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Abstract

We study the dynamics of an industry subject to aggregate demand shocks where the produc-

tivity of a firm’s technology evolves stochastically over time. Each period, each firm, given the

aggregate demand shock, the productivity of its technology, and the distribution of technology

productivities in the economy, (i) chooses whether to remain in the industry or to exit to sell its

resources to an entrant; and (ii) an active firm chooses how much capital and labor to employ,

and hence output to produce. To characterize the intertemporal evolution of the distribution of

firms, we discuss in particular how exit decisions, aggregate output, profits and distributions of firm

productivities vary, (a) across different demand realization paths; (b) along a demand history path,

detailing the effects of continued good or bad market conditions; and (c) for different anticipated

future market conditions. Sufficient conditions are provide for worse demand realizations to lead

to increased exit of low-productivity firms and then to improved distributions of firms at all future

dates and states. Finally, it is shown that a downturn in demand can raise welfare due to the

impact on exit decisions.

Keywords: stochastic heterogeneity, aggregate shocks, exit, thin markets, demand uncertainty.
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1 Introduction.

This paper integrates aggregate demand uncertainty into a dynamic stochastic model of firm entry and

exit, and derives the consequences both for the evolution of the distribution of firms and for individual

firm decision making. Our model builds on the dynamic stochastic equilibrium model of firm entry and

exit developed by Hopenhayn (1990, 1992a, 1992b). In these papers, Hopenhayn analytically characterizes

the individual exit and production decisions of firms according to their age, size and productivity in the

unique invariant steady state equilibrium.

We extend these analyses to an environment with aggregate demand uncertainty. We contrast individ-

ual firm investment and exit decisions and their consequences for aggregate output, profits and productivity

distributions, (a) across different demand realization paths; (b) along a demand history path, examining

the effects of continued good or bad market conditions for future distributions of firms; and (c) for differ-

ent anticipated future market conditions. We provide conditions under which the theoretical model can

reconcile empirical regularities regarding counter-cyclical exit, correlations of exit rates with future GDP

growth, and the relative length and extent of recessions and expansions.

Incorporating aggregate uncertainty together with individual stochastic heterogeneity — both nec-

essary features of a rich model of industry dynamics — introduces formidable technical and modeling

challenges. A significant contribution of this paper is to characterize the distribution of firms, rather

than simply calculate selected higher order moments. In particular, we characterize the evolution of the

distribution of firms following arbitrary histories of demand shocks. To do this, we derive conditions under

which the distribution of firms can be ordered conditional on equilibrium exit decisions. In this context,

we consider such key questions as: Does an economy with a better distribution of firms produce more

output in all states? Will a more protracted period of high demand shocks lead to a better or worse

distribution of firms?

A second contribution is to endogenize the value of exit. We do so, by building in an opportunity cost

to exit: A firm can exit and sell its resources to another firm, but this requires that the firm’s resources

go un-utilized for a period while the resources are retooled so that they can be used by a potentially

more-efficient entrant. The amount that an entrant is willing to pay for those resources reflects the profits

that it expects to earn, and hence will vary with market conditions.

Endogenizing the value of exit complicates the characterization of the equilibrium evolution of the

distribution of firms. We prove that the endogenous value of production and the endogenous value of

exit vary procyclically, both rising with higher aggregate demand shocks. Two basic issues must then be

addressed: (i) Does firm exit rise or fall with higher demand shocks?, and (ii) Is the immediate impact

of these exit decisions on the distribution of firm productivities preserved over time? In particular, is the

effect of reduced exit on the distribution of firms persistent, so that the distributions of firms is worse

at all subsequent dates and states, or could this effect be reversed? Answering this second question is

fundamental to addressing the impact of recessions on the long-run productivity of the economy.

Obtaining analytical answers to these questions is difficult. The standard analytical tool for this class

of models is to prove that the competitive economy corresponds to the solution of a social planner’s prob-
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lem. Here, even when the solution to a social planner’s problem characterizes equilibrium, it is of limited

help: The fact that the equilibrium solves a surplus maximization problem, does not a priori ensure that

an improvement in the distribution of firms adversely affects all firms because of the endogenous effects on

exit. Consequently, the social planner characterization is not useful in investigation issues such as whether

an improvement in the distribution of firms is preserved at all future dates and states.

This leads to the development of conditions on the transition process for a firm’s technology for the

aggregate distribution to be totally ordered. We consider environments where distributions can always be

ordered in stochastic dominance terms, and use this to prove that an improvement in the distribution of

firms is preserved along every future demand path. This yields a strong characterization result: Ceteris

paribus, an economy which had greater past exit produces more output at every future date and state.

When aggregate distributions are comparable in stochastic dominance terms one can identify condi-

tions under which exit rate are counter-cyclical. For standard production technologies (e.g., CES), the

endogenous value of production varies more with market conditions than the endogenous value of exit, for

any two-state Markov demand process. It follows that exit falls with higher demand. Combining this with

the result that the effect of increased exit on future distributions of firm productivities is always preserved,

yields the result that demand downturns increase future output and lead to better future distributions of

firm productivities (ordered by stochastic dominance) at every future date and state.

We use these results to characterize how aggregate demand shocks affect industry dynamics. We

examine how outcomes across different demand realization paths, contrasting investment and exit decisions

and their consequences for aggregate output, profits and productivity distributions when one history of

demand realizations is uniformly better than another. Following this, the consequences for outcomes

along a demand history path are studied in order to describe the effect of continued good or bad market

conditions on both firm investment and exit decisions, and on aggregate variables. In particular, it turns

out that as a demand contraction continues, the distribution of firms grows ever better, setting the stage

for greater future output once demand improves. Conversely, firms in booming economies ‘rest on their

laurels’, so that the distribution of firms grows ever worse as a boom continues, sowing the seeds for a

greater fall in output when the demand boom ends.

We then derive the consequences of an improvement in anticipated future market conditions on current

and interim firm decisions and for the aggregate economy. We show that better anticipated future market

conditions induce more exit and give rise to better distributions of firm productivities at all earlier dates.

Relating our predictions to the data, we find that the theoretical model generates the counter-cyclical

exit found in the data (Davis and Haltiwanger 1992), the correlations of exit rates with future GDP

growth that are positive, economically large, persistent and statistically significant (Campbell 1998), and

the observation that recessions are shorter and sharper than expansions.

Finally, the paper considers how thin resale markets for an exiting firm’s specialized resources affect

equilibrium dynamics. Thin resale markets are economically important. Ramey and Shapiro (2001) find

that “The process of selling capital results in significant declines in economic value (equipment sold for only

one-third its inflation-adjusted book value, after accounting for normal annual depreciation).... Because
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of the large discounts experienced on the sale of capital, the option value of installed capital is very high”.

Hence, “Firms may rationally hold on to (under-utilized) capital for long periods of time.” Thin markets

drive a wedge between the social and private opportunity cost of the resources. A bad firm recognizing

that it may not receive the full value of its resources, may continue to operate, tying up valuable assets

that would only be released upon exit.

Thinner resale markets reduce the sensitivity of the endogenous value of exit to current market con-

ditions. Importantly, we show that industries with more specialized inputs (thinner resale markets) will

have more unproductive, but larger, firms and lower rates of entry and exit. This can explain the finding

of Dunne et al. (1989a) that substantial and persistent differences in entry and exit rates across industries

exist, and that industries with higher entry rates also have higher exit rates. We show constructively

that a downturn in demand can actually enhance total welfare because it narrows the wedge between the

social and private opportunity cost of the plant, increasing exit. Thus, the Darwinian cleansing effect of a

downturn on exit can raise future expected welfare by more than the immediate reduction in welfare due

to the downturn.

Finally, we highlight what this paper does not do. First, to focus on the impact of aggregate demand

shocks, our model does not directly introduce productivity gains from adopting new and better methods

of production (except to detail how incorporating such features into our model can generate predictions

consistent with the empirical regularity that recessions are sharper and more asymmetric than booms).

Levinsohn and Petrin (1999) find that the factors we model dominate. They empirically decompose aggre-

gate industry productivity changes in Chile into the portion due to rationalization, i.e., the replacement

of losers by winners that we model; and the portion due to the adoption over time of better methods of

production. They find “that very little of the increase in productivity was accounted for by firms actually

becoming more productive. Rather than firms becoming more productive, reallocation of market shares

to firms that were already more productive and net entry typically explain the increase in aggregate pro-

ductivity.” Indeed, our model predicts that newer firms should tend to be smaller, less efficient and more

likely to exit — precisely the features found in the data — and features that are hard to reconcile with

environments in which dynamics are driven by entrants acquiring cutting edge technologies. Second, to

focus on the dynamics of the output market, we take input prices as constant as in Hopenhayn (1992a),

and allow firms to enter only through the acquisition of another firm’s plant. We highlight when and how

our qualitative findings extend if these assumptions are relaxed.

The outline of the paper is as follows. We next place our contribution in the literature. Section 2

describes the economic environment. Section 3 characterizes industry dynamics. Section 4 considers how

the resale market depth affects outcomes. Section 5 concludes. Most proofs are in an appendix.

1.1 Related Literature.

Hopenhayn (1990, 1992a, 1992b) is most closely related to our work. Hopenhayn (1992a) characterizes

the individual patterns of entry and exit in the invariant steady state of his economy, emphasizing the

importance of (stochastic) heterogeneity across firms in explaining empirical regularities regarding the
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individual actions of firms. Dunne et al. (1989a, b) document that on an annual basis entering and exiting

firms account for about 40 percent of manufacturing firms, are on average one-third the size of continuing

firms, that exiting firms have higher costs and that the conditional probability of exit declines with both

age and size. The degree of heterogeneity across firms is enormous: Davis et al. (1996) document that

rates of job creation and destruction average about 10 percent a year, but are highly concentrated — only

23 percent of job destruction is accounted for by establishments that shrink by less than 20 percent over

a span of one year. These findings highlight the importance of firm specific sources of uncertainty for firm

survival and investment dynamics.

Jovanovic (1982) explores entry and exit dynamics when where firms learn about their profitability

from past performance. In Jovanovic’s model, the economy improves systematically over time, as better

firms tend to be more successful, and hence remain in the industry, and there is no exit in the limiting

economy. Jovanovic and MacDonald (1994b) explore the entry and exit dynamics of an industry following

a theoretical innovation. Jovanovic and MacDonald (1994a) analyze a related environment in which there

is no entry or exit, but firms choose how much to invest to try to acquire a superior technology.

Because of the analytical challenges involved much of the literature relies on numerical characteriza-

tions. Ishwaran (2000) numerically investigates a version of Hopenhayn’s model in which demand evolves

according to a two-state Markov process and there is a single input, capital. She calculates moments

conditioned on firm age and demand state. Our analysis highlights the importance of the path-dependent

evolution of the economy. The entire history of demand shocks determines the equilibrium distribution of

firms, and this distribution, in turn, impacts exit decisions. Her paper highlights the fact that the proper-

ties of industry dynamics that we derive cannot be addressed numerically (e.g., when does increased past

exit or reduced demand lead to greater output at every future date and state?)

Campbell (1998) numerically analyzes a general equilibrium model of industry dynamics, melding a

version of Hopenhayn’s (1992a,b) model with a vintage capital model that embodies aggregate uncertainty

through innovations to the mean technology quality of new entrants. Campbell offers a complementary

explanation to ours for the correlation between current exit and future GDP growth. He finds that greater

future anticipated technical innovations lead to more firm exit in earlier periods because consumers respond

by increasing savings and reducing current consumption.

Other papers turn to deterministic models. Caballero and Hammour (1994) simulate a model in which

demand follows an exogonously-specified cyclical path, new entrants are more productive, and there is

a fixed cost of entry that depends exogenously on the measure of entrants. With sufficient entry cost

externalities, when demand falls, the exit of old, unproductive firms rises by more than the entry of new

productive firms falls, in which case average technology quality rises. Caballero and Hammour (1996)

consider a variant with costly search.

