0.386 0.372 0.351 0.581 0.867 0.977
800 0.88 0.391 0.384 0.372 0.355 0.580 0.871 0.980
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Table 5. Simulation results with I(d) processes: n = 5, 000, ut ∼ iidN(0, 1)

m mean(d̂) rejection freq. (Zt) rejection freq. (η̂µ)
10% 5% 1% 10% 5% 1%

Xt = (1− L)−0.4ut1{t ≥ 1}
200 0.400 0.079 0.032 0.004 0.077 0.031 0.002
400 0.400 0.088 0.040 0.005 0.092 0.039 0.004
600 0.399 0.090 0.042 0.007 0.098 0.045 0.007
800 0.397 0.087 0.041 0.007 0.103 0.050 0.009

Xt = (1− L)−0.2εt1{t ≥ 1}, (1− 0.6L)εt = ut

200 0.225 0.064 0.024 0.002 0.089 0.041 0.005
400 0.285 0.289 0.170 0.052 0.017 0.004 0.000
600 0.354 0.661 0.516 0.277 0.001 0.000 0.000
800 0.420 0.909 0.827 0.623 0.000 0.000 0.000

Xt = (1− L)−1ut1{t ≥ 1}
200 0.999 0.091 0.043 0.007 0.090 0.041 0.005
400 1.000 0.095 0.046 0.009 0.094 0.043 0.006
600 1.004 0.102 0.049 0.008 0.091 0.042 0.006
800 1.007 0.112 0.057 0.011 0.082 0.038 0.006

Table 6. Simulation results with spurious I(d) processes: n = 5, 000

m mean(d̂) rejection freq. (Zt) rejection freq. (η̂µ)
10% 5% 1% 10% 5% 1%

Xt ∼ mean-plus-noise model, p = 0.002
200 0.424 0.001 0.000 0.000 0.713 0.563 0.252
400 0.324 0.000 0.000 0.000 0.973 0.948 0.872
600 0.276 0.000 0.000 0.000 0.989 0.977 0.936
800 0.247 0.000 0.000 0.000 0.993 0.985 0.953

Xt ∼ STOPBREAK model, γ = 180
200 0.423 0.000 0.000 0.000 0.739 0.581 0.234
400 0.323 0.000 0.000 0.000 0.977 0.955 0.870
600 0.275 0.000 0.000 0.000 0.992 0.981 0.941
800 0.246 0.000 0.000 0.000 0.996 0.988 0.960

Xt ∼ Markov-switching model, p00 = p11 = 0.93
200 0.388 0.766 0.650 0.432 0.005 0.003 0.001
400 0.609 0.993 0.988 0.969 0.003 0.002 0.000
600 0.704 0.997 0.996 0.991 0.002 0.001 0.000
800 0.748 0.997 0.997 0.995 0.002 0.001 0.000

Xt ∼ stochastic unit root model, α = 0.96
200 0.394 0.821 0.721 0.486 0.002 0.001 0.000
400 0.543 0.997 0.994 0.979 0.000 0.000 0.000
600 0.594 0.999 0.999 0.994 0.000 0.000 0.000
800 0.612 0.999 0.999 0.995 0.000 0.000 0.000
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Table 7. Simulation results with I(d) processes: n = 240, ut ∼ iidN(0, 1)

m mean(d̂) rej. freq. (Wc) rej. freq. (Zt) rej. freq. (η̂µ)
b = 2 b = 4 10% 5% 1% 10% 5% 1%

Xt = (1− L)−0.4ut1{t ≥ 1}
20 0.387 0.079 0.050 0.073 0.040 0.013 0.068 0.025 0.003
40 0.389 0.070 0.103 0.062 0.024 0.002 0.072 0.025 0.002
60 0.385 0.065 0.092 0.074 0.031 0.004 0.093 0.037 0.004

Xt = (1− L)−0.2εt1{t ≥ 1}, (1− 0.6L)εt = ut

20 0.307 0.077 0.050 0.019 0.005 0.001 0.074 0.029 0.003
40 0.458 0.077 0.094 0.242 0.114 0.013 0.007 0.002 0.000
60 0.563 0.080 0.085 0.536 0.357 0.106 0.001 0.000 0.000

Xt = (1− L)−1ut1{t ≥ 1}
20 0.987 0.062 0.117 0.111 0.060 0.017 0.062 0.020 0.003
40 1.001 0.064 0.077 0.102 0.049 0.008 0.069 0.025 0.001
60 1.018 0.070 0.086 0.121 0.063 0.012 0.071 0.028 0.002

