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Abstract

Phillips curves are central to discussions of inflation dynamics and monetary policy.

New Keynesian Phillips curves describe how past inflation, expected future inflation,

and a measure of real marginal cost or an output gap drive the current inflation rate.

This paper studies the (potential) weak identification of these curves under GMM and

traces this syndrome to a lack of persistence in either exogenous variables or shocks.

We employ analytic methods to understand the identification problem in several sta-

tistical environments: under strict exogeneity, in a vector autoregression, and in the

canonical three-equation, New Keynesian model. Given U.S., U.K., and Canadian data,

we revisit the empirical evidence and construct tests and confidence intervals based

on exact and pivotal Anderson-Rubin statistics that are robust to weak identification.

These tests find little evidence of forward-looking inflation dynamics.
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1. Introduction

Recent years have witnessed a boom in work on the Phillips curve. For a student

of monetary policy and the business cycle steeped in dynamic general equilibrium

methods, the revival of Phillips curve research might come as a shock. The shock

might be mitigated because the Phillips curve revival features debates on the role of

backward- and forward-looking expectations for inflation, on which measure of real

aggregate demand most directly influences inflation, on the response of monetary

policy to various disturbances, and on the costs of disinflation. These debates often

are framed by the new Keynesian Phillips curve (NKPC) because it appears to provide

a tent under which many views of inflation dynamics can exist. However, whether

to be inside or outside the Phillips curve revival tent depends on the NKPC being a

persuasive description of inflation dynamics.

Variations on the NKPC are just about limitless. The canonical NKPC is driven

either by current real marginal cost or today’s output gap and is forward-looking in

the current expectation of tomorrow’s inflation. Gali and Gertler (1999) add lagged

inflation to create a ‘hybrid NKPC’, which they use to address aspects of the debate

among Phillips curve revivalists. Specification of the NKPC has important implications

for monetary policy, and in particular for how central banks should react to real events

while maintaining inflation targets. Although contributions to this research are too

numerous to list, besides Gaĺi and Gertler (1999), Fuhrer and Moore (1995), Roberts

(1995) and Sbordone (2002) make important empirical contributions. Theory and

evidence about the NKPC also are reviewed by Woodford (2003).

The hybrid NKPC is a second-order, linear, expectational difference equation. Its

earliest guise is as a labor demand schedule; see Kennan (1979). Hansen and Sar-

gent (1980) and Sargent (1987) study the dynamic and time series properties of this

general class of stochastic models. Most empirical work on the NKPC estimates it

using instrumental variables (IV) methods, as Gaĺi and Gertler (1999) do. Generally,

NKPC parameters prove difficult to pin down without large instrument sets. This sug-

gests weak identification. Other symptoms of this syndrome include instability of

1



estimates across instrument sets, estimates which may approach those from ordinary

least-squares and hence be inconsistent, and Wald tests with size distortions. The

goal of this paper is to study the economics underlying weak identification, with a

view to drawing lessons and recommendations for applied work.

In section 2, we study identification analytically in a solved version of the hybrid

NKPC difference equation. In this environment, the process for real marginal cost or

an output gap (labelled x) that drives inflation, πt , is strictly exogenous. The main

finding is that identification requires higher-order dynamics in x. We also illustrate

the weaker identification requirements of system estimators, which may be feasible

with less persistence. Section 2 also discusses identification in IV estimators with

the purely forward-looking NKPC, with calibrated discount factors, with cointegrated

variables, and with lagged instrument sets.

Section 3 sets the hybrid NKPC in a VAR in {πt , xt}. We show this generalization

fails to make identification easier unless higher-order lags of inflation predict real

marginal cost. The reason is the investigator must take care to separate the two

roles once-lagged inflation plays: (a) it enters the hybrid NKPC to reflect slow price

adjustment, and (b) it enters the VAR because it helps forecast future values of x.

Section 4 details the identification problems when the hybrid NKPC is set in a

typical, three-equation, new Keynesian model. The hybrid NKPC cannot be identified

under IV estimation in the baseline version of this model. For the hybrid NKPC to be

identified requires that either (a) one of the shocks to the system is persistent or (b)

the interest-rate rule involves a lagged interest rate (interest-rate smoothing).

Section 5 applies the results to the U.S., U.K., and Canada. We first estimate the

hybrid NKPC for each country, using a range of instruments. We also investigate a nec-

essary condition for identification: πt+1 must be predictable using information other

than πt , πt−1, and xt . We relate the findings from this first-stage test to the literature

on forecasting inflation. Finally, we use the Anderson and Rubin (1949) statistic to

test the hybrid NKPC. This test is exact and robust to weak or omitted instruments.

Its application yields little evidence of forward-looking inflation dynamics.
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2. Identification with Strict Exogeneity

A variety of pricing environments give rise to a hybrid NKPC that describes infla-

tion, πt :

πt = γfEtπt+1 + γbπt−1 + λxt , (1)

where we use xt to denote real aggregate demand (either real marginal cost or an

output gap). The studies by Rotemberg (1982), Roberts (1997), Fuhrer and Moore

(1995), Yun (1996), and Gaĺi and Gertler (1999) contain influential examples of these

environments. The underlying pricing behavior can range from smooth adjustment

with quadratic costs to a variation of Calvo’s contract model (with or without firm-

specific capital) in which some price-setters are backward-looking. The hybrid NKPC

(1) also may be consistent with the dynamic indexing model suggested by Woodford

(2003), assuming it is written in the change in inflation rather than the level.

Our study is concerned with identifying the parameters γf , γb, and λ, rather than

with working backward from them to the underlying structural ones. Throughout the

paper we assume (with one exception) that the roots of relevant difference equations

imply stability and uniqueness of solutions, and that the difference equation (1) fol-

lows from a pricing model – in which all three parameters are positive – and not an

observationally equivalent environment, as in Beyer and Farmer (2004).

The hybrid NKPC (1) is a linear, second-order, stochastic difference equation. Our

study draws on tools for formulating these problems under rational expectations de-

veloped by Hansen and Sargent (1980) and Sargent (1987). We also draw on studies

of estimation in the linear-quadratic model by Gregory, Pagan, and Smith (1993), West

and Wilcox (1994) and Fuhrer, Moore, and Schuh (1995).

We begin by reviewing the identification of the parameters in several different

statistical frameworks. Given the popularity of the IV (i.e., GMM) estimator, we focus

principally on those methods. Our approach adopts a linear statistical model for

xt , and then solves for inflation, πt . Using the solved (full-information) model, we

describe several different GMM (limited-information) estimators.
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We consider the two classic properties of instrument sets. Obviously, identifying

the three parameters of the hybrid NKPC first requires at least three instruments or,

more generally, three pieces of identifying information which could include restric-

tions on the parameters or covariance restrictions in a system setting. A test based

on over-identification requires at least four instruments or four such pieces of infor-

mation. The instruments must be uncorrelated with the GMM residuals, which are

essentially forecast errors. This is the order condition. Second, the matrix of cross-

products of the instruments and the right-hand-side variables in the hybrid NKPC

cannot be singular. This is the rank or ‘relevance’ condition.