Other papers assume that all prices are constant, which simplifies the analysis greatly, as the distri-

bution of firms in the economy does not affect an individual firm’s profits, and hence decision-making. In

such settings, Monge (2001) and Cooley and Quadrini (2001) explore the impact of interest rate shocks

on the entry and exit of firms and aggregate output. In their models, firms borrow to finance capital, and

firm productivities evolve stochastically. Cooley and Quadrini showing that their model is consistent with
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the empirical regularities that smaller/newer firms have higher and more variable growth rates because

they are credit rationed, yet they are more likely to exit.

Bergin and Bernhardt (2005) adopt the constant-price assumption to derive how dynamics are affected

by the time-to-build feature of capital investment. Incorporating this feature of capital allows us to dis-

tinguish between large firms and productive firms, and to explain distinctly the size, productivity and age

patterns of profit, output and exit. Capital in place “slows” exit responses by firms: Firms first tend to

downsize and then exit in response to low demand or productivity shocks. As a result, the distribution of

firm productivities evolves more “sluggishly” in response to demand changes. Relatedly, Lambson (1991)

highlights how sunk costs dampen the responsiveness of entry and exit to market conditions.

Finally, Ericson and Pakes (1995, 1998) develop a parsimonious model of the industry dynamics of a

small, imperfectly competitive industry in which firms’ investments have stochastic outcomes. In their

reduced form model, a firm’s profit depends on the relative success of its investment decisions. Their goal

is to develop a flexible framework for empirical work, one that incorporates firm heterogeneity.

2 The Model.

We consider the dynamics of a single industry with a continuum of risk neutral firms that discount future

period profits using a common discount factor, β ∈ (0, 1). Inverse demand in a period is given by p(Y, θ),

where Y is industry output and θ is a random demand shock. This market price is a continuous function,

declining in Y and increasing in θ, with p(0, θ) > 0 and p(·, θ) ≥ 0. The demand shock follows a Markov

process: Given θ, the demand shock in the next period is drawn according to Θ(· | θ). We assume that

Θ(· | θ) is continuous in θ.1

A firm requires a plant to produce output according to the production function f(ℓ, α, k), where k ≥ 0 is

capital, ℓ ≥ is labor, and α captures the quality or productivity of its technology. The production function,

f(ℓ, α, k) is strictly monotone increasing in its arguments, strictly concave in k and ℓ with complementary

inputs, and with f(ℓ, α, k) = 0 if either ℓ or k is 0. Without loss of generality, we normalize α to be in

[0, 1]. Let µ be the distribution over technologies, α, in the economy.

Timing of events: At the beginning of a period, the aggregate shock, θ, determines demand, p(Y, θ), and

an operating firm with technology α receives a new realization of its technology, α̃, drawn from a distribu-

tion P (· | α) that is continuous in α. Given θ, and µ each firm α decides whether to remain in the market

and produce that period, or exit to search for a buyer. The time-line for decisions is:

−−−−−→
θ, α

realized
−−−−−→

Exit
decisions

made
−−−−−→

Capital
and

Labor
choices

−−−−−→
Production

and
Sale

−−−−−→
θ̃, α̃

realized
−−−−−→

Exit: We assume that plants are in fixed supply, and without loss of generality we normalize the measure

1Throughout, we use the weak∗ topology on measures, so that for any continuous function h : Θ → R,
∫

h(θ̃)Θ(dθ̃ |

θn) →
∫

h(θ̃)Θ(dθ̃ | θ), as θn → θ.
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of plants in the economy and, hence the measure of possible firms, to one. Because plants are in fixed

supply, new, potentially more productive, entrants must purchase a plant from an exiting firm.2 We

assume that the opportunity cost to continued production is that a firm cannot sell its plant immediately

to a potentially more efficient user. That is, an exiting firm’s plant must be idled for the one period that

it takes to find a buyer that can better employ plant and for the purchaser to re-tool the plant for its own

use.3 To capture a potentially thin market for an exiting firm’s plant, we assume that in negotiations with

the buyer, an exiting firm receives only a share 1− γ ∈ (0, 1] of the discounted profits that a new entrant

expects given current market conditions when the entrant makes production and exit decisions optimally.

These assumptions capture the empirical findings of Ramey and Shapiro (2001), that “there (is) a time

cost to restructuring. The process of winding down operations before selling capital results in significant

periods of under-utilization. It is only at times when firms cease operations that they sell significant

portions of capital.” They also find that a firm which sells its capital generally receives far less than the

capital’s value, especially for more specialized capital. The value of γ captures the degree to which the

plant is highly specialized so that exiting firm less than its full value from the firm that buys it.4

The findings are reinforced if it takes a new user longer to retool, so that upon exit a plant must

remain idle for more than one period. Also, if there is positive probability that an exiting firm does not

find a buyer in the period following exit, then the qualitative impacts are (a) to reduce the sensitivity of

the value of exit to current market conditions, and (b) to sever the tight link between the mass of exiting

firms in the previous period and the mass of entrants.5

Entry: Entry is determined by the exit in the previous period, and that, in turn depends on market

conditions. What complicates the analysis is that not only does the value of a plant varies with market

conditions, but so too do the respective values of producing and exiting. When demand is higher, the

foregone cost of production is higher, but persistence in demand implies that the value of a more productive

future technology is also higher, so that a prospective buyer is willing to pay more. We derive conditions

under which weaker demand leads to more exit.

Firm decisions: If firm type α stays in the market, it chooses capital and labor to maximize profit,

max
ℓ,k

pf(ℓ, k, α)− wℓ− rk,

where p is the market-clearing equilibrium price, w > 0 is the wage rate and r > 0 is the unit price of

capital. Later, in remark 2, we highlight conditions under which our analysis extends when factor prices

vary with the aggregate shock, θ. The solution to this profit maximization problem gives input demands,

ℓ(p, α) and k(p, α), and supply function y(p, α) = f(ℓ(p, α), k(p, α), α).

2After our analysis, we discuss how allowing for entry by creation of new firms in addition to entry by acquisition affects
the results. Dunne et al. (1989a,b), and Baldwin and Gorecki (1987) document the importance of entry through purchase
of existing firms. Baldwin (1995) finds that “Acquisition entry is (as) important a force in changing the composition of an
industry as greenfield entry.”, and that acquired plants exhibit increased productivity and acquire greater market shares.

3We could alternatively assume that firms can continue to operate while searching for a buyer, but that they received a
reduced profit relative to what they would receive were they not searching.

4One can endogenize γ by assuming that a random number of potential users of an exiting firm’s plant compete in a
second-price sealed bid auction. If there is only one bidder in a period, it makes an offer that leaves the exiting firm indifferent
between accepting the offer and waiting a period in the hope of attracting more bidders.

5In the current model, plants may be idle for multiple periods, if an exiting firm is replaced by a new firm that decides
to exit after observing its draw of α and the random demand shock, θ.
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Market Clearing: With measure µ on technologies, given an exit rule α∗ (all firms with technologies less

productive than α∗ exit), let µα∗ denote the measure on firms remaining in the market. Then aggregate

supply is

Y =

∫

y(p, α)µα∗(dα) =

∫ 1

α∗
y(p, α)µ(dα) = Y (p, µα∗).

Price is determined by θ and µα∗ via the market-clearing condition Y (p, µα∗) = D(p, θ), where D(p, θ) is

the inverse of p(Q, θ) for each θ. With price p(θ, µα∗) determined by (θ, µα∗), a firm α earns profit

π(θ, µα∗ , α) = max
ℓ,k

p(θ, µα∗)f(ℓ, k, α)− wℓ− rk.

Evolution of Technologies: If a firm’s current technology is α, then next period’s technology is drawn from

P (· | α), a conditional distribution over technologies given α. To capture the fact that a firm with a better

technology in one period is likely to have a better technology the next period, we assume that

P (· | α) = w(α)F (·) + [1− w(α)]G(·),

where F �c G (F conditionally stochastically dominates G), F 6= G, w(α) ∈ [0, 1] is continuous and

strictly increasing in α.6 That is, the new technology of a firm with current productivity parameter α is

drawn from a weighted distribution of a good distribution, F (·), and a bad distribution G(·), where the

weight, w(α), on the good distribution is an increasing function of the firm’s current productivity. For

simplicity, we assume that the technology quality of a new firm is drawn from the distribution P (· | ᾱ),

where ᾱ ∈ (0, 1) is sufficiently large that the worst firm type always chooses to exit. As a result, in

equilibrium, firms with technology below some exit threshold, α∗ < ᾱ, exit; and those above α∗ remain

in the market.

The weighted-average transition kernel ensures that technology distributions are ordered by a single

parameter and avoids difficulties that exit can create for comparing distributions over time. To see the

issue, suppose that technology distribution µ stochastically dominates µ′ due to the fact that µ′ has

many very bad technologies. Then, when the same exit rule is applied to both, the resulting distribution

determined by µ′ may dominate the distribution determined by µ, thereby reversing the ordering of

distributions. For example, this would occur if µ puts all mass between α∗ and ᾱ, (α∗ < ᾱ) so that no

firms exit; while µ′ puts all mass below α∗, so that every firm exits and receives a technology drawn from

P (· | ᾱ), which is better than a draw from any distribution P (· | α), for α < ᾱ.

The only other structure that we impose is that there is some learning by doing in the evolution of a

firm’s technology:7
∫

P (·, α)P (dα, ᾱ) � P (·, ᾱ).

That is, firms tend to improve over time: The technology of a firm in its second period of operation is

drawn from a stochastically better distribution than the initial distribution governing the technology of

entering firms.

6Given two probability distributions F and G on [0, 1], say that F conditionally first order stochastically dominates G

(F �c G) if given α∗, for α ≥ α∗ : F (α | α ≥ α∗) ≤ G(α | α ≥ α∗). That is, given any α∗, the conditional distribution on
[α∗, 1] determined by F first order dominates that of G.

7For the results we use a far weaker condition,
∫

w(α̃)dF (α̃) ≥ w(ᾱ), which is implied by
∫

P (·, α)P (dα, ᾱ) � P (·, ᾱ).
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2.1 Equilibrium Exit

We next turn to characterizing equilibrium exit decisions. We first describe how the productivity of

a firm’s future technology is related (stochastically) to its current technology, and then detail how the

productivity of an entering firm is determined. We then characterize valuation functions and the optimal

exit decision of an individual firm.

In the study of the dynamics, two distributions are of special interest: The residial distribution of

operating firms at time t after exit decisions have been made, and the distribution of firms in the next

period induced by exit decisions. Recall that µα∗ denotes the measure obtained from µ after all firms with

technologies that are less productive than α∗ exit: µα∗(X) = µ(X ∩ [α∗, 1]). An exit rule α∗ combined

with µ determines the distribution over technology productivities in the next period,

µα∗(·) =

∫

[0,α∗)

P (· | ᾱ)µ(dα) +

∫

[α∗,1]

P (· | α)µ(dα).

Exit over time: In equilibrium, a firm’s exit decision maximizes expected profits given (αt, µt, θt), and the

distribution of firms over time is consistent with the optimization by almost all firms, for almost all θt. At

any date t, equilibrium is characterized by an exit threshold that depends on µ and θ, α(µ, θ). This fully

determines the evolution of the aggregate distribution µ over time along any path of demand realizations,

(θ1, θ2, . . .). Consequently, the exit rule determines the market-clearing price sequence facing firms, and

hence the present value of any firm α. The exit rule, α(µ, θ), is an equilibrium exit rule if and only if it

determines a valuation function, v, that supports the exit rule: It must be that at (µ, θ) firms wish to exit

if and only if their technology is below α(µ, θ). Let α∗ = α(θ, µ). Then, the expected value to a firm α

from operating in the current period (and acting optimally thereafter) is:

vc(θ, µ, α) = π(θ, µα∗ , α) + β

∫ ∫

v(θ̃, µα∗ , α̃)Θ(dθ̃ | θ)P (dα̃ | α),

and the expected value to exit is

ve(θ, µ, α) = (1− γ)β

∫ ∫

v(θ̃, µα∗ , α̃)Θ(dθ̃ | θ)P (dα̃ | ᾱ).