Table 8. Simulation results with spurious I(d) processes: n = 240

m mean(d̂) rej. freq. (Wc) rej. freq. (Zt) rej. freq. (η̂µ)
b = 2 b = 4 10% 5% 1% 10% 5% 1%

p Xt ∼ mean-plus-noise model, σ2
ε = 2

20 0.03 0.388 0.141 0.054 0.104 0.069 0.036 0.141 0.065 0.007
40 0.07 0.397 0.152 0.169 0.004 0.001 0.000 0.499 0.345 0.100
60 0.12 0.403 0.161 0.178 0.001 0.000 0.000 0.687 0.548 0.287

γ Xt ∼ STOPBREAK model
20 40 0.405 0.100 0.043 0.103 0.069 0.033 0.137 0.053 0.005
40 25 0.397 0.120 0.124 0.003 0.001 0.000 0.503 0.341 0.092
60 20 0.377 0.145 0.142 0.001 0.000 0.000 0.707 0.574 0.312

p00, p11 Xt ∼ Markov-switching model
20 0.85 0.364 0.107 0.026 0.053 0.023 0.005 0.063 0.040 0.017
40 0.60 0.363 0.176 0.146 0.348 0.179 0.038 0.021 0.013 0.002
60 0.50 0.470 0.263 0.280 0.696 0.522 0.205 0.011 0.006 0.000

α Xt ∼ stochastic unit root model
20 0.96 0.386 0.253 0.101 0.119 0.062 0.020 0.059 0.029 0.004
40 0.92 0.393 0.351 0.426 0.333 0.182 0.035 0.021 0.009 0.001
60 0.90 0.396 0.405 0.537 0.431 0.266 0.067 0.015 0.006 0.001
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Table 9. Estimation and test results with S&P 500 log realized standard deviation

m d̂ d̄ Wc Zt η̂µ

b = 2 b = 4 b = 2 b = 4
200 0.525 0.528 0.560 0.849 2.012 -1.443 0.126
300 0.488 0.489 0.525 1.372 7.664 -1.171 0.199
400 0.466 0.466 0.489 0.729 3.029 -1.017 0.256
500 0.452 0.451 0.474 0.217 6.296 -0.926 0.300
600 0.429 0.428 0.448 0.214 7.848* -0.802 0.376
700 0.409 0.409 0.421 0.423 3.790 -0.702 0.456*
800 0.391 0.389 0.402 0.441 4.837 -0.624 0.534*
Note: * indicates rejection of the null at the 5% level. χ2

0.95(1) = 3.84, χ2
0.95(3) = 7.82.

Table 10. Estimation and test results with S&P 500 log realized standard deviation

m d̂ d̄ Wc Zt η̂µ

b = 2 b = 4 b = 2 b = 4
subperiod 1: 1/2/1985 – 12/14/1988

40 0.549 0.531 0.340 0.068 3.825 -1.496 0.101
100 0.562 0.541 0.483 3.525 8.628* -1.499 0.096
160 0.449 0.419 0.366 2.520 8.907* -1.029 0.258

subperiod 2: 12/15/1988 – 11/27/1992
40 0.410 0.443 0.255 0.757 1.890 -1.379 0.200
100 0.358 0.375 0.304 0.015 1.709 -0.997 0.300
160 0.308 0.324 0.269 0.131 3.234 -0.775 0.404

subperiod 3: 11/30/1992 – 11/11/1996
40 0.367 0.390 0.364 0.207 1.536 -1.873 0.133
100 0.302 0.307 0.261 0.000 4.580 -1.327 0.246
160 0.274 0.269 0.236 0.010 8.101* -1.162 0.305

subperiod 4: 11/12/1996 – 10/27/2000
40 0.485 0.539 0.376 0.054 6.976 -2.572 0.058
100 0.386 0.391 0.321 0.213 12.770* -1.631 0.128
160 0.341 0.338 0.302 0.935 9.807* -1.347 0.176

subperiod 5: 10/30/2000 – 10/25/2004
40 0.656 0.611 0.561 0.013 3.804 -1.761 0.051
100 0.597 0.571 0.527 0.469 2.168 -1.089 0.142
160 0.480 0.465 0.435 0.052 1.873 -0.226 0.517*
Note: * indicates rejection of the null at the 5% level. χ2

0.95(1) = 3.84, χ2
0.95(3) = 7.82.
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Figure 1: density of the estimators
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