Each property is illustrated using our model of xt . Our environment is linear, so

there is no distinction between local and global identification. The order and rank

conditions provide results that (1) imply that higher-order dynamics in xt often are

necessary for identification, (2) yield an analysis of situations in which weak identifi-

cation can arise, (3) suggest that additional parameter information or restrictions on

x (e.g., x and π are cointegrated) may not aid identification in GMM estimation, (4)

show that partly solving the hybrid NKPC forward does not improve identification, (5)

derive an expression for the loss of precision in the hybrid NKPC caused by using only

lagged instruments, and (6) show that lagged residuals are not valid instruments. Our

analysis of the identification of the hybrid NKPC provides guidance for studying it in

richer environments in sections 3 and 4 and for empirical work in section 5. The key

analytic results are summarized in table 1.

We uncover the properties of hybrid NKPC estimators by solving the difference

equation (1) using the methods of Sargent (1987):

πt = δ1πt−1 +

(

λ

δ2γf

) ∞
∑

k=0

(

1

δ2

)k

Etxt+k, (2)

where δ1 and δ2 are the stable and unstable roots, respectively, of the characteristic

equation:

−L−1 +
1

γf
−
γbL

γf
= 0. (3)
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We assume that {xt} is of exponential order less than δ2 so that the infinite sum in

(2) is finite, and that the roots yield a unique solution to the difference equation.

Suppose that xt evolves autonomously according to a J-th order autoregression:

xt =

J
∑

j=1

ρjxt−j + εt , (4)

where ρj �= 0∀ j and εt is an innovation with respect to the σ -field generated by the

history of x. This process can be rewritten in companion form as:

x̃t = ρ̃x̃t−1 + ε̃t , (5)

where x̃t = (xt xt−1 . . . xt−J+1)
′ and the transition matrix is:

ρ̃ =

(

ρ1 ρ2 . . . ρJ
IJ−1 0J−1

)

, (6)

where 0J−1 is a column vector of zeros. Next, define sJ as a selection row vector of

length J with 1 in the first position and zeros thereafter. It will select the first element

of x̃t . Define IJ as the J × J identity matrix. The solution for inflation follows:

πt = δ1πt−1 +

(

λ

γfδ2

)

sJ
[

IJ − ρ̃δ
−1
2

]−1
x̃t + ηt . (7)

We assume that

|IJ − ρ̃δ
−1
2 | �= 0. (8)

The stochastic singularity is avoided – so that a residual ηt appears in the solu-

tion (7) – by assuming that the econometrician’s information set lies strictly within

that of the price-setting agents, as originally proposed by Hansen and Sargent (1980).

Thus, ηt is uncorrelated with information available to the econometrician at time t.

In particular, if the econometrician has access to current and past values of x then:

cov(ηt , εt) = 0. (9)

Alternately, ηt can be interpreted as a cost, technology, or real aggregate demand

shock; see Ireland (2002) for a discussion.
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We study the macroeconomic implications of identification of the hybrid NKPC in

this environment. This quest excludes other potential sources of identification, such

as structural breaks, varying conditional covariances, or the use of survey data on

inflation expectations. We have omitted constant terms, as if the data have been de-

meaned. Of course, if in applications a constant term is included in the NKPC, a vector

of ones can be used as an instrument while adding no net identifying information.

Combine the x-process (5) with the solved hybrid NKPC (7) to describe a structural

VAR (SVAR) with cross-equation restrictions:

x̃t = ρ̃x̃t−1 + ε̃t

πt = δ1πt−1 +

(

λ

γfδ2

)

sJ
[

IJ − ρ̃δ
−1
2

]−1
x̃t + ηt .

(10)

Result 1. The hybrid NKPC imposes the King and Watson (1994) real business cycle

identification on the structural VAR (10) for {x̃t , πt} and the Solow-Gordon identifying

assumption on the impact matrix of the unrestricted simultaneous equations system

of {x̃t , πt}. §

The structural VAR (SVAR) of (10) is identified by the fact that current inflation has

no impact on xt . Shock innovations to the hybrid NKPC and the autonomous process

for x drive the inflation rate. Marginal cost or the output gap, x, responds only to one

shock, εt . Thus, εt is an autonomous shock with respect to real aggregate demand.

King and Watson (1994) impose the restrictions of the SVAR (10) to achieve their real

business cycle (RBC) identification, while King and Watson (1997) refer to the impact

restriction of this SVAR as the Solow-Gordon Phillips curve identification. The former

identification agrees with RBC theory, according to King and Watson (1994), because

the measure of real aggregate demand is independent of the inflation shock innova-

tion and the history of inflation. The NKPC-SVAR of (10) also is consistent with the

Solow-Gordon Phillips curve interpretation that real rigidities dominate aggregate de-

mand fluctuations and inflation dynamics. Result 1 implies that fundamental shocks

produced by the hybrid NKPC-SVAR (10) will be indistinguishable from those of either

the RBC identification or the Solow-Gordon Phillips curve identification.
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King and Watson (1997) observe that the SVAR (10) restricted by the Solow-Gordon

identification is inconsistent with the notion of price stickiness. Since xt enters the

solved inflation process, inflation responds to ηt and εt at impact (i.e. lag zero). Thus,

real and nominal shocks generate movements in inflation at impact, under the Solow-

Gordon identification implied by the hybrid NKPC. It is the cross-equation restrictions

of the hybrid NKPC SVAR (10) that yield the additional information for estimation

and testing. The quandary remains that a model predicated on costly price setting

requires inflation to be flexible enough to respond to all shocks at impact.

A priori there is no ‘best’ way to estimate the solved hybrid NKPC (7). It is one

regression in a system that includes the AR(J) process (5) of x. This system also

is defined by cross-equation restrictions including one on the covariance matrix of

forecast innovations {εt , ηt}.

Result 2. The number of regressors in (7) is J + 1. The parameters in ρ̃ can be

identified from estimation of the law of motion for xt , (4). With three parameters

{γf , γb, λ} to identify, J ≥ 1 is necessary for identification in the solved model (7).

J ≥ 2 is necessary for overidentification.§

The key logic behind this result is that system estimation of the bivariate system

allows (or requires) the econometrician to impose the covariance restriction (9). Thus

only two additional pieces of information are required from the solution for infla-

tion (7), and there are two regressors as long as J ≥ 1. In general, identification is

possible if the present value in the solved model (2) has a non-null projection on at

least one variable known by price-setters at time t. In our case, these variables will

be elements in x̃t , but other variables might contribute as well. Studies that use the

system estimator include, among others, Fuhrer and Moore (1995), Sbordone (2002),

Kurmann (2003a), Lindé (2002), Bardsen, Jansen, and Nymoen (2002), Jondeau and Le

Bihan (2003), and Fuhrer and Olivei (2004).

More typical is GMM estimation of the hybrid NKPC (1), using sample versions of:

E
[

γfπt+1 −πt + γbπt−1 + λxt|zt
]

= 0, (11)
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and instruments zt . Given moment conditions (11), a necessary condition for identi-

fication of {γb, γf , λ} is that there are as many valid instruments as parameters (or

variables that explain inflation in this linear model). Of course, being dated t − 1 or

earlier is not sufficient for an instrument to be valid: it must possess incremental

information about πt+1. This is the ‘relevance’ condition of IV estimation.