Here “vc” denotes the value of continuing to operate, and “ve” denotes the value of exiting. The value

of an operating firm α facing market conditions (θ, µ) is equal to the sum of its maximized operating

profits plus the discounted expected value of continuing to operate given that it chooses inputs optimally

and makes future operation-exit decisions optimally. The expression for vc reflects the potentially thin

resale market for an exiting firm’s plant: An exiting firm only receives fraction 1−γ of the full discounted

expected value of the plant to a new firm whose technology quality is drawn according to ᾱ. Since firms

choose optimally whether to exit or to continue in operation, the value of a firm α is given by

v(θ, µ, α) = max{vc(θ, µ, α), ve(θ, µ, α)}.

Since ve is independent of α, while vc is increasing in α, there is a unique value, α̂, at which vc and ve

are equal. Firms with technologies above α̂ wish to continue and firms with technologies below α̂ wish to
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exit. A necessary condition for equilibrium is that α∗ = α̂: The exit rule α(θ, µ) must satisfy

vc(θ, µ, α(θ, µ)) = ve(θ, µ, α(θ, µ)), ∀(θ, µ).

Clearly, α(θ, µ) < ᾱ, because of the opportunity cost of exiting and transfering the plant to the en-

trant. In summary, for each (µ, θ) an equilibrium exit rule is characterized by α∗ = α∗(µ, θ) where

vc(θ, µ, α∗) = ve(θ, µ, α∗): Firms with α > α∗(µ, θ) remain in the market, while firms with α < α∗(µ, θ)

exit. That is, it the less productive/higher cost firms that find it optimal to exit so that their plant can

be reallocated to better uses. This result is consistent with Dunne et al.’s (1989b) finding that higher cost

plants exit first, and Baldwin’s (1995) finding that entrants, while relatively unproductive compared to

the average firm, are more productive than the exiting firms that they replace.

Bergin and Bernhardt (1995) provide sufficient conditions for the existence of an equilibrium in

economies with a continuum of agents, aggregate shocks and idiosyncratic shocks to agent types, in

which an agent’s payoff depends on his own type and action, the aggregate shock and the distribution

over agent types and actions in the economy. The mild continuity assumptions on the transition functions

and payoffs that are required for an equilibrium to exist are satisfied here.

3 Dynamics.

Our goal is to characterize how demand fluctuations affect future distributions of firm productivities and

profits, as well as aggregate variables such as prices and industry output. We first investigate the possibility

of characterizing dynamics in the competitive economy using a social planner’s characterization. We then

use a more direct approach to characterize equilibrium dynamics.

3.1 Social Planner’s Characterizations.

The standard approach to characterizing industry dynamics is to show first that the competitive equi-

librium corresponds to the solution of a social planner’s problem, and then to solve that social planner’s

problem (e.g., see Hopenhayn (1992a)). We now detail when the competitive equilibrium to our econ-

omy can be characterized as the solution to a social planner’s problem. We then explain why this social

planner’s characterization is of limited help in facilitating an analysis of industry dynamics.

If γ = 0 (thick resale markets for plants), then exit decisions in the competitive equilibrium correspond

to the exit rule of a social planner who seeks to maximize discounted social surplus. Period social surplus

can be represented as the area between the demand and supply curves. Let Ps(Y, µ′) denote the aggregate

supply curve when the distribution of firms in operation is µ′. Then if total output is Y ∗, social surplus

is S(Y ∗, θ, µ′) =
∫

[0,Y ∗]
[P (Y, θ) − Ps(Y, µ′)]dY . The social planner program is the optimization of the

present value of the social surplus stream by choice of continuation (and hence exit) distribution. The

functional equation for the social planner’s problem is:

V (θ, µ) = max
α
{max

X

∫ X

0

[P (Y, θ)− Ps(Y, µα)]dY + β

∫

Θ

V (θ̃, µα)Θ(dθ̃ | θ)}.

9



Here, Ps(Y, µα) is the aggregate supply function, reflecting that the labor choices of operating firms

correspond to those made by the social planner. That is, if at price P , firm α supplies y(P, α), then total

output is Y (P, µα) =
∫

y(P, α̃)µα(dα̃). Inverting for P gives Ps(Q, µα). The solution to this program

yields an exit rule, α(θ, µ), at each (θ, µ), which determines the evolution of the aggregate distribution.

Theorem 1 If γ = 0, then the exit rule in the competitive economy is unique and corresponds to the

solution to the social planner’s problem.

Proof: See the appendix.

The social planner characterization only holds when γ = 0. When γ > 0, the thin market for a firm’s

plant means that some of the value of the firm is extracted by the purchaser, reducing the incentive to exit

relative to the true market value of the firm. In such circumstanes, the level of exit is socially inefficient,

less than the socially optimal level of exit, so that no social planner’s characterization holds.

Theorem 1 asserts that if γ = 0, then the exit rule in the competitive economy is unique and corresponds

to the solution to the social planner’s problem. However, the social planner’s approach is of limited help.

It does not a priori follow that an improvement in the distribution adversely affects all firms because of

the endogenous effects on exit. A change in the distribution from µ to µ̂ also alters the equilibrium exit

threshold, and both determine next period’s distribution. In particular, there may be no ordered relation

between the one-period-ahead distributions arising in equilibrium from µ and µ̂ respectively, so that it

may not be possible to determine which leads to higher profit for a specific firm. That is, some firm types

may benefit from an increase in µ if the resulting impact on exit of other firms in some future states goes

the “wrong” way (e.g., if exit is greater in some future period where a firm type expected to be better).

3.2 Competition and Payoff Monotonicity

Fluctuations in demand directly affect exit decisions, and hence future distributions of firm productivities.

In turn, differences in the distribution of firm productivities influence future exit decisions. To analyze the

impact of demand fluctuations, we consider the role played by differences in the distribution of firm produc-

tivities. We first prove that (i) individual valuation functions are always monotone decreasing in µ (a better

distribution of competitors always reduces the expected profits of all firm types); and (ii) an important

dominance condition is satisfied: In equilibrium, better technology distributions are preserved over time,

so that if µt ≻ µ̂t, then along any future common demand shock path, at any future date τ > t, µτ ≻ µ̂τ .

In Theorem 2, we consider a finite horizon version of the economy. Let vc
n(θ, µ, α) and ve

n(θ, µ, α) be the

(equilibrium) values to firm α from continuing and exiting respectively, when the current distribution is µ

and the current state is θ, and there are n periods remaining. When the horizon is finite, the equilibrium

exit rule can be computed by backward induction. Indeed theorem 2 proves that, independent of whether

the social planner formulation is applicable, the equilibrium exit rule is unique. That is, at each (µ, θ),

there is a unique equilibrium threshold. Further, vc
n and ve

n are monotone decreasing in µ. If they converge

as n increases, monotonicity is preserved.
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Theorem 2 Payoffs are monotonically decreasing in the technology distribution and, in equilbrium, better

distributions on technologies are maintained over time. Formally:

1. The functions vc
n(θ, µ, α) and ve

n(θ, µ, α) are continuously decreasing in µ for all n.

2. If µ̂t � µt, then µ̂t+1 � µt+1.

Finally, if vc
n and ve

n converge pointwise as n →∞, then the limiting functions are continuously decreas-

ing in µ. When γ = 0, vc
n and ve

n converge since they are derived from a social planner program which

converges as n →∞.

Proof: See the appendix.

The result that vc
n(θ, µ, α) and ve

n(θ, µ, α) are continuously decreasing in µ is both subtle and impor-

tant. The key is to prove that comparing two aggregate distributions µ̂t and µt at period t, if µ̂t � µt,

then µ̂t+1 � µt+1 (so that result 1 follows from 2). To do this, we show that while exit may be less in the

economy with the better distribution, it cannot be so much less that it reverses the ordering in distribu-

tions. Thus, dominance is inherited in subsequent periods. Were the dominance property not preserved

over time, then some firm type may prefer to face a better distribution of competitors in t if that better

distribution implied a worse distribution in t + 1, when the firm type expected to have a higher α.

This result is far from immediate. Indeed, if capital choices are made before the demand and productiv-

ity shocks are realized, more structure is required to ensure this monotonicity result. This is because capital

and technology productivities have distinct effects on exit decisions (see Bergin and Bernhardt (2005)).

The fact that a better distribution of technology productivities is preserved along every future demand

path is crucial for the analysis that follows. Theorem 3 exploits this directly, showing that along a common

demand path, in an otherwise identical economy with a better initial distribution of firms, future output

in every future demand state is greater. Consequently, prices are always lower in the economy with the

better initial distribution of firms, hurting all firms.

Theorem 3 Consider two period t distributions, µt and µ̂t over firm technologies. Suppose that µ̂t � µt

implies that µ̂t+1 � µt+1. Then along a common demand path, for τ ≥ t, output is higher in the hat

economy, Ŷτ > Yτ , so that prices and firm profits are lower: p̂τ < pτ and π̂(α)τ < π(α)τ .

Proof: By assumption an improvement in the distribution at time t (µ ↑ µ′) improves next period’s

distribution (taking into account the resultant change in the current exit rule), and increases current

period’s output. Proceeding inductively, the improvement in next period’s distribution leads to an increase

in that period’s output and an improvement in the distribution for the following period. And so on. Thus,

the initial distribution in every period (prior to the exit decision) is better, and the output in every period

greater. The patterns for prices and profits follow.
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Thus, improved competition raises current output with associated consequences for prices and prof-

itability. Improved competition may raise exit, but not by enough to offset the output consequences of the

improved firm quality. Again, Bergin and Bernhardt (2005) show that more structure is required if firms

choose capital prior to demand and technology shock realizations. This is because firms respond to a worse

distribution over technologies by increasing capital, and capital and technology productivities have distinct

impacts on output and exit decisions. However, analogous results follow if demand is sufficiently elastic.

3.3 Cyclical Fluctuations.

We have derived the impact of different initial distributions of firms for productivity, output, price and

profitability along a given demand path, {θτ−1}τ≥t. We next study the impact of fluctuations in θ on exit

decisions, output, and profitability of firms. This allows us to characterize the consequences of demand

shocks for current and future output, and current and future aggregate productivity. What complicates

the analysis is that when demand improves, there are competing influences on a firm’s decision to exit:

operating is more profitable, but the firm is also worth more if sold. That is, improved demand raises

incentives to remain in the market which would reduce the average efficiency of firms in the market next

period. However, the persistence of improved demand also raises the benefit to having a better technology

next period, producing a “counter-incentive” for inefficient firms to exit.

3.3.1 Cyclical Exit

We first derive conditions under which, ceteris paribus, downturns in demand induce more (unproductive)

firms to exit (worsening the immediate effect of the downturn), to be replaced by firms that are stochasti-

cally better. We then combine this result with Theorem 2 to derive that worse current demand conditions

always imply better future distributions of firm technologies. That is, not only do recessions have the

cleansing effect of weeding out more firms with unproductive technologies, but past recessions also reduce

the number of unproductive technologies at each future date and state. Exit decisions thus mitigate the

impact of a prolonged downturn in demand.

The equilibrium exit threshold, α∗, is determined by

π(θ, µα∗ , α
∗) + β

∫ ∫

v(θ̃, µα∗ , α̃)Θ(dθ̃ | θ)P (dα̃ | α∗) = (1− γ)β

∫ ∫

v(θ̃, µα∗ , α̃)Θ(dθ̃ | θ)P (dα̃ | ᾱ).

Let v̄(θ, µα∗ , α̂)
def
=

∫

v(θ̃, µα∗ , α̃)P (dα̃ | α̂), ∀α̂, and rearrange the expression to give:

π(θ, µα∗ , α
∗) = β

∫

[

[(1− γ)v̄(θ̃, µα∗ , ᾱ)− v̄(θ̃, µα∗ , α∗)]Θ(dθ̃ | θ).

With α∗ fixed, raising the current demand shock raises current profit, but if there is persistence in demand

shocks, raising the current shock also makes higher future shocks more likely, raising the relative future

payoff from exit (and being replaced by a stochastically better technology). Whether α∗ rises with θ (i.e.,

whether there is less exit), then depends on which rises more.
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Inspection reveals that quite generally, the value of remaining in the industry rises more rapidly with

θ than does the value of exit as long as there is sufficient mean reversion in the demand process. In

particular, this is so if demand shocks are independently distributed.8 For a broad class of production

technologies, we now prove that there is always “enough” mean reversion in any two-state Markov demand

process for the relative value of remaining in the industry to rise with demand.

Specifically, we now focus attention on technologies that give rise to multiplicatively separable profit

functions, so that π(α, p(µ, θ)) = g(p)h(α) for some functions g and h. This class of production functions

includes such standard production technologies as the CES and quadratic production functions.

Consider θ ∈ {θ̄, θ} with θ ≤ θ̄. Let µ̄ and µ be, respectively, the distributions of firm qualities induced

by an arbitrarily long sequence of θ = θ and θ = θ̄ realizations starting from µ∞, the unique stationary

distribution when demand is independent of θ. The next theorem establishes that in this environment,

there is more exit if demand is low than if it is high.

Theorem 4 Let profit functions be multiplicatively separable. Then for θ ∈ {θ, θ̄}, for any distribution of

firm technologies µ ∈ [µ, µ̄], there is more exit if demand is low than if it is high: α(µ, θ) > α(µ, θ̄).

Proof: See the appendix.

In the proof we show that the exit rule does not depend on the initial demand realization if demand is

perfectly persistent: the ‘demand’ shock enters current and continuation profits in the same multiplicative

way. Persistence in demand does not affect current profits, but it does affect future expected profits.

When the current demand is low, reducing demand persistence raises the probability of a future high

demand shock and hence raises future expected prices. This raises the value of a better technology in

the future, and hence the attraction of exit. Conversely, reducing demand persistence when the current

demand shock is high, reduces future expected prices, reducing the value of a better future technology,

lowering the relative value of exit. Combining these observations reveals that there is more exit when

demand is low than when demand is high.

3.3.2 Output, price and profit movement.

We next combine the implications of theorem 3 (better distributions are preserved along a demand path,

implying lower prices) and theorem 4 (exit is counter-cyclical) to characterize the evolution of key variables

as demand shocks persist for a longer period of time.

8A necessary and sufficient condition for counter-cyclical exit is

∂π(θ, µα∗ , α∗)

∂θ
> lim

θ′→θ

[ 1

θ′ − θ

]

β

∫ ∫

[

[(1− γ)v̄(θ̃, µα
∗

, ᾱ)− v̄(θ̃, µα
∗

, α∗)][Θ(dθ̃ | θ′)−Θ(dθ̃ | θ)].

However, this condition is difficult to verify.

13



Theorem 5 Let profit functions be multiplicatively separable. Then for θ ∈ {θ, θ̄}, for µt−1 ∈ [µ, µ̄]:

1. Aggregate output is higher in period t if demand is high than if it is low: Yt(θ̄, µ) > Yt(θ, µ), ∀µ.

2. If a period of high demand begins in period t and ends τ +1 periods later then aggregate output first rises

and then falls, Yt−1 < Yt > Yt+1 > · · · > Yt+τ+1, so that prices rise throughout: pt < pt+1 < · · · < pt+τ .

Hence, the output and profits of a firm of type α rise: yt−1(α) < yt(α) < · · · < yt+τ (α) and πt−1(α) <

πt(α) < · · · < πt+τ (α).

3. If a low demand downturn begins in period t and ends τ + 1 periods later, then Yt−1 > Yt < Yt+1 <

· · · < Yt+τ+1 so that prices fall as the downturn continues: pt−1 > pt > · · · > pt+τ . Hence, the output

and profits of a firm type α fall as the downturn continues: yt−1(α) > yt(α) > · · · > yt+τ (α) and

πt−1(α) > πt(α) > · · · > πt+τ (α).

Proof: Part 1 follows because there is less exit when θ = θ̄. Part 2 follows because the distribution

worsens over time as the boom progresses (see the proof to theorem 4), implying that output falls (theorem

3). The implication of falling output for prices, firm output and profits is immediate. Part 3 is the downturn

analogue to part 2.

A more prolonged period of high demand leads to an increasingly inefficient distribution of firms, which,

in turn, implies rising prices and hence higher individual output and profits. It is worth stressing that

this result holds no matter how persistent the demand shock process is. With two demand states, {θ̄, θ},

in a demand boom, if viewed as a growth in demand occurs over one time period, output rises during

the growth stage (as in 2. above) and subsequently tails off due to the worsening distribution of firm

productivities as demand remains high.

Importantly, were we to modify the model to incorporate an exogenous systematic growth in tech-

nological opportunities, then the model can generate predictions consistent with the empirical regularity

that recessions are sharper and more asymmetric than booms. In particular, if, in periods of high de-

mand, the exogenous improvement in the distribution of technology productivities is enough to offset the

increasingly inefficient (endogenous) distribution of firm productivities, then output grows gradually as

long as demand remains high. Conversely, any systematic improvements in the distributions from which

technologies are drawn sharply reinforces the endogenous improvement in firm productivities caused by a

downturn in demand, so that recessions are short.

Also note that incorporating stickiness into capital investment, either with a capital-in-place formu-

lation or by modeling the putty-clay feature of capital, prolongs the industry response to downturns in

demand. Bergin and Bernhardt (2005) show that firms respond to a decrease in demand by first down-

sizing, and then subsequently exiting. Consequently, output may fall for multiple periods following the

onset of a period of low demand.

Combining the insights of theorems 3 and 5, it follows immediately that past downturns lead to greater

output, once demand has ‘recovered’. Consider two economies that differ only in that one economy had
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a past period in which demand was lower in previous periods. Say that demand has ‘recovered’ in the

economy that had lower shocks if both economies have the same current demand shock. Then:

Corollary 1 Consider two economies with identical current demand, but one economy had weakly lower

demand shocks in past periods. Then the economy which has ‘recovered’ from a past history of lower

demand has a better distribution of firms, greater output and lower prices.

Qualitatively, given theorem 3, the key to the corollary is that there is more exit in bad times. That

is, as long as exit rates are counter-cyclical — θ < θ
′

then α(µ, θ) > α(µ, θ
′

) — (as Campbell (1998)

documents empirically), then the result holds without further structure on the θ process.

We have shown that exit is counter-cyclical in a two-state separable environment. So, too, (without

imposing any other structure) exit will also be counter-cyclical as long as demand is not too persistent. As

long as exit is counter-cyclical, we can contrast industry dynamics across economies that start out with

the same distribution of firms, but one receives higher aggregate demand shocks than the other:

Theorem 6 Suppose that the sufficient conditions hold for exit to be counter-cyclical. Let µ̂0 = µ̄0.

Consider two aggregate shock histories, θ̂t, θ̄t where the hat economy has higher demand realizations than

the bar economy: θ̂0 > θ̄0, θ̂τ ≥ θ̄τ , 0 ≤ τ ≤ t. Then past lower demand:

1. Leads to better distributions of firms: µ̄τ+1 ≻ µ̂τ+1, 0 ≤ τ ≤ t.

2. Raises future output, thereby reducing future prices and firm profits: Ȳτ > Ŷτ , p̄τ < p̂τ , and π̄τ (α) <

π̂τ (α), 0 ≤ τ ≤ t.

Proof: Result 1 follows immediately from counter-cyclical exit and theorem 2. Consider the first period

τ in which θ̂τ > θ̄τ . Then, counter cyclical exit ensures the higher demand shock implies less exit, and

hence a worse distribution of firms. From theorem 2, even if subsequent demand shocks are identical, the

worse distribution is preserved; and subsequent higher demand shocks reinforce the result.

Result 2 follows since the distribution of firms on the “bar” path is better than the distribution on the

“hat” path, price will be lower on the “bar” path unless there is (substantially) more exit in the “bar”

economy. So suppose that ᾱt > α̂t. But then,

π(θ̂t, µ̂
α̂t

t , α̂t) < π(θ̂t, µ̂
α̂t , ᾱt) < π(θ̄t, µ̄

ᾱt

t , ᾱt)

= β

∫

α̃

∫

θ̃

v∗t+1(θ̃, µ̄ᾱt+1
, α̃)Θ(dθ̃ | θ̄)[(1− γ)P (dα̃ | ᾱ)− P (dα̃ | ᾱt+1)]

< β

∫

α̃

∫

θ̃

v∗t+1(θ̃, µ̂α̂t+1
, α̃)Θ(dθ̃ | θ̂)[(1− γ)P (dα̃ | ᾱ)− P (dα̃ | α̂t+1)],

a contradiction. The implications for output and firm profits are immediate.

Here, for example, µ̄τ is the distribution on technology along the θ̄ sequence. Weak demand has the

immediate effect of inducing more inefficient firms to exit, which leads to an improved distribution of firm
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efficiencies, which persists at all future dates (1). The higher productivity caused by a past downturn

implies greater future output once demand ‘recovers’ sufficiently (2), illustrating the cleansing effect of

recessions for future output. Indeed, if there is sufficiently little persistence in demand, then a lower

current demand shock must raise expected future discounted total surplus. In turn, this increased future

competition implies lower future prices and hence lower profits for a firm of a given technology quality.

The greater the stress of a demand downturn (i.e., the lower are the demand realizations and the longer

the lower demand realizations persist), the more fit are the survivors, and hence the more productive is the

entire industry. These results are consistent with the findings in the empirical literature that correlations

of exit rates with future GDP growth are positive, large, persistent and statistically significant (Campbell

(1998)).

Our theorems state the results in terms of the impact of a more prolonged boom in demand. The

results can also be stated in terms of their converse — more prolonged recessions lead to greater output

when demand finally improves, and more sustained high demand leads to steeper declines to lower levels

of output when demand finally falls.

Remark 1: The focus of our model is on a specific industry: we take factor prices as given. However, it is

worthwhile to consider the extent to which our results remain valid were factor prices to vary with market

conditions. Firm α’s period production problem becomes, maxℓ,k p(µ, θ)f(ℓ, k, α)−w(µ, θ)ℓ−r(µ, θ)k. This

determines firm α’s profit, π(θ, µ, α). So, as when factor prices are constant, α’s profit depends on the same

three variables. The feature that our analysis exploits is ∂π
∂θ

> 0: better times raise period profits for all firm

types. This is unequivocal if θ affects only demand. More generally, an application of the envelope theorem

reveals that it is true if ∂π
∂θ

= ∂p(µ,θ)
∂θ

·f(ℓ, k, α)− ∂w(µ,θ)
∂θ

ℓ− ∂r(µ,θ)
∂θ

k > 0, ∀α. A sufficient condition for this to

be so is that technologies be Cobb Douglas or quadratic, so that the profit function is a multiplicatively sep-

arable function of the firm’s productivity parameter: if an increase in θ helps one firm type, it helps all firm

types, and with a Cobb-Douglas technology, f(k, ℓ) = kbℓc, it does so if p
wcrb rises with θ. Our theorems all

extend to general equilibrium if, in addition, (a) factor prices (weakly) increase with industry input demand

(so reduced past exit further raises period profits), and (b) re-interpreting the demand shocks as industry

period profit shocks (that take into account the equilibrium impacts on factor prices), there is persistence

in the θ ‘profit’ shocks. Theorem 2 extends because worse distributions of firms, ceteris paribus imply

lower factor prices. In turn, persistence in ‘profit’ shocks, plus counter cyclical exit, ensure that the other

theorems extend, including a generalized version of theorems 4 and 5 (given counter cyclical exit holds).

Remark 2: Although modeling entry is not a focus of this paper, here the number of new entrants

corresponds to the measure of firms in their first period of production. Entry is greater when the economy

leaves a recession (as is found in the data), both because there are more exiting firms due to the past

downturn and because the increase in demand implies that more firms find it optimal to produce.