Result 3. If zt = {πt−1, xt , xt−1, xt−2, . . . , xt−J+1}, then J ≥ 2 is necessary for identi-

fication by GMM and J ≥ 3 is necessary for overidentification.§

According to the solution of the present value of the hybrid NKPC, equation (7) shows

that further lags of inflation contain no identifying information, so zt is the maximal

instrument set in this environment. Observe that dim(zt) = J + 1 and the result

follows. For example, let J = 2, then zt = {πt−1, xt , xt−1}, because xt−2 contains no

additional information.

Moving from estimation of the solved model (5) and (7) to the difference equation

(11) and ignoring information on the properties of xt cannot ease the conditions for

identification. Result 3 shows that identification under GMM is strictly more onerous

than in the system environment of Result 2 because the error-covariance restriction

(9) is no longer available. This difference must be considered prior to considering

the usual trade-off between efficiency and robustness in deciding between system

and single-equation estimation. In particular, the parameters of the second-order

difference equation in inflation (1) cannot be identified by GMM, if xt follows a first-

order Markov process. Pesaran (1987, Propositions 6.1 and 6.2) derived similar results.

He observed that identifying information is available when the lag length in the process

for xt is longer than that in the difference equation.

Results 2 and 3 rationalize the common practice of imposing a value for or cali-

brating β, a discount factor that underlies {γf , γb}. For example, β sometimes is set

to 0.99 in quarterly data, which implies a quarterly discount rate of about 1 percent.

This procedure allows identification when {xt} follows a Markov process. Other stud-

ies impose γf = 1 − γb, which again aids identification, but makes it impossible to

test the hybrid NKPC against the purely forward-looking one (γb = 0).
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A number of researchers have used only lagged instruments in estimating (11).

For example, Gaĺi and Gertler (1999) used up to four lags of various instruments. Let

us denote this information set by zt−1.

Result 4. If zt−1 = {πt−1, xt−1, xt−2, . . . , xt−J}, so that only lagged information is

used, then again J ≥ 2 is necessary for identification by GMM and J ≥ 3 is necessary

for overidentification.§

The intuition for Result 4 is that the moment conditions (11) involve forecasts of

πt+1, πt , and xt based on information at time t − 1. Notice that zt−1 is not a subset

of zt . Again dim(zt−1) = J + 1 and the identification result follows.

As an example, suppose that xt follows a second-order autoregression, so J = 2.

Then zt = {πt−1, xt , xt−1} and zt−1 = {πt−1, xt−1, xt−2}. Omitting the current value

of xt as an instrument means that an additional, lagged value must be used and be

relevant. If instead zt is the instrument set, then including xt−J (xt−2 in this example)

provides no overidentifying information.

In some circumstances, the investigator may know the value of λ, either from

theory or from some auxiliary statistical work. For example, if J = 1 and ρ1 = 1 then

xt andπt will be cointegrated with parameter λ, which could be estimated from a static

regression, as originally proposed by Granger and Engle (1987). This information can

potentially aid identification of the remaining parameters, γf and γb.

Result 5. If a consistent estimate λ̂ is available, J ≥ 1 is necessary for the identi-

fication of γf and γb in the solved-system environment. In the single-equation en-

vironment with instruments zt , J ≥ 1 is necessary for identification and J ≥ 2 for

overidentification. With instruments zt−1, however, J ≥ 2 remains necessary for iden-

tification and J ≥ 3 for overidentification.§

To see this result, consider J = 1. In this case, the solved model yields two coeffi-

cients and a covariance restriction, which over-identify the two remaining parameter

estimates (with ρ1 estimated in the auxiliary model). Similarly, with λ̂xt known in the

difference equation, the instruments xt and πt−1 can be used to identify γf and γb.
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But with instruments zt−1 three variables in (12) remain to be forecasted, {πt+1, πt ,

xt}, even given an estimate λ̂. Thus, a two-step procedure cannot identify the two

other parameters, unless J ≥ 2 continues to hold.

The last part of Result 5 is a generalization of an example found in Pagan, Gregory,

and Smith (1993). They consider the case with ρ1 = 1; also see West (1988). According

to Pagan, Gregory, and Smith, lagged instruments could not identify the parameters

of the difference equation without higher-order dynamics in the x-process. Result 5

also is relevant to price-setting rules that are written in terms of the level of prices,

rather than the inflation rate, because the price level is more likely to be nonstationary

yet cointegrated with the fundamental; see Nason and Slotsve (2004) for an example.

Result 6. The conditions for identification do not change if the investigator imposes

γb = 0, so that the NKPC is purely forward-looking.§

This result can be checked by specializing the solution in (7), with δ1 = 0 and

δ2 = γ
−1
f which follow from the roots of (3). Again we assume that the remaining

two parameters yield a unique solution to the difference equation. Note that the

investigator has dropped a parameter, γb, and the variable πt−1 also. Mavroeidis

(2004a, b) provides a discussion of this case.

As an interesting way to provide evidence on the hybrid NKPC, Rudd and Whelan

(2001), Gaĺi, Gertler, and López-Salido (2001), and Guay, Luger, and Zhu (2002) solve

the hybrid NKPC difference equation forward, as in (2), but truncate after K leads.

This leads them to estimate by instrumental variables:

Et−1

(

πt − δ1πt−1 −
λ

δ2γf

K
∑

k=0

δ2
−kxt+k

)

. (12)

Result 7. Solving forward and truncating provides no additional information to aid

identification (or improve efficiency).§

This result is obvious given Result 2. The difference equation – solved forward

and truncated – still involves the three parameters {γf , γb, λ}. Were there valid instru-

ments for each future xt+k in (12), these parameters would be overidentified because
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(13) contains more variables than parameters whenK ≥ 1. Nonetheless, the number of

relevant instruments remains J+1, so the conditions for identification are unchanged.

Result 8. Whether zt or zt−1 is adopted, the GMM residual is a MA(1) process. Both

of these instrument sets are valid, but any instrument set must exclude lagged GMM

residuals. In addition, the loss of precision from excluding xt from the instrument set

depends both on parameters in its law of motion and on the hybrid NKPC parameters.§

The GMM residual is given by:

νt+1 ≡
(

γfπt+1 −πt + γbπt−1 + λxt
)

− Et
(

γfπt+1 −πt + γbπt−1 + λxt
)

. (13)

With zt , the residual is:

νt+1|t = γfηt+1 + (δ1γf − 1)ηt +

(

λ

γfδ2

)

s̃J
[

IJ − ρ̃δ
−1
2

]−1
ε̃t+1. (14)

This moving average can be accounted for in constructing the weighting matrix in

GMM estimation. If zt−1 is adopted, the residual is:

νt+1|t−1 = νt+1|t + s̃J

[

( λ

γfδ2

)[

γf (γb + ρ̃)− 1
][

IJ − ρ̃δ
−1
2

]−1
− λ

]

ε̃t . (15)

so that the variance of the additional term – and hence the efficiency loss – depends

on the parameters of the hybrid NKPC in addition to those of the {xt} process.