One can augment the model to allow for entry “by birth”, so that a potential entrant can enter the

market by creating a new firm rather than taking over an existing one. Both forms of entry are important.

In Canadian manufacturing, Baldwin and Gorecki found that entrants after 1970 accounted for 26.2%

of total sales by 1979. Those that entered by creating a firm accounted for 14% of total sales, while
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those that entered by acquiring another firm accounted for over 12% of total sales. Modifying our model

to accommodate entry through the creation of new firms would appear to reinforce the counter-cyclical

movement in the distribution of firm quality. With demand persistence, a high demand shock should

increase the expected payoff of an entrant, and hence raise entry. Because, on average, firm productivities

rise with age, the immediate impact of additional entry would be to lower the average efficiency of firms

in operation, reinforcing our results. An associated implication is that contemporaneous entry and exit

will tend to be negatively correlated, as is observed in the data.

3.4 Dynamics and Expectations.

We next consider the impact of an anticipated future increase in demand on current exit decisions and

hence future distributions of firm productivities. We show that, ceteris paribus, better anticipated future

market conditions leads to more exit at all earlier dates. Fix a future point in time, T , and consider

the impact of replacing the transition kernel Θ(θT | θT−1) with one of the alternative transition kernels,

Θ̄(θT | θT−1) or Θ̂(θT | θT−1). If Θ̄(θT | θT−1) ≻ Θ̂(θT | θT−1) for each θT−1, then from the perspective of

time t < T , Θ̄(θT | θT−1) represents the expectation of better demand that Θ̂(θT | θT−1) — an anticipated

increase in future demand relative to Θ̂.

Theorem 7 Consider two economies that differ solely in anticipated future demand conditions at date T:

Θ̄(θT | θT−1) ≻ Θ̂(θT | θT−1), ∀ θT−1.

(For t 6= T , the two economies agree with transition kernel Θ(θt | θt−1).) Then for any given demand

shock θt−1, and distribution µt−1, an anticipated increase in future demand at date T gives rise to a better

distribution of firm productivities at all intermediate dates: µ̄τ ≻ µ̂τ , ∀τ ∈ {t, . . . T}.

Proof: Because the period T distribution of demand shocks is better in the bar economy,
∫ ∫

v̄T (θ̃T , µ, α̃)Θ̄(dθ̃T | θT−1)P (dα̃ | α) >

∫ ∫

v̂T (θ̃T , µ, α̃)Θ̂(dθ̃T | θT−1)P (dα̃ | α).

Thereafter, demand realizations are drawn from the same distribution, so v̄T (·) = v̂T (·). For any given

µT−1, current profits for any marginal exiter π(θT−1, µT−1α∗ , α
∗) are the same in both the hat and bar

economies, but the value to exit is greater in the bar economy. Hence, for any given µT−1, there must

be more exit in the bar economy than the hat economy, so that µ̄T (µT−1) ≻ µ̂T (µT−1). In turn, this

increased exit in the bar economy implies that for any given µT−1 and θT−1, date T − 1 prices are higher

in the bar economy than the hat economy. In turn, this implies that
∫ ∫

v̄T−1(θ̃T−1, µ, α̃)Θ(dθ̃T−1 | θT−2)P (dα̃ | α) >

∫ ∫

v̂T−1(θ̃T−1, µ, α̃)Θ(dθ̃T−1 | θT−2)P (dα̃ | α).

Hence, for any given µT−2, there is more exit in the bar economy than the hat economy, so that µ̄T−1 ≻

µ̂T−1. Monotonicity of µT in µT−1 then implies that µ̄T (µ̄T−1(µT−2), θ) ≻ µ̄T (µ̂T−1(µT−2), θ).

Repeating the argument, observe that since for any given µT−2 there is more exit in the bar than hat

economy, the distribution of prices must be higher in the bar than hat economy at date T −2, so that date
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T − 2 continuation payoffs must be greater for any given µT−2 in the bar economy than the hat economy.

Hence, for any given µT−3, there must be more exit in the bar economy than the hat economy. Repeating

this argument, it follows that µ̄t ≻ µ̂t, 0 < t ≤ T .

The key to Theorem 7 is that an anticipated improvement in future demand does not directly affect

current profits; it only raises the future value of having a better technology, and hence the value of

exit. If the anticipated improvement in demand is only one period ahead, then the future value of being

productive is increased, raising current exit and lowering current output, thereby indirectly raising current

prices and profits. When the anticipated demand increase is further in the future, its anticipation raises

the distribution of productivities at all earlier dates in the stochastic dominance sense. This is because

to increase future productivity, exit must be raised, increasing the distribution of prices prior to the

productivity improvement. In particular, suppose to the contrary that exit first increased at the last date

prior to the improvement in demand, T − 1. But this increased exit reduces period T − 1 output, raising

period T − 1 prices and hence the value of exit at date T − 2. Thus, anticipation of increased future

exit in advance of the demand increase, drives exit and productivity increases at earlier dates. Hence,

anticipation of different future market conditions can generate the positive correlations of exit rates with

future GDP growth found by Campbell (1998).

4 Thin Resale Markets.

So far we have not considered how industry dynamics vary across industries distinguished by different

depths of the market for the plants of exiting firms. That is, we have not considered how variations in γ

affect outcomes. The degree of plant specialization varies significantly across industries. We now provide

conditions under which the smaller is γ, i.e., the thicker is the market for the plant of an exiting firm, the

greater is exit. Finally, we show by construction that when γ > 0 so that the social and private incentives

to exit do not coincide, then not only can a recession weed out ‘bad’ firms, but a downturn in demand

can actually raise welfare (total surplus) by inducing more efficient exit.

The direct effect of a thinner market is to reduce exit. To see this suppose there is a one-time increase

in thinness in the market for a bankrupt firm’s plant, so that γ increases to γ′, an increase that is un-

anticipated at earlier dates. This increase to γ′ reduces the value of exit relative to the value of remaining

in the industry, leading to a worse distribution of firms at all future dates.

The net effect of a thinner resale market is more subtle because of the indirect effect of reduced exit

on future competition. If γ < γ′, it does not follow that for all (θ, µ, α), that vγ(θ, µ, α) > vγ′(θ, µ, α).

While sufficiently unproductive firms are worse off facing γ′, because bankrupt firms sell their plants for

less, the indirect consequence of reduced exit is that the future distribution of firms is worse. In turn, this

reduced future competition implies higher future prices, so that high α firms that are unlikely to enter

bankruptcy may be helped if firms are more reluctant to exit. Consequently, for γ < γ′, it may not be

that vc
γ(θ, µ, α) − ve

γ(θ, µ, α) > vc
γ′(θ, µ, α) − ve

γ′(θ, µ, α), for all (θ, µ). It must be true for some (θ, µ),
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else the future distribution of firms would always be better in the γ′ economy, so that both the direct and

indirect effects would encourage more exit in the γ′ economy, a contradiction of the premise.

If there is no aggregate uncertainty, so that p(Y, θ) = p(Y ), then we can derive the effects of an increase

in γ on industry dynamics:

Theorem 8 Suppose there is no aggregate uncertainty, so that p(Y, θ) = p(Y ). Then for all γ, given µ0,

there is a unique equilibrium. The distributions of firm productivities converge monotonically over time

to the unique stationary equilibrium: either µ
γ
t � µ

γ
t−1, ∀t or µ

γ
t−1 � µ

γ
t , ∀t. In the limiting stationary

economies, for γ > γ′,

1. There is less exit in the economy with a thinner resale market, α∗γ(µγ
∞) < α∗γ

′

(µγ
∞) < α∗γ

′

(µγ′

∞).

2. The limiting distribution is better in the economy with the thicker resale market, µγ′

∞ ≻ µγ
∞.

3. Any given α operates at a larger and more profitable scale in the economy with thinner markets.

The characterization of the evolution of the distribution of firms to the invariant steady state extends

Hopenhayn (1992a) who analyzes the behavior of individual firms in the limiting economy. In particular,

this theorem shows that the economy does not cycle over time as it approaches the limiting steady state.

If γ is interpreted as reflecting the degree to which inputs are specialized in an industry, then inter-

industry comparisons can be made. Industries with more specialized inputs will tend to have more

unproductive, but larger, firms and lower rates of exit. This is consistent with the finding of Dunne et al.

(1989a) and Asplund and Nocke (2003) that substantial and persistent differences in entry and exit rates

across industries exist, and that industries with higher entry rates also have higher exit rates.9

Further insights on the effects of thin markets for a bankrupt firm’s plant can be gleaned from the

polar case of perfectly elastic demand, p(Y, θ) = p(θ). The qualitative findings hold as long as demand is

‘sufficiently’ elastic. If p(Y, θ) = p(θ), then vγ(θ, µ, α) = vγ(θ, µ̂, α), ∀µ, µ̂: only the direct negative effect

of γ on exit remains. When p(Y, θ) = p(θ), the marginal exiting firm equates

π(θ, α∗(θ)) = β

∫

vγ(θ̃, α̃)Θ(dθ̃|θ)[(1 − γ)P (dα̃|ᾱ)− P (dα̃|α∗)].

Since the right-hand side is decreasing in γ, it follows immediately that a reduction in γ raises exit,

and hence the distribution of firm technology qualities. Individual firms exit according to their private

incentives, 1−γ, so there is too little exit from a total surplus maximization perspective. The exit decision

corresponds to the exit choice made by a social planner when the exiting firm is destroyed with probability

γ; the fact that next period’s distribution of firms does not reflect this destruction is irrelevant because the

distribution does not affect a firm’s payoffs. The greater is γ, the greater is the wedge between equilibrium

exit and efficient exit.

We now show constructively that when γ > 0, so that firms are too reluctant from a surplus-maximizing

standpoint to exit, downturns in demand can increase welfare by inducing inefficient firms to sell their

9Asplund and Nocke (2003) offer a sunk cost explanation for this empirical regularity.
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plants to firms that could use them more productively. Because downturns in demand raise the attraction

of exit, they induce more inefficient firms to act in accordance with maximizing social surplus, so that

privately optimal actions are more closely aligned with socially optimal actions.

Example: Let technologies be given by αf(ℓ), where α ∈ {α, α̂}, α < α̂. Suppose that the productivity

of a firm’s technology does not vary with time, αt = αt−1, and that entrants are equally likely to draw

each technology: Pr(α = α̂|entry) = .5. Demand is perfectly elastic: p(Y, θ) = θ, θ ∈ {θ, θ̄}, θ < θ̄, and

demand shocks are independently and identically distributed. Markets for a bankrupt firm’s plant are

thin: 1 > γ > 0. The discount factor is β > .5. There are as many good firms as bad.

Suppose that α is sufficiently small relative to α̂ that total surplus is maximized when α firms exit.

Let γ be such that firm type α is just indifferent between continuing to operate and exiting. Such a γ

exists because the value of exiting varies continuously with γ from 0 when γ = 1 to the expected value of

the new entrant when γ = 0. Consider the consequence for total surplus of a one-time marginal reduction

in θ. This drop in demand induces all unproductive, α, firms to exit. The marginal loss in profits to a

good firm from this reduced consumer demand is α̂f(ℓ∗(α̂, θ)). The marginal loss in expected discounted

profits to a bad firm is zero, since it now exits and previously was indifferent between exiting and not. If

we let z = βE[π(θ,α)]
(1−β) , then the value of exit is (1−γ)z

(1−γβ) . The social gain from inducing exit of inefficient α

firms is therefore γ(1−β)z
(1−βγ) . Since there are just as many good firms as bad firms, the one-time reduction

in θ from θ increases social surplus if and only if γ(1−β)z
(1−βγ) > α̂f(ℓ∗(α̂, θ)). But note that α̂f(ℓ∗(α̂, θ)) does

not depend on θ̄. Let γ(θ̄) be the value of γ that leaves α just indifferent to exit when θ = θ: dγ
dθ

> 0. As

θ̄ is increased, it must be the case that γ(1−β)z
(1−βγ) eventually exceeds α̂f(ℓ∗(α̂, θ)), so the one-time recession

of a lower θ increases total surplus.

If γ is sufficiently large, bad firms fail to internalize the social cost of their failure to exit and thereby have

their technologies replaced by stochastically better ones. Downturns cause more bad firms to internalize

these social costs and exit. If this gain from increased exit outweighs the foregone period surplus from

lower consumer demand then total surplus is raised.

5 Conclusion.

This paper explores the dynamics of an industry when there is both aggregate demand uncertainty and

idiosyncratic uncertainty about the productivity of an individual firm’s technology. We characterize the

intertemporal evolution of the distribution of firms, where firms are distinguished by the productivity of

their technology. We contrast industry dynamics across different demand shock histories, along a particular

demand shock history, and detail how anticipation of future demand shocks affects exit decisions and the

industry’s evolution. Our theoretical predictions about cyclical patterns in exit and productivity offer a

coherent explanation for the cyclical patterns exhibited in the data.
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6 Appendix

Proof of Theorem 1: Fix the distribution µ on [0, 1] and let µ(dα) = g(α)dα. If firms with technology

lower than α exit then let µα denote the truncated distribution. If the price is P the supply of firm α is

q(P, α) and total supply is Ys(P, µα) =
∫ 1

α
q(P, α)µ(dα). We can invert this to get Ps(Y, µα). Since the

exit threshold uniquely defines the distribution µα, we may write α in place of µα, with corresponding

supply and inverse supply functions: Ys(P, α) and Ps(Y, α).

The current period social surplus is given by S(θ, Y, α) =
∫ Y

0 [P (Q, θ)− Ps(Q, α)]dQ. Maximizing this

over Y gives Y ∗ = Y (θ, α) satisfying P (Y ∗, θ)− Ps(Y
∗, α) = 0, so that

S(θ, Y ∗, α) =

∫ Y ∗

0

[P (Q, θ)− Ps(Q, α)]dQ.

The variation of the surplus with respect to α is given by

dS(Y (θ, α), α)

dα
=

∂S(Y ∗, α)

∂α
= −

∫ Y ∗

0

∂Ps(Y, α)

∂α
dY = −

∂

∂α

∫ Y ∗

0

Ps(Q, α)dQ

Since
∫ Y ∗

0 Ps(Y, α)dY = P ∗Y ∗ −
∫ P∗

0 Qs(P, α)dP ,

∂

∂α

∫ Y ∗

0

Ps(Q, α)dQ = −
∂

∂α

∫ P∗

0

Ys(P, α)dP

= −

∫ P∗

0

∂

∂α
Ys(P, α)dP

= −

∫ P∗

0

[
∂

∂α

∫ 1

α

q(P, α̃)g(α̃)dα̃]dP

=

∫ P∗

0

q(P, α)g(α)dP

= [

∫ P∗

0

q(P, α)dP ]g(α)

= π(θ, µ, α)g(α)

Thus,
∂S(Y ∗, α)

∂α
= −π(θ, µ, α)g(α).

Now, let V satisfy the recursion:

V (θ, µ) = max
α
{max

Y

∫ Y

0

[P (Q, θ)− Ps(Q, α)]dQ + δ

∫

Θ

V (θ̃, µα)Θ(dθ̃ | θ)}

where µα(·) =
∫ 1

α
P (· | α)µ(dα)+

∫ α

0 P (· | ᾱ)µ(dα) and µ(dα) = g(α)dα. Let v(α, µα) be the continuation

payoff to a firm with technology α, when the aggregate distribution is µα.

Suppose that

∂

∂α
V (θ, µα) = −

∫

Θ

∫ 1

0

v(θ, α̂, µα)P (dα̂ | α)g(α)Θ(dθ̃ | θ) +

∫

Θ

∫ 1

0

v(θ, α̂, µα)P (dα̂ | ᾱ)g(α)Θ(dθ̃ | θ)
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Then

∂

∂α

{

∫ Y ∗

0

[P (Q, θ)− Ps(Q, α)]dQ + δ

∫

Θ

V (θ̃, µα)Θ(dθ̃ | θ)
}

= −π(θ, µ, α)g(α) −

∫

Θ

∫ 1

0

v(θ̃, α̂, µα)P (dα̂ | α)g(α)Θ(dθ̃ | θ)

+

∫

Θ

∫ 1

0

v(θ̃, α̂, µα)P (dα̂ | ᾱ)g(α)Θ(dθ̃ | θ)

When this is 0, at say α∗,

[π(α∗) +

∫

Θ

∫ 1

0

v(θ̃, α̂, µα∗)P (dα̂ | α∗)Θ(dθ̃ | θ)]g(α∗) = [

∫

Θ

∫ 1

0

v(θ̃, α̂, µα)P (dα̂ | ᾱ)Θ(dθ̃ | θ)]g(α∗)

So, the exit threshold that maximizes the social surplus, is the technology threshold at which a firm is

indifferent between exiting and remaining in the market.

Remark: The calculations below confirm that the differential condition used above is satisfied recursively.

Put µ(γ)(·)
def
= µγ(·) =

∫ 1

γ
P (· | α)µ(dα) +

∫ γ

0
P (· | ᾱ)µ(dα) where µ(dα) = g(α)dα. Then

µ(γ)α(·) =

∫ 1

α

P (· | α)µ(γ)(dα) +

∫ α

0

P (· | ᾱ)µ(γ)(dα).

Collecting terms:

µ(γ)α(·)[= (µγ)α] =

∫ 1

α

P (· | α̂)

∫ 1

γ

P (dα̂ | α)µ(dα) +

∫ 1

α

P (· | α̂)

∫ γ

0

P (dα̂ | ᾱ)µ(dα)

+

∫ α

0

P (· | ᾱ)

∫ 1

γ

P (dα̂ | α)µ(dα) +

∫ α

0

P (· | ᾱ)

∫ γ

0

P (dα̂ | ᾱ)µ(dα).

Rearranging:

µ(γ)α(·) =

∫ 1

γ

∫ 1

α

P (· | α̂)P (dα̂ | α)g(α)dα +

∫ 1

γ

∫ α

0

P (· | ᾱ)P (dα̂ | α)g(α)dα

=

∫ γ

0

∫ 1

α

P (· | α̂)P (dα̂ | ᾱ)g(α)dα +

∫ γ

0

∫ α

0

P (· | ᾱ)P (dα̂ | ᾱ)g(α)dα.

Or

µ(γ)α(·) =

∫ 1

γ

{

∫ 1

α

P (· | α̂)P (dα̂ | α) +

∫ α

0

P (· | ᾱ)P (dα̂ | α)}g(α)dα

+

∫ γ

0

{

∫ 1

α

P (· | α̂)P (dα̂ | ᾱ) +

∫ α

0

P (· | ᾱ)P (dα̂ | ᾱ)}g(α)dα.

In this case:

∂

∂γ
V (θ, µ(γ)α) =
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−

∫

Θ

[

∫ 1

0

v(θ̃, α̃, µ(γ)α){

∫ 1

α

P (dα̃ | α̂)P (dα̂ | γ) +

∫ α

0

P (dα̃ | ᾱ)P (dα̂ | γ)}g(γ)
]

Θ(θ̃ | θ)

+

∫

Θ

[

∫ 1

0

v(θ̃, α̃, µ(γ)α){

∫ 1

α

P (dα̃ | α̂)P (dα̂ | ᾱ) +

∫ α

0

P (dα̃ | ᾱ)P (dα̂ | ᾱ)}g(γ)
]

Θ(θ̃ | θ).

Or,

∂

∂γ
V (θ, µ(γ)α) =

−
[

{

∫ 1

α

∫ 1

0

v(θ̃, α̃, µ(γ)α)P (dα̃ | α̂)P (dα̂ | γ) +

∫ α

0

∫ 1

0

v(θ̃, α̃, µ(γ)α)P (dα̃ | ᾱ)P (dα̂ | γ)}g(γ)
]

Θ(θ̃ | θ)

+
[

{

∫ 1

α

∫ 1

0

v(θ, α̃, µ(γ)α)P (dα̃ | α̂)P (dα̂ | ᾱ) +

∫ 1

α

∫ α

0

v(θ, α̃, µ(γ)α)P (dα̃ | ᾱ)P (dα̂ | ᾱ)}g(γ)
]

Θ(θ̃ | θ).

Turning to the first period, the distribution is given by µ(γ). The impact of a variation in γ is given by:

∫ P∗

0

[
∂

∂γ

∫ 1

α

q(P, α)µ(γ)(dα)]dP

Substituting for µ(γ)

∫ P∗

0

[
∂

∂γ

∫ 1

α

q(P, α̂)(

∫ 1

γ

P (dα̂ | α)g(α)dα +

∫ γ

0

P (dα̂ | ᾱ)g(α)dα)]dP.

This is equal to:

∫ P∗

0

[−

∫ 1

α

q(P, α̂)P (dα̂ | γ)g(γ) +

∫ 1

α

q(P, α̂)P (dα̂ | ᾱ)g(γ)]dP

= −

∫ 1

α

[

∫ P∗

0

q(P, α̂)dP ]P (dα̂ | γ)g(γ) +

∫ 1

α

[

∫ P∗

0

q(P, α̂)dP ]P (dα̂ | ᾱ)g(γ)

= −

∫ 1

α

π(θ, µ(γ), α̂)P (dα̂ | γ)g(γ) +

∫ 1

α

π(θ, µ(γ), α̂)P (dα̂ | ᾱ)g(γ)

= [−

∫ 1

α

π(θ, µ(γ), α̂)P (dα̂ | γ) +

∫ 1

α

π(θ, µ(γ), α̂)P (dα̂ | ᾱ)]g(γ).

Collecting all terms:

∂

∂γ
V (θ, µ(γ)) =

[−

∫ 1

α

π(θ, µ(γ), α̂)P (dα̂ | γ) +

∫ 1

α

π(θ, µ(γ), α̂)P (dα̂ | ᾱ)]g(γ)

−δ

∫

Θ

[

{

∫ 1

α

∫ 1

0

v(θ̃, α̃, µ(γ)α)P (dα̃ | α̂)P (dα̂ | γ)+

∫ α

0

∫ 1

0

v(θ̃, α̃, µ(γ)α)P (dα̃ | ᾱ)P (dα̂ | γ)}g(γ)
]

Θ(θ̃ | θ)

+δ

∫

Θ

[

{

∫ 1

α

∫ 1

0

v(θ̃, α̃, µ(γ)α)P (dα̃ | α̂)P (dα̂ | ᾱ)+

∫ 1

α

∫ α

0

v(θ̃, α̃, µ(γ)α)P (dα̃ | ᾱ)P (dα̂ | ᾱ)}g(γ)
]

Θ(θ̃ | θ).
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Rearranging positive and negative terms, this yields:

∂

∂γ
V (θ, µ(γ)) =

−{

∫ 1

α

[π(θ, µ(γ), α̂) + δ

∫

Θ

∫ 1

0

v(θ̃, α̃, µ(γ)α)P (dα̃ | α̂)Θ(dθ̃ | θ)]P (dα̂ | γ)+

δ

∫

Θ

∫ α

0

∫ 1

0

v(θ̃, α̃, µ(γ)α)P (dα̃ | ᾱ)P (dα̂ | γ)Θ(dθ̃ | θ)}g(γ)

+{

∫ 1

α

[π(θ, µ(γ), α̂) + δ

∫

Θ

∫ 1

0

v(θ̃, α̃, µ(γ)α)P (dα̃ | α̂)Θ(dθ̃ | θ)]P (dα̂ | ᾱ)+

δ

∫

Θ

∫ α

0

∫ 1

0

v(θ̃, α̃, µ(γ)α)P (dα̃ | ᾱ)P (dα̂ | ᾱ)Θ(dθ̃ | θ)}g(γ)

= −

∫ 1

0

∫

Θ

v(θ̃, α̂, µ(γ))Θ(dθ̃ | θ)P (dα̂ | γ)g(γ) +

∫ 1

0

∫

Θ

v(θ̃, α̂, µ(γ))Θ(dθ̃ | θ)P (dα̂ | ᾱ)g(γ).