The key, analytical findings of this section are that (a) identification may be easier

in the system context than in the GMM context; and (b) in either case, higher-order

dynamics in real marginal cost, unemployment, or the output gap are necessary in

order to test the theory. We next examine whether these lessons change when the

hybrid NKPC is set in other statistical environments.

3. VAR Identification

This section generalizes the environment by allowing lagged inflation to enter

the law of motion of xt . Of course, other variables also might help forecast real

marginal cost or the output gap. Including the lagged, endogenous variable in the law
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of motion for x may partly capture the additional information used by price-setters in

forecasting. Campbell and Shiller (1987) Boileau and Normandin (2002), and Kurmann

(2003a) develop this approach.

Suppose we add lagged inflation to the process generating xt :

xt =

J
∑

j=1

ρjxt−j +

J
∑

j=1

ζiπt−i + εt , (16)

so that we are agnostic about whether lagged inflation helps forecast marginal cost or

the output gap. Combine the forecasting rule (16) with equation (2), the present-value

version of the hybrid NKPC:

πt = δ1πt−1 +

(

λ

δ2γf

) ∞
∑

k=0

(

1

δ2

)k

Etxt+k,

to solve the model. It is not necessary to extend all the algebra of section 2, though,

for clearly any variable that helps to forecast Etxt+k will be a linear function of the

information set

Zt = {xt , xt−1, ...xt−J+1, πt , πt−1, ...πt−J+1}. As usual the lag length in the solution is

one less than that in the forecasting equation (16). The solution for inflation thus will

involve these variables, along with πt−1.

Result 9. Predicting x with once-lagged or twice-lagged inflation adds no identifying

information. J ≥ 3 is necessary for the VAR to add overidentifying information. Thus

Results 2 and 3 continue to apply within the VAR. §

Result 2 showed that the system with x following a first-order autoregression is

just identified. Being able to predict x with further lags allows over-identification.

Each added lag of x introduces two new projection coefficients (one in each equa-

tion) but only one new parameter. Instead, suppose that the investigator predicts x

with once-lagged or twice-lagged inflation in the hope of providing over-identification.

Nonetheless, the system remains just-identified because current and once-lagged in-

flation already enter the hybrid NKPC.
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Similarly, relevant instruments for Etπt+1 in GMM estimation now will be

Zt = {xt , xt−1, ...xt−J+1, πt , πt−1, ...πt−J+1}. The NKPC already includes πt and πt−1

and so lags of inflation add instruments only if J ≥ 3.

It is important to note that the coefficient on lagged inflation in the solved Phillips

curve now has a different interpretation. In section 2 the coefficient on lagged inflation

in the solution (2), δ1, depended only on the parameters of the Phillips curve, γb and

γf , as shown in the characteristic equation (3). In the VAR – with lagged inflation

potentially forecasting future values of x – this separation no longer holds.

Result 10. The coefficient on πt−1 in the solved hybrid NKPC is independent of

the process followed by real marginal cost iff inflation does not Granger-cause real

marginal cost.§

Granger-causality from π to x often is viewed as a weak implication of the NKPC

because it involves no cross-equation restrictions. Result 10 notes that in this case

the coefficient on πt−1 reflects structural parameters and the forecasting rule for x.

For example, γb = 0 does not imply that the coefficient on lagged inflation will also

be 0, for lagged inflation could forecast future values of x – and so enter the infla-

tion solution – even if there is no backward-looking price-setting. An investigator

who incorrectly assumes that x is strictly exogenous will deduce incorrect (i.e., bi-

ased) values of γf and γb when performing system estimation. Kennan (1979) first

showed that the intrinsic dynamics (γb and γf ) could be estimated consistently by

single-equation least squares, provided sufficient lags in x are included to capture the

forecasting information. Result 10 is also based on Sargent (1987, chapter XI, part 24),

who showed the relationship between strict exogeneity – in the classic terminology of

Engle, Hendry and Richard (1983) – and Granger-causality.

This discussion raises the question of the economic interpretation of these lags

of inflation. The next section turns to an environment which restricts the VAR with

additional economic theory.

4. Identification in a New Keynesian System
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Up to this point, we have discovered (or rediscovered) that identifying the hybrid

NKPC depends on the properties of the x-process. However, real marginal cost or the

output gap is endogenous in a dynamic, stochastic, general-equilibrium model. We

study identification in a more complete model in this section. It seems natural to work

with a typical, new Keynesian trinity model (NKTM):

πt = γfEtπt+1 + γbπt−1 + λyt + επt

yt = βfEtyt+1 + βbyt−1 − βR(Rt − Etπt+1)+ εyt

Rt =ωππt +ωyyt + εRt

(17)

where y is the output gap, R is the central bank’s discount rate (the nominal federal

funds rate in the U.S.), the second equation is a linearized dynamic IS schedule, and

the last equation is a Taylor rule.

Our interest is in estimating the hybrid NKPC by replacing Etπt+1. We derive the

forecasting implications of the NKTM (17) to do this. Using the policy rule to replace

the interest rate in the equations for inflation and the output gap gives:

πt = γfEtπt+1 + γbπt−1 + λyt + επt

yt = βfϕEtyt+1 + βRϕEtπt+1 + βbϕyt−1 − βRωπϕπt +ϕ(εyt − βrεRt)
(18)

where

ϕ ≡ (1+ βRωy)
−1. (19)

Let us stack: wt = (πt yt)
′, which allows us to write the system (18) as:

wt = cEtwt+1 + dwt−1 + fwt + εt , (20)

where the 2× 2 matrices of the system of second-order difference equations (20) are:

c =

(

γf 0

−βRϕ βfϕ

)

, d =

(

γb 0

0 βbϕ

)

,

and f has zeros on the diagonal:

f =

(

0 λ
−βRωπ 0

)

.

14



The vector shock is given by: εt = (επt ϕ(εyt − βrεRt))
′, which implies that it is not

possible to identify innovations to yt separately from innovations to Rt . The bivariate

system (20) can be written:

wt = [I − c]
−1cEtwt+1 + [I − f]

−1dwt − 1+ [I − f]−1εt . (21)

This system is in exactly the same form as our original hybrid NKPC (1), except that π

and x have been replaced byw and ε. Thus, the persistence and covariance properties

of the shock vector εt will be important, just as the xt properties were important

earlier. Given that elements of f are non-zero, so that current values appear in the

system, we require that the elements of εt be uncorrelated with each other. However,

the rescaled shocks [I − f]−1εt will be cross-correlated.

As in earlier sections, we assume uniqueness and stability, and specifically that

ωπ > 1. This restriction on monetary policy satisfies the well-known Taylor principle.

Leeper (1991) calls this sort of monetary policy aggressive. When monetary policy

is aggressive, only fundamental shocks, εt , drive inflation and the output gap. The

unique solution again takes a first-order form:

wt = awt−1 + bεt , (22)

where a and b are 2×2 matrices. Note that the solution (22) is the equilibrium vector

process of the new Keynesian economy (17). Solving for a and b by guess-and-verify

methods leads to a system of polynomials in the lag operator. Factoring a multivariate

spectral density matrix usually requires numerical methods; a and b cannot be found

analytically in general. For discussion and examples, see Hansen and Sargent (1981)

and Sayed and Kailath (2001). Nonetheless, the form of the solution (22) tells us much

about the necessary conditions for identification.

Result 11. In the new Keynesian trinity model, the hybrid NKPC cannot be identified

by GMM.§

The result follows from the first-order Markov nature of wt , just as in Result 2.

With yt and πt−1 already entering the hybrid NKPC, there are no further variables
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available to instrument for πt+1 in GMM estimation. There will be higher-order dy-

namics in the univariate time series process foryt implied by the NKTM. Marginalizing

the VAR gives:

yt = a22yt−1 + a21a12

∞
∑

j=0

a
j
11yt−2−j . (23)

But there is no additional information in the lagged values of y beyond that contained

in πt−1 because strict exogeneity does not hold in this environment. Thus, finding

J ≥ 2 is necessary, but not sufficient for identification in GMM. Although the NKTM

can produce higher-order output dynamics, as in (23), these do not yield relevant

instruments. Lagged inflation already enters the hybrid NKPC. Result 11 implies that

identifying the NKPC must rely on cross-equation restrictions in this system.

Persistent shocks are another potential source of of identifying information. Sup-

pose the shock vector follows a Jth-order autoregression:

εt[I − ξ(L)] = ϑt , (24)

where ϑt is a vector of innovations. Pass [I − ξ(L)] through the first-order solution

(22) and substitute using the VAR of (24) to produce:

wt[I − aL][I − ξ(L)] = bϑt . (25)

The system (25) entails a VAR(J + 1) in inflation and the output gap.

Result 12. One of the shocks to inflation, to the output gap, or to the interest rate

must be persistent for the hybrid NKPC to be identified by GMM in the NKTM (17).§

The logic is the same as in Result 2. Identifying the second-order difference equa-

tion in inflation in GMM requires at least second-order dynamics. A necessary condi-

tion for these dynamics to arise is that the intrinsic, first-order dynamics of the NKTM

(17) be augmented with first-order dynamics in at least one shock. Given there are no

zero elements in [I − f]−1, all three shocks from the original system affect πt . Thus,

persistence in at least one shock is sufficient for identification. Shock persistence

also translates into serial correlation in inflation and the output gap. This helps to
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explain the long lags in estimated NKTM inflation and output gap equations reported,

for example, by Lindé (2002) and Jondeau and Le Bihan (2003).

There is an analogous result when the NKTM (17) possesses multiple equilibria.

Lubik and Schorfheide (2004) study a NKTM that associates the indeterminacy with

passive monetary policy, ωπ < 1, and sunspot (i.e. extrinsic) shocks. Under ωπ < 1,

they show that the rational expectations forecast of πt and yt is a first-order VAR

with forecast innovations a function of the fundamental shocks εt and the rational

expectation forecast errors, φt :

[I − τwL]Etwt+1 = τϑϑt + τφφt , (26)

where φt+1 = [yt+1 − Etyt+1 πt+1 − Etπt+1]
′ and the τ matrices are functions of

the parameters of the NKTM (17). Given the linear NKTM (17), this class of passive

monetary policies also permitsφt to be a linear function of εt and a vector of sunspot

shocks, ψt . It follows from these facts – Etwt+1 is the VAR(1) of (26) and φt depends

on ψt , besides fundamental shocks – that wt becomes a (restricted) bivariate ARMA

process rather than a pure bivariate autoregression:

[I − µL]wt = κϑ[I − µθϑL]ϑt + κψ[I − µθψL]ψt , (27)

where µ denotes the stable eigenvalue of (26) and the κ and θ matrices are functions

of the NKTM parameters. Note that the first-order moving average of the bivariate

ARMA process (27) are functions of the fundamental and sunspot shocks. The econo-

metrician focuses on the sunspot to connect the observed data to one of the multiple

equilibria. This motivates Lubik and Schorfheide to argue that the sunspot shock in-

terpretation of indeterminacy (created byωπ < 1) explains serially correlated inflation

and output gap data.

Result 13. When the new Keynesian trinity model (17) possesses multiple equilibria

and the rational expectations forecast errors are a (linear) function of the fundamental

and extrinsic shocks, the GMM estimator of the hybrid NKPC is not identified.§

The key to Result 13 is that the lack of restrictions on the rational expectations

forecast errors under indeterminacy provides no additional identification information.
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Thus, Result 13 mimics Result 8 in the univariate case. Although fundamental and

sunspot shocks are news for an econometrician attempting to estimate the NKTM

(17), these shocks do not help forecast πt+1. However, this approach to identifying

the NKPC within a larger model imposes persistence and cross-equation restrictions

on the forecast innovation of the bivariate ARMA process (27) of yt and πt , which can

yield additional information for identification.

The NKTM is a monetary model, in which the central bank’s policy tool is its

discount rate, Rt . Although our analysis of the NKPC with the NKTM uses the Taylor

rule to substitute for the discount rate in the dynamic IS schedule, it seems reasonable

to use Rt as an instrument.

Result 14. With the Taylor rule in the NKTM (17), the current nominal interest rate,

Rt is not a valid instrument in the NKPC.§

The nominal interest rate is a natural predictor of πt+1 and so might seem to

be a natural instrument. It is invalid because under the Taylor rule Rt is set as a

proportionωπ of the current inflation rate πt which in turn is the dependent variable

in the hybrid NKPC. The correlation between Rt and επt violates the order condition.

Result 15. Lagged interest rates are valid but inefficient instruments in the NKTM.§

Recall that the solution (22) describes the optimal forecast of πt+1 in the NKTM

based on lags of inflation and the output gap. Meanwhile, inspection of the lagged

Taylor rule shows that the nominal interest rate contains information on the lagged

output gap and inflation but (a) with an error εR and (b) with Taylor-rule coefficients

on the lagged values of inflation and the output gap that will not correspond to the

elements of the optimal coefficient matrix a given in the solution (22).

Result 16. Persistence in monetary policy may provide an alternate source of

identification.§

There is much debate about whether short-term interest rates can be partly ex-

plained by lagged rates due to persistent shocks or to interest-rate smoothing. Sup-
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pose the policy rule is:

Rt = (1− υ)(ωππt +ωyyt)+ υRt−1 + εRt (28)

with 0 < υ < 1. The current interest rate thus reflects information on the entire

history of inflation, the output gap, and policy shocks εRt . The output gap inherits this

memory because Rt enters the equation for the output gap in (17). Thus, additional

instruments become available in the same way that Result 12 adds them using shock

persistence.

This section has focused on the bivariate VAR in {wt} because of our interest

in instrumenting πt+1 in the hybrid NKPC. Thus, we have not studied the complete

reduced form, or addressed the identification of other parameters in the NKTM. The

main result of this section is that a persistent shock or an interest-rate-smoothing

policy is necessary for the hybrid NKPC to be identified by GMM within this richer

system.

5. Revisiting the Evidence

We next apply our results to the estimation of hybrid NKPCs for the U.S., U.K.,

and Canada. The data consists of GDP inflation and measures of real marginal cost.

The appendix describes the data sources.

5.1 Statistics

First, we study the time-series properties of xt . We estimate univariate autore-

gressions forxt , and test the lag length from J = 1 to J = 6 lags using a likelihood ratio

statistic, the AIC, and the SIC. Recall from Result 2 that – if there are no instruments

other than lags of x – then J ≥ 2 is necessary for identification in GMM.