Thus, the derivative of the valuation function preserves the difference of valuation between a new firm

and a continuing firm.

The discussion in theorem 2 below utilises properties of the class of distributions generated by the trun-

cation procedures used in the paper. The following lemma establishing that with the weighted-average

kernel transition, either increasing the measure of exiting firms, i.e., increasing the exit threshold α∗ for

a fixed distribution µ, or improving the current distribution over firm technologies µ for a fixed exit rule

α, leads to an improved distribution of firm technology qualities in the next period. This result is used

subsequently in the proof of theorem 2.

Lemma 1 The measure µα∗(·) satisfies:

1. Raising the exit threshold improves next period’s distribution:

α̂∗ ≥ α∗ implies µα̂∗(·) ≻ µα∗(·).

2. For a given exit threshold, an improvement in the current distribution improves next period’s distri-

bution:

µ̂, µ ∈ W(F, G) = {µ | ∃β ∈ [0, 1], µ = βF + (1 − β)G}, µ̂ ≻ µ implies µ̂α∗(·) ≻ µα∗(·).

Proof : We first show that for µ = βF + (1 − β)G, µ′ = β′F + (1 − β′)G, with β′ > β. Then F � G

implies µ′ � µ. To see this, it is sufficient to show that φβ(α) is increasing in β for each α ≥ α∗, where:

φβ(α) = µ([α, 1] | α ≥ α∗) =
µ([α, 1])

µ([α∗, 1])
.

Now,

φβ(α) = µ([α, 1] | α ≥ α∗) =
βF ([α, 1]) + (1− β)G([α, 1])

βF ([α∗, 1]) + (1− β)G([α∗, 1])
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=
β[F ([α, 1])−G([α, 1])] + G([α, 1])

β[F ([α∗, 1])−G([α∗, 1])] + G([α∗, 1]

=
βk(α) + d(α)

βk(α∗) + d(α∗)
,

where k(α̃) = [F ([α̃, 1])−G([α̃, 1])] and d(α̃) = G([α̃, 1]). Therefore,

∂φβ

∂β
=

[βk(α∗) + d(α∗)]k(α) − [βk(α) + d(α)]k(α∗)]

[βk(α∗) + d(α∗)]2

=
[d(α∗)k(α)− d(α)k(α∗)]

[βk(α∗) + d(α∗)]2
.

The numerator is

F ([α, 1])G([α∗, 1])−G([α, 1])G([α∗, 1])− [F ([α∗, 1])G([α, 1])−G([α∗, 1])G([α, 1])].

Canceling G([α, 1])G([α∗, 1]) gives the numerator as

F ([α, 1])G([α∗, 1])− F ([α∗, 1])G([α, 1]) = F ([α∗, 1])G([α∗, 1])

[

F ([α, 1])

F ([α∗, 1])
−

G([α, 1])

G([α∗, 1])

]

.

Thus, since
[

F ([α,1])
F ([α∗,1]) −

G([α,1])
G([α∗,1])

]

> 0 from conditional first order stochastic dominance, µ′ � µ.

With this preliminary result in hand, consider

µα∗(·) =

∫

[0,α∗)

P (· | ᾱ)µ(dα) +

∫

[α∗,1]

P (· | α)µ(dα)

= F (·)

∫

[α∗,1]

w(α)µ(dα) + G(·)

∫

[α∗,1]

(1− w(α))µ(dα)

+ µ([0, α∗))w(ᾱ)F (·) + µ([0, α∗))(1− w(ᾱ)G(·)

= [

∫

[α∗,1]

w(α)µ(dα) + µ([0, α∗))w(ᾱ)]F (·)+

[

∫

[α∗,1]

(1− w(α))µ(dα) + µ([0, α∗))(1 − w(ᾱ))]G(·).

Let

xα∗(α) = χ[0,α∗)(α)w(ᾱ) + χ[α∗,1](α)w(α),

so that Eµ{xα∗} =
∫

xα∗(α)µ(dα) gives the weight on F (·) in the distribution µα∗(·):

µα∗(·) = Eµ{xα∗}F (·) + [1− Eµ{xα∗}]G(·).

To prove 1, note that α∗ < ᾱ, and since w is monotone increasing, the function xα∗ is constant and equal

to w(ᾱ) on [0, α∗), has a “downward jump” at α∗ (from w(ᾱ) to w(α∗)), and is monotone increasing on

[α∗, 1]. If ᾱ ≥ α̂∗ ≥ α∗, then xα̂∗ ≥ xα∗ , so that

Eµ{xα̂∗} ≥ Eµ{xα∗}.

Thus 1 holds. Now we prove 2.
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Let µ = βF (·) + (1 − β)G(·). We need to show that as β increases, Eµ(xα∗) increases. Note that

Eµ(xα∗) = µ([0, α∗))w(ᾱ) + µ([α∗, 1])Eµ{xα∗ | α ≥ α∗}.

Since
∫

[α∗,1]

w(α)µ(dα) = β

∫

[α∗,1]

w(α)F (dα) + (1− β)

∫

[α∗,1]

w(α)G(dα) =

βF ([α∗, 1])EF {w(α) | α ≥ α∗}+ (1 − β)G([α∗, 1])EG{w(α) | α ≥ α∗}.

Thus,

Eµ{xα∗} = [βF ([0, α∗)) + (1− β)G([0, α∗))]w(ᾱ)+

βF ([α∗, 1])EF {w(α) | α ≥ α∗}+ (1 − β)G([α∗, 1])EG{w(α) | α ≥ α∗},

or

Eµ{xα∗} = β[F ([0, α∗))w(ᾱ) + F ([α∗, 1])EF {xα∗ | α ≥ α∗}]+

(1− β)[G([0, α∗))w(ᾱ) + G([α∗, 1])EG{xα∗ | α ≥ α∗}].

Using stochastic dominance (xα∗ is increasing on [α∗, 1]),

EF {xα∗ | α ≥ α∗} ≥ EG{xα∗ | α ≥ α∗}.

Provided EF {xα∗ | α ≥ α∗} ≥ w(ᾱ), Eµ{xα∗} is increasing in β. A sufficient condition for this to be so is

that EF {w} ≥ w(ᾱ). But
∫

P (·, α)P (dα, ᾱ) � P (·, ᾱ) implies that EF {w} ≥ w(ᾱ). But this holds if and

only if

[

∫

w(α)P (dα, ᾱ)]F (·) + [1−

∫

w(α)P (dα, ᾱ)]G(·) � P (· | ᾱ) = w(ᾱ)F (·) + [1− w(ᾱ)]G(·).

Because
∫

w(α)F (dα) >
∫

w(α)P (dα, ᾱ),

∫

w(α)F (dα)]F (·) + [1−

∫

w(α)F (dα)]G(·) ≻

∫

w(α)P (dα, ᾱ)]F (·) + [1−

∫

w(α)P (dα, ᾱ)]G(·),

so that
∫

w(α)F (dα) = EF {w} ≥ w(ᾱ).

Proof of Theorem 2: We prove the result inductively. Let vc
n(θ, µ, α) be the payoff (present value) to

agent α in an n-period problem, when the current aggregate shock is θ, the current aggregate distribution

is µ and the agent chooses to stay in the market with n periods remaining. Similarly, ve
n(θ, µ, α) is the

payoff to agent α when the current aggregate shock is θ, the current aggregate distribution is µ and

the agent chooses to exit the market with n periods remaining. The maximum of these functions is:

vn(θ, µ, α) = max{vc
n(θ, µ, α), ve

n(θ, µ, α)}.

At n = 1, they are defined: vc
1(θ, µ, α) = π(θ, µ, α) and ve

1(θ, µ, α) = 0. From the properties of the

profit function, these are continuously decreasing in µ. Now, assume that the result holds for n − 1:
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both vc
n−1(θ, µ, α) and ve

n−1(θ, µ, α) are continuous and decreasing in µ. This implies that v∗n−1(θ, µ, α) is

decreasing in µ.

Consider the variation µ ↑ µ̂. The impact effect of this (with no change in the exit rule) is to lower

both current profit and future expected profit:

π′ = π(θ, µ̂αn(θ), αn(θ)) ≤ π(θ, µαn(θ), αn(θ)) = π

and
∫ ′

θ̃α̃

= β

∫

α̃

∫

θ̃

vn−1(θ̃, µ̂αn(θ), α̃)Θ(dθ̃ | θ)[(1 − γ)P (dα̃ | ᾱ)− P (dα̃ | αn(θ))]

≤ β

∫

α̃

∫

θ̃

vn−1(θ̃, µαn(θ), α̃)Θ(dθ̃ | θ)[(1 − γ)P (dα̃ | ᾱ)− P (dα̃ | αn(θ))] =

∫

θ̃α̃

There are two cases to consider: (1) π′ <
∫ ′

θ̃α̃
and (2) π′ >

∫ ′

θ̃α̃
.

Case (1): π′ <
∫ ′

θ̃α̃

In case (1), to restore equilibrium we require that π′ ↑ and
∫ ′

θ̃α̃
↓. To raise π′, raise αn(θ) (say α̂n(θ)

is the exit value that restores equilibrium: continuity of period profits in the exit rule, αn(θ), follows

because output and hence price are, so that there exists such an α̂n(θ)). This increase in exit increases

the efficiency of µ̂αn(θ)) as the distribution moves to µ̂α̂n(θ)). As a result
∫ ′

θ̃α̃
falls, and this is reinforced

by the “fall” in [(1− γ)P (dα̃ | ᾱ)−P (dα̃ | αn(θ))] as αn(θ) ↑ α̂n(θ). These changes result in a continuous

fall in
∫ ′

θ̃α̃
to

∫ˆ

θ̃α̃
, say. Now, write

∫ ˆ

θ̃α̃

= β

∫

α̃

∫

θ̃

vn−1(θ̃, µ̂α̂n(θ), α̃)Θ(dθ̃ | θ)[(1 − γ)P (dα̃ | ᾱ)− P (dα̃ | α̂n(θ))]

and from the calculations,
∫ˆ

θ̃α̃
<

∫ ′

θ̃α̃
≤

∫

θ̃α̃
. Write π̂ = π(θ, µ̂α̂n(θ), α̂n(θ)) for the new equilibrium current

profit. Now,

π̂ = π(θ, µ̂α̂n(θ), α̂n(θ)) =

∫ ˆ

θ̃α̃

<

∫ ′

θ̃α̃

≤

∫

θ̃α̃

= π(θ, µαn(θ), αn(θ)) = π

current profit has fallen. Since α̂n(θ) > αn(θ),

π(θ, µ̂α̂n(θ), αn(θ)) < π(θ, µ̂α̂n(θ), α̂n(θ)) < π(θ, µαn(θ), αn(θ)).

Thus,

∀α, π(θ, µ̂α̂n(θ), α) < π(θ, µαn(θ), α).