We next include lagged values of inflation and report the results of a pre-test of

the null hypothesis that {πt} does not Granger-cause {xt}. Finding a role for lagged

inflation suggests that further instruments may be available. These could include

lags of inflation beyond the first two or other variables that lead to Granger-causality

because of the superior information of price-setters. Were we to proceed with system
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estimation, this test also would tell us if we need to algebraically unscramble the

system to separately distinguish a role for lagged inflation arising from forecasting

from one arising from price-stickiness. Recall from Result 10 that lagged inflation in

the solved model reflects both of these factors in the absence of strict exogeneity.

Second, our main interest is in instrumental-variables estimation, so we estimate:

E[πt − γfπt+1 − γbπt−1 − λxt|zt] = 0 (29)

by GMM and report point estimates and standard errors as well as the J-test statistic

of over-identifying restrictions and its p-value. Following Result 8, GMM estimators

will allow for a first-order moving average in the GMM residual. The weighting matrix

will be the continuous-updating version introduced by Hansen, Heaton, and Yaron

(1996), which has good finite-sample properties and is invariant to the normalization

of the hybrid NKPC (1).

Third, we estimate an example of a first-stage, linear projection:

πt+1 = β0 + β1πt−1 + β2xt + β3ut , (30)

which naturally excludesπt , and whereut is a k×1 vector of instruments that excludes

πt−1 and xt . A necessary and sufficient condition for the identification of the forward-

looking part of the hybrid NKPC, γf , is that (at least) some of the elements of the 1×k

vector β3 are not zero so that the rank condition holds. If β3 = 0, the components

of ut cannot be separated from the other two explanatory variables in the hybrid

NKPC, which are included as controls. In the case of the purely forward-looking NKPC

(i.e. γb = 0), lagged inflation becomes a valid instrument for πt+1. In that case, the

projection (30) finds valid instruments as long as either β3 or β1 is non-zero.

The statistics from this projection (30) are calculated to tie the evidence on iden-

tification of the hybrid NKPC to work on forecasting inflation. One can see that iden-

tification requires the ability to forecast inflation two steps ahead, without using the

intervening output gap or real marginal cost. In the hybrid model, the investigator
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needs to find an eligible instrument that provides predictive information for πt+1 be-

yond that contained in xt andπt−1. This is a stringent requirement. Stock and Watson

(1999) and Hansen, Lunde, and Nason (2004) report that few variables have power to

forecast inflation during the great disinflation of the 1980s and 1990s.

Our main interest is in GMM estimation. Although the analysis of sections 2-4

sets the hybrid NKPC within various statistical and economic environments, we do

not propose a ‘best’ inflation forecasting model. In practice, good forecasting proce-

dures are unlikely to resemble the constant-coefficient, linear rules in our theoretical

examples. Clements and Hendry (2003) provide a full review. Stock and Watson (1999)

and Hansen, Lunde, and Nason (2004) report the ‘best’ inflation forecasting equations

for the U.S. differ across subsamples.

Fourth, we calculate Anderson-Rubin (1949) statistics to test several hypotheses,

and find the implied confidence intervals. The statistics from GMM estimation (29)

and from our examples of first-stage projections (30) depend on nuisance parameters

under weak identification. In contrast, the AR statistics are pivotal in finite samples.

To test H0 : γf = γf0 one projects as follows:

πt − γf0πt+1 = α0 +α1πt−1 +α2xt +α3ut , (31)

then constructs the Anderson-Rubin (AR) F -statistic for H′0 : α3 = 0. The idea is

that there should be no further role for ut at the true value for γf . In our case, γf

is a scalar. This yields a F(k + 2, T − k) statistic, where k + 2 is the total number of

exogenous variables and instruments. The Anderson-Rubin (AR) statistic provides an

exact test, which is robust to (a) weak instruments and (b) omitted instruments. We do

not need all the u-elements necessarily, but power is lower if irrelevant instruments

are included. The test statistic also is robust to misspecification of the forecasting

rule for πt+1 (i.e. its size is not affected, though again its power may be).

The distributional assumption underlying the statistic’s being pivotal in finite

samples is normality of the GMM residuals. In the literature, the main drawbacks to

this approach arise when the structural equation is non-linear, or when there is more
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than one endogenous, explanatory variable and we want to study subsets of their

coefficients. But here the hybrid NKPC is linear, and γf is a scalar. Alternative test

statistics have been developed by Wang and Zivot (1998) and Kleibergen (2002). These

may improve test power, but they do so by using some information from a first-stage

regression (i.e. a reduced-form for πt+1, which we wish to avoid here). Also, these

test statistics are not robust to instrument exclusion or to the form of the forecasting

rule for πt+1. Dufour (2003, section 6) provides an excellent discussion.

The AR statistics also can be used to construct confidence intervals. A confidence

set is:

C(α) = {γf0 : AR(γf0) ≤ Fα(k, T − k− 2)}. (32)

Since γf is a scalar, there is a quadratic solution, given by Zivot, Startz, and Nelson

(1998). The coefficients of the quadratic equation are functions of the data and the

F−statistic at significance level α and degrees of freedom dim(u) and T −2−k. With

over-identification this confidence set can be empty. Without identification, it can

be unbounded. The approach can be extended to test restrictions on the exogenous

variables, such as γb for example. A test of H0 : γf = γf0, γb = γb0 begins with:

πt − γf0πt+1 − γb0πt−1 = α0 +α1πt−1 +α2xt +α3ut , (33)

and leads to an F -test of whether α1 and α3 are jointly zero. One also may construct

a joint confidence set for γb and γf .

5.2 United States

The first two rows of table 2 present evidence on the dynamics of real marginal

cost for a U.S. sample of 1949Q1 − 2001Q4. They show that we cannot reject the

null hypothesis that inflation does not Granger-cause real marginal cost. Thus, Result

10 indicates for the U.S. it is straightforward to separate lagged inflation’s job as

a predictor of future marginal cost from its role as a measure of backward-looking

price-setting.

In addition, the AIC and LR statistics suggested a lag length of 3, while the SIC

suggested a lag length of 1. The coefficient ρ̂2 in the x-autoregression was insignifi-
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cantly different from zero. The implication of these pre-tests is that finding relevant

instruments may be challenging in the U.S. data. Although U.S. real marginal cost is

persistent (the half life of a shock to its AR(3) processs is about seven quarters), there

is not strong evidence of higher-order dynamics in U.S. real marginal cost. Campbell

and Shiller (1987) and Boileau and Normandin (2002) showed that the presence of

other predictors of xt also should lead to a role for lagged inflation, yet we find none

here, so the quest for other instruments may not be fruitful.

Table 3 contains single-equation GMM estimates. Most of the work is done by the

instruments {πt−1, xt , xt−2}, as is suggested by the pre-test evidence that only xt and

xt−2 help forecast xt+1. Adding further instruments increases the precision slightly

but does not lead to significant changes in the estimates. The J-test clearly does not

reject the over-identifying restrictions.

The estimated weight attributed to backward-looking inflationary expectations,

γ̂b, ranges from 0.28 to 0.42, depending on the instrument set. The GMM estimates

show these expectations are dominated by forward-looking expectations because γ̂f

ranges from 0.52 to 0.70. The response of πt to xt , denoted λ̂, also takes plausible

values, between 0.1 and 0.9 percent, but is not statistically significant (for a five per-

cent test). Our results are comparable to those of Gaĺi and Gertler (1999, table 2), but

we obtain smaller and insignificant estimates of λ using smaller instrument sets.

Table 4 presents AR F -statistics and their associated p-values based on equation

(31) and a grid of potentially ‘true’ γf = γf0. We set γf0 to [0.0, 0.2, 0.5, 0.6, 0.7, 0.8,

0.9, 0.99]. The AR statistics in the first row reveal little evidence against the null of

γf = γf0, for any of these values of γf0 given ut = xt−2. When we add instruments

though – in the next two rows – we can reject any of the null hypotheses at standard

significance levels. Thus, lags of real marginal cost besides xt−2 matter for predicting

the quasi-difference of πt and πt+1. The test is correctly sized even if these added

instruments are weak, which gives us a formal rejection of the forward looking model.

The asymptotic 95 percent confidence interval C(α = 0.05) of γf , given in (32),

lends more support to the evidence of table 4. The solution yields C(0.05) = {−6.75,
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0.05}, {0.60,0.84}, and {−0.10, 1.24} forut = xt−2, {xt−1, xt−2}, and {xt−1, . . . , xt−4},

respectively. The smallest (just-identified) and largest (overidentified) instrument sets

yield asymptotic 95 percent confidence intervals that contain zero. Only the informa-

tion vector with the first two lags of x produces a confidence interval with reasonable

values of γf . The sensitivity of C(0.05) to the content of ut suggests that estimates of

the weight γf on forward-looking inflationary expectations are only weakly identified

within the hybrid NKPC on U.S. data.

We also report AR statistics and their p-values for the joint null γf = γf0 and γb

= γb0 of projection (33) in Table 5. The grid of potentially true values of γf and γb is

tied to the estimates found in table 3. Tests of hypotheses that place zero weight on

either γf , γb, or both are examined as well.

The inference we draw from table 5 is similar to that presented in table 4. There

are few rejections of the joint null, conditional on xt−2 being the only element of the

instrument vector ut , except when γf0 equals zero. But the introduction of other

relevant lags of x to ut leads to rejection of the null across all the γf0 and γb0 com-

binations table 5 considers. These rejections occur at the eight percent level or less.

Thus, we find that evidence in favor of the null relies on γf0 and γb0 being within

the range γ̂f and γ̂b take, conditional on the most concise instrument vector of table

5. Otherwise, rejections of the joint null are robust to the instrument vector and val-

ues of γf0 and γb0. An implication is that the joint significance of the forward- and

backward-looking weights on inflation in the hybrid NKPC is suspect, independent of

satisfying the rank conditions laid out in Results 3 and 4.

The results of table 4 are consistent with the test of the hypothesis β3 = 0 in the

first-stage projection (30) (not shown). The least squares t−ratio of β3 is -1.93 when

ut = xt−2, which rejects the hypothesis at the 2.7 percent level. Thus, this single

instrument provides additional explanatory power to πt+1 in (30), which implies the

rank condition is satisfied. Remember that this is also the only instrument vector for

which the null hypothesis of projection (31) is not rejected. The rank condition fails

to hold when we add xt−1 to ut . The Wald statistic of the bivariate hypothesis β3 = 0

24



is 4.04, with a p-value of 0.13. The hypothesis also is not rejected at reasonable sig-

nificance levels when ut is expanded to {xt−1, . . . , xt−4}, which yields a Wald statistic

of 4.21 with a p-value of 0.38.

5.3 United Kingdom

The estimation sample for the U.K. is 1961Q1− 2000Q4. Table 2 shows that the

Granger causality pre-test provides strong evidence of predictability in both direc-

tions. From Result 10, this implies that single-equation ordinary least squares cannot

measure the inertia in price-setting, γb. It also implies that lagged values of inflation

(beyond the first two lags) may be available as instruments. The second set of pre-tests

indicate a lag length of J = 5 using the LR test and SIC. This places more of the history

of x in the instrument vector zt (or ut). We also find ρ̂3 is insignificantly different

from zero, but a leading eigenvalue of 0.91 (for J = 4) reveals U.K. real marginal cost

to be a persistent process.

Table 6 contains estimates of the U.K. hybrid NKPC. The GMM estimates depend on

instrument choice. Once lags up to xt−4 are included, the coefficients accord with the-

ory and are estimated with some precision. However, the over-identifying restrictions

are rejected, given xt is an instrument. When xt is not an instrument, the estimates of

γf , γb, and λ are significant at the ten percent level or better. Neiss and Nelson (2002)

obtain statistically significant estimates of λ, but use dummy variables to control for

a variety of price shocks. Like us, Balakrishnan and López-Salido (2002) do not find a

significant, stable effect of real marginal cost on UK inflation.

Tables 7 and 8 give evidence against the null of γf = γf0 or the joint null of γf =

γf0 and γb = γb0 for the U.K. hybrid NKPC. The significance levels of the AR statistics

average 0.03 in table 7, for the projection (31), on the same grid of values of γf0 used

for table 4. Only two of the 16 AR statistics have p-values that exceed ten percent,

which are associated with the information vector ut = xt−1, as γf0 approaches unity.

The AR 95 percent asymptotic confidence interval (32) of γf is C(0.05) = {−0.87,

−0.01} when ut = xt−1, and C(0.05) = {0.02, 0.97} when ut = {xt−1, ..., xt−4}. Thus
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the confidence interval of γf has the wrong sign with the smaller information set.

The confidence interval takes the correct sign using the larger information set and

matches values set for γf0 in table 7. Nonetheless, with equal probability γf runs

from economically meaningless values to values that reveal an important role for

forward-looking inflationary expectations.

The information vector ut = xt−1 also is responsible for the only AR statistic with

ap-value greater than ten percent in table 8. However, the combination of γf0 = −0.15

and γb0 = 0.00 that produces this AR statistic does not resemble estimates reported

in table 6. The remaining (γf0, γb0) pairs are linked to AR statistics that indicate a

rejection of the joint null. It is striking that the rejections appear strongest for null

hypotheses closest to the point estimates γ̂f and γ̂b.

The rejections of the null in projections (31) and (33) hold for either ut = xt−1

or ut = {xt−1, . . . , xt−4}. However, the hypothesis β3 = 0 in projection (30) fails to

be rejected for the former information set, but not the latter. Once-lagged x has no

predictive content for πt+1 because t̂β3 = 1.07. Sinceut = xt−1 violates the (necessary

and sufficient) hybrid NKPC rank condition, it is not a valid instrument. When we add

the next three lags of x to ut , the Wald statistic of the joint null of β3 = 0 is 15.30,

with a p-value of 0.00. Thus the instrument vector {xt−1, . . . , xt−4} satisfies the rank

condition; it can forecast πt+1. As we have seen, the problem for the NKPC is that

this instrument vector also can forecast the quasi-difference πt − γf0πt+1 for a wide

range of values of γf0, implying rejections of the NKPC.