Therefore, price is lower and output higher. Also, because µ̂α̂n(θ) ≻ µ̂αn(θ) ≻ µαn(θ) and vn−1 is monotonic

in µ,
∫

θ̃

vn−1(θ̃, µ̂α̂n(θ), α̃)Θ(dθ̃ | θ) <

∫

θ̃

vn−1(θ̃, µαn(θ), α̃)Θ(dθ̃ | θ)

Consequently, vc
n(θ, µ̂, α) < vc

n(θ, µ, α). Similarly, ve
n(θ, µ̂, α) < ve

n(θ, µ, α). Since both π′ and
∫ ′

θ̃α̃
are

continuous in µ and αn(θ), so are vc
n(θ, µ, α) and ve

n(θ, µ, α).
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Case (2): π′ >
∫ ′

θ̃α̃

In this case, we want to reduce π′ and raise
∫ ′

θ̃α̃
. As π(θ, µ̂αn(θ), αn(θ)) is too high, reduce αn(θ) to

α̂n(θ) (say, the new equilibrium exit rule) where µ̂α̂n(θ) ≻ µαn(θ). This reduces current profit further,

with greater output and lower price. As αn(θ) declines, this reduces the efficiency of µ̂αn(θ), so that
∫

θ̃
vn−1(θ̃, µ̂αn(θ), α̃)P (dθ̃ | θ) increases. In addition [(1− γ)P (dα̃ | ᾱ) − P (dα̃ | αn(θ))] increases. At the

new solution:

π(θ, µ̂α̂n(θ), α̂n(θ)) =

β

∫

α̃

∫

θ̃

vn−1(θ̃, µ̂
α̂n(θ), α̃)Q(dθ̃ | θ)[(1 − γ)P (dα̃ | ᾱ)− P (dα̃ | α̂n(θ))]

Since

π(θ, µαn(θ), αn(θ)) > π(θ, µ̂αn(θ), αn(θ)) > π(θ, µ̂α̂n(θ), αn(θ)) > π(θ, µ̂α̂n(θ), α̂n(θ))

this implies

β

∫

α̃

∫

θ̃

vn−1(θ̃, µαn(θ), α̃)Θ(dθ̃ | θ)[(1 − γ)P (dα̃ | ᾱ)− P (dα̃ | αn(θ))]

> β

∫

α̃

∫

θ̃

vn−1(θ̃, µ̂
α̂n(θ), α̃)Q(dθ̃ | θ)[(1− γ)P (dα̃ | ᾱ)− P (dα̃ | α̂n(θ))].

And, since

[(1− γ)P (dα̃ | ᾱ)− P (dα̃ | α̂n(θ))] � [(1 − γ)P (dα̃ | ᾱ)− P (dα̃ | αn(θ))]

we get that for a set of positive measure of α’s that

β

∫

α̃

∫

θ̃

vn−1(θ̃, µαn(θ), α̃)Θ(dθ̃ | θ) > β

∫

α̃

∫

θ̃

vn−1(θ̃, µ̂
α̂n(θ), α̃)Θ(dθ̃ | θ)

Were it the case that µαn(θ) ≻ µ̂α̂n(θ), this could hold for no α. Thus, this cannot be the case, and since

the set of measures is totally ordered (from the weighted average assumption), the reverse is true:

µ̂α̂n(θ) ≻ µαn(θ).

Thus,

β

∫

α̃

∫

θ̃

vn−1(θ̃, µαn(θ), α̃)Θ(dθ̃ | θ) > β

∫

α̃

∫

θ̃

vn−1(θ̃, µ̂
α̂n(θ), α̃)θ(dθ̃ | θ)∀α̃

This implies that for all α, vc
n(θ, µ̂, α) < vc

n(θ, µ, α). Similarly, for all α, ve
n(θ, µ̂, α) < ve

n(θ, µ, α).

Continuity again follows immediately. Note that in both cases, µ̂α̂n(θ) ≻ µαn(θ).

Proof of Theorem 4: Let Pr(θ = θ̄|θ̄) = ρ; Pr(θ = θ|θ) = φ. Suppose that ρ = φ = 1, so that for

some θ ∈ {θ, θ̄}, θt = θ0 = θ, and the marginal exiting firm, α∗(θ, µ), is determined by the solution to

π(θ, µα∗ , α
∗) = β

∫

α̃

v(θ, µα∗ , α̃)[(1− γ)P (dα̃ | ᾱ)− P (dα̃ | α∗)].

With ρ = φ = 1 the state is constant over time and equal to θ. It is straightforward (see Bergin and

Bernhardt (2005), Theorem 4) to show that the aggregate distribution converges (monotonically) to some
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distribution µ∞(θ): limt→∞µt → µ∞(θ), with associated price sequence, p(µt, θ) → p(µ∞, θ). From the

multiplicative decomposition of profits, asymptotically, the value functions are multiplicative functions

of price, so that the exit rule, α∗, is asymptotically independent of θ (and only relative prices matter).

Hence, µ∞(θ) = µ∞(θ̄) = µ∞ with associated exit rule α∞.

Let αρφ(θ, µ) be the equilibrium exit threshold at state θ when the aggregate distribution is µ and the

transition probabilities on θ given by ρ and φ. Note that α1φ(θ̄, µ∞) = α∞ = αρ1(θ, µ∞) because at ρ = 1

(φ = 1) the exit rule at (θ̄, µ∞) ((θ, µ∞)) is independent of φ (ρ).

For any (θ, µ), observe that αρφ(θ, µ) is (a) increasing in ρ and (b) decreasing in φ. (Raising ρ raises

the future payoff leaving current payoff unchanged and therefore leads to more exit, increasing φ reduces

the future payoff leaving current payoff unchanged and therefore leads to less exit.) Thus,

α1φ(θ, µ∞) > αρφ(θ, µ∞) > αρ1(θ, µ∞) = α∞ = α1φ(θ̄, µ∞) > αρφ(θ̄, µ∞) > αρ1(θ̄, µ∞).

Next, fix some ρ, φ pair. Since αρφ(θ, µ∞) > α∞ > αρφ(θ̄, µ∞), at the distribution µ∞, more exit

occurs at θ than at θ̄. Starting at µ∞, denote the next period’s distribution following θ̄ by µθ̄
1 and

following θ by µ
θ
1. Noting that µ∞ = µ∞∞, µθ̄

1 ≺ µ∞ ≺ µ
θ
1.

To make dependence on µ∞ explicit, write µθ̄
1(µ∞) ≺ µ∞ ≺ µ

θ
1(µ∞). Since for fixed θ, improving

(worsening) the current distribution improves (worsens) next period’s distribution, if the aggregate shock

at µθ̄
1(µ∞) is θ̄, then next period’s distribution µ

θ̄,θ̄
2 (µ∞) ≺ µθ̄

1(µ∞). Letting θ̄(t) denote t realizations

of θ̄, and µ
θ̄(t)
t (µ∞) the associated distribution in t periods, the distribution satisfies: µ

θ̄(t+1)
t+1 (µ∞) ≺

µ
θ̄(t)
t (µ∞). Let µ denote the limit. Similar reasoning gives µ

θ(t+1)
t+1 (µ∞) ≻ µ

θ(t)
t (µ∞), where µ

θ(t)
t (µ∞) is

the distribution t periods later following a history of t-θ shocks. let µ̄ denote the limit.

Now, fix some µ ∈ (µ, µ∞). Given θ̄, let µθ̄(µ) be next period’s distribution. From the previous

reasoning, µθ̄(µ) ≺ µ. Next, consider µ and the shock θ. In this case, µθ(µ) ≻ µ. To see this, note that

as φ increases, the future payoff is lower and this reduces exit. However, at θ with φ = 1, the system

stays in state θ and the aggregate distribution increases to µ∞ asymptotically. In particular, µθ(µ) ≻ µ

when φ = 1. However, when φ < 1 the future payoff increases and this increases exit (recall αρφ(θ, µ) is

decreasing in φ so exit increases as φ falls). But more exit improves next period’s distribution, so that for

the given φρ pair, µθ(µ) ≻ µ. Thus, µθ(µ) ≻ µ ≻ µθ̄(µ). This implies that exit at (θ, µ) is greater than

exit at (θ̄, µ), or αρφ(θ, µ) > αρφ(θ̄, µ). This completes the argument.

Proof of Theorem 8: Fix γ. We first argue that because distributions can be ordered over time, so

that either we are in the stationary economy, or that µ
γ
t ≻ µ

γ
t−1, ∀t, or that µ

γ
t−1 ≻ µ

γ
t , ∀t. Suppose

to the contrary that µ
γ
t ≻ µ

γ
t−1, but that µ

γ
t � µ

γ
t+1. This implies α

∗γ
t−1 > α

∗γ
t (if µ ≻ µ′ the same

exit threshold applied to each preserves the ordering at the next round) and p
γ
t−1 > p

γ
t . But then

π(µγ

t−1·α∗γ

t−1

, α
∗γ
t−1) > π(µγ

t−1·α∗γ
t

, α
∗γ
t ). But this implies that

∫

vγ(µγ
t+1, α̃)[(1 − γ)P (dα̃ | ᾱ)− P (dα̃ | α∗γt )]
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<

∫

vγ(µγ
t , α̃)[(1 − γ)P (dα̃ | ᾱ)− P (dα̃ | α∗γt−1)] <

∫

vγ(µγ
t , α̃)[(1 − γ)P (dα̃ | ᾱ)− P (dα̃ | α∗γt )].

But this implies that for some α, vγ(µγ
t , α) > vγ(µγ

t+1, α), but µ
γ
t � µ

γ
t+1, a contradiction. An analogous

contradiction is derived if we assume that µ
γ
t−1 ≻ µ

γ
t , but µ

γ
t+1 � µ

γ
t .

The monotonic improvement or decline in the distribution of firm qualities over time implies that

limt→∞p
γ
t = pγ

∞: The limiting economy is stationary.

We now argue that there is a unique equilibrium path. Suppose the equilibrium path is not unique.

There are two cases to consider — where the distributions move in opposite directions and where they

move in the same direction. Suppose that there were at least two equilibrium paths, indexed by hat and

dot, such that µ̇1 = µ
α̇∗0
0 � µ0 ≻ µ̂1 = µ

α̂∗0
0 . Dropping the γ index, the argument above implies that

p̂t > ṗt, ∀t ≥ 1. Further, since α̂∗0 < α̇∗0, p̂0 < ṗ0. But then,

π0(µ0·α̂∗
0
, α̂∗0) < π0(µ0·α̇∗

0
, α̇∗0)

= β

∫

v̇(µ̇1, α̃)[(1 − γ)P (dα̃ | ᾱ)− P (dα̃ | α̇∗0)] < β

∫

v̂(µ̂1, α̃)[(1− γ)P (dα̃ | ᾱ)− P (dα̃ | α̂∗0)],

a contradiction.

One can derive a similar contradiction to the possibility of two equilibrium paths, indexed by hat and

dot, such that µ̇1 = µ
α̇∗0
0 ≻ µ̂1 = µ

α̂∗0
0 � µ0, or the converse. Again, abusing notation,

µ̇1 ≻ µ̂1 → π̇0 > π̂0 →

∫

v̇1 >

∫

v̂1.

But
∫

v̇1 >
∫

v̂1 requires that there must be a future date where µ̂t ≻ µ̇t. Since µ̇∞ ≻ µ̂∞ there is a

greatest date T such that µ̂T � µ̇T . But µ̂(µ̂T ) � µ̂(µ̇T ). Again,

µ̇T+1 ≻ µ̂(µ̇T ) → π̇T > π̂T →

∫

v̇T+1(µ̇T+1, α̃) >

∫

v̂T+1(µ̂(µ̇T , α̃),

a contradiction, since prices from T + 1 on must be higher in the hat economy.

Now consider γ > γ′, and suppose that at the stationary distribution of firms in the no prime economy,

µγ
∞, there is less exit than in the prime economy: α∗γ(µγ

∞) ≥ α∗γ
′

(µγ
∞), so that µγ

∞ � µγ′

∞ and hence,

pγ
∞ ≤ pγ′

∞. But then vγ(α, µγ
∞) < vγ′(α, µγ

∞). Consequently,

π(µγ

∞·α∗γ′ (µγ
∞)

, α∗γ
′

(µγ
∞)) ≤ π(µγ

∞·α∗γ(µγ
∞)

, α∗γ(µγ
∞)) = β

∫

vγ(µγ
∞, α̃)[(1−γ)P (dα̃ | ᾱ)−P (dα̃ | α∗γ(µγ

∞)]

< β

∫

vγ′(µ
γ·α∗

′

(µγ
∞

)
∞ , α̃)[(1 − γ)P (dα̃ | ᾱ)− P (dα̃ | α∗γ

′

(µγ
∞)],

a contradiction. Hence, µγ′

∞ ≻ µγ
∞ and pγ′

∞ ≤ pγ
∞. In turn, pγ′

∞ < pγ
∞ implies that any given α in the no

prime economy operate at a larger and more profitable scale.
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