5.4 Canada

The estimation and testing for Canada use data from 1963Q1 to 2000Q4. Table

2 shows that Canadian inflation Granger-causes real marginal cost. Thus, xt is not

strictly exogenous. This table also shows real marginal cost fails to Granger-cause

inflation – in contrast to results for the U.K. and U.S. data. The pre-tests for lag length

reveal a persistence pattern similar to that in U.S. real marginal cost, according to

the LR test, the AIC, and the SIC. In the time series for {xt}, once-lagged costs play a

large predictive role and thrice-lagged costs play an additional role, that is statistically
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significant. However, a half-life of 8.5 quarters with respect to a shock to its AR(3)

process shows that Canadian real marginal cost is more persistent than it is in the

U.K. and the U.S. data.

Table 9 contains estimates of the hybrid NKPC parameters γf , γb, and λ for

Canada. They suggest that the hybrid NKPC is poorly identified. For example, the

point estimates γ̂f and γ̂b are sensitive to the instrument set. When we include πt−2

as an instrument, these two coefficients are similar to those found in the U.S. data,

with a large role for future inflation.

Guay, Luger, and Zhu (2003) estimate the hybrid NKPC using a wider range of

instruments. They use much larger instrument sets and increase precision (and re-

ject the over-identifying restrictions). However, we reproduce their finding that λ̂ is

insignificant. This indicates little role for real marginal cost in Canadian inflation

dynamics.

Tables 10 and 11 yield inferences that are the opposite of those for the U.S. and

the U.K. data. None of the hypothesized values of (γf , γb) can be rejected at the five

percent level. These test results leave us with considerable uncertainty about the ‘true’

value of γf .

The AR 95 percent asymptotic confidence interval (32) for γf , C(0.05) supports

this conjecture for Canada. For the instrument vectors ut = xt−2, {xt−1, xt−2}, and

{xt−1, . . . , xt−4}, C(0.05) = {−0.00, 0.97} {−0.00, 0.78} and {−0.00, 0.97}, respec-

tively. Since the three AR asymptotic 95 percent confidence intervals cover zero,

there is more evidence that forward-looking inflationary expectations may not matter

for Canadian inflation dynamics.

We also find that tests of the predictive power of ut for πt+1 in projection (30)

fail to reject the null that β3 = 0 for the instrument vectors xt−2, {xt−1, xt−2}, and

{xt−1, . . . , xt−4}, at a 15 percent significance level or better. Thus we have not found

valid instruments. Overall, this combination of statistics shows that it is not possi-

ble to identify the weights on the forward- and backward-looking components of the

hybrid NKPC in this bivariate data set.
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6. Conclusion

This paper is about identification problems in the hybrid new-Keynesian Phillips

curve (NKPC), within a linear rational expectations setting. Table 1 collects our an-

alytical results. We show that estimation of the hybrid NKPC faces a fundamental

source of non-identification: weak, higher-order dynamics. System estimation has an

identification advantage over GMM because of an additional restriction. In this case,

the hybrid NKPC can be identified even if real aggregate demand follows a first-order

Markov process. However, system estimation implies a structural VAR whose inter-

pretation may be unpalatable to advocates of new Keynesian macro models.

By setting the hybrid NKPC in a new Keynesian trinity model, we find this Phillips

curve cannot be identified by GMM. In this setting, the current nominal interest rate

also is ineligible as an instrument, as long as a Taylor rule applies. One solution to the

identification problem is to posit persistent shocks either to real aggregate demand,

inflation, or monetary policy, as is often implicitly done in the literature.

It is difficult to find evidence of significant coefficients {γ̂f , γ̂b, λ̂} in the hybrid

NKPC across the U.S., U.K., and Canada. One reason for the poor quality of the es-

timates is that for all three countries, real marginal cost has some higher-order dy-

namics, but perhaps not enough to avoid the problem of weak instruments. We draw

on the Anderson-Rubin statistic to provide a new set of tests of the forward-looking

inflation model. These test statistics are exact, pivotal, and robust to either weak or

omitted instruments. The tests reveal little evidence of forward-looking expectations

driving U.S., U.K., or Canadian inflation.

Our results do not imply that inflation lacks serial correlation. Clearly, it is pos-

sible that the hybrid NKPC is a useful tool, but that a broader set of instruments is

needed to forecast real marginal cost. Kurmann (2003b) explores this issue. Another

possibility, though, is that the second-order difference equation (1) simply is not a

reasonable model of inflation dynamics.

Stock and Wright (2000) and Stock, Wright, and Yogo (2002) provide further tools

for GMM estimation and inference with weak instruments. Ma (2002) shows using the
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S-sets developed by Stock and Wright (2000) that γf is weakly identified in the Gaĺi-

Gertler data. The interaction of the identification and estimation problems that face

the hybrid NKPC also can be studied by Monte Carlo methods. Lindé (2002), Jondeau

and Le Bihan (2003), and Mavroeidis (2004b) report that the hybrid-NKPC is sensitive

to the economic environment in which it resides because of the impact on instrument

choice and quality.

We view the combination of our analytic and empirical work as a complement to

all of these studies. The lack of higher-order dynamics in U.S., U.K., and Canadian real

marginal cost points to difficulties in identifying the hybrid NKPC coefficients, as noted

in Result 2. The generally negative results with the AR statistic and predictability of

πt+1 indicate that this problem can be particularly acute for the weight on forward-

looking inflationary expectations. Alternative sources of identifying information –

say regime change or survey data – are worth future study, because the underlying

primitives of the NKPC certainly matter for monetary policy. This paper suggests more

work needs to be done for the NKPC to remain a viable story of inflation dynamics.
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Appendix: Data Sources

United States

The price level Pt is the GDP implicit price deflator. The GDP deflator is available

in chain weight form and in implicit form (all the U.S. results are based on the implicit

GDP deflator).

Nominal unit labor cost (ULC) is the ratio of the index of hourly compensation in

the non-farm business sector, labelled COMPNFB, to output per hour of all persons in

the non-farm business sector, labelled OPHNFB. COMPNFB is an index of the nominal

wage. OPHNFB is an index of the average product of labor. These can be found in the

Federal Reserve Bank of St. Louis’ FRED databank. Thus, ULC is a measure of labor’s

share.

Real ULC equals nominal ULC deflated by Pt . Inflation is 100 ln(Pt/Pt−1) and real

ULC is 100(1 + a) ln(COMPNFBt/OPHNFBt) − 100 lnPt , where a is a function of the

steady-state markup and labor’s share parameter in the firm’s production function.

This adjustment renders real ULC stationary and a = 1.08.

The estimation sample period is 1947Q1-2002Q4, T = 224.

United Kingdom

The inflation rate is measured with the GDP deflator, and x is a measure of the log

of real marginal cost. Data sources are given by Katharine Neiss and Edward Nelson

(2002), who kindly provided the data. The estimation period is 1961Q1 to 2000Q4, so

T = 168.

Canada

The inflation rate is measured with the GDP deflator, while x is the log of the

labour share in the non-farm, business sector. Data sources are given by Guay, Luger,

and Zhu (2003), who kindly provided the data. The estimation period is 1963Q1 to

2000Q4.
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Table 1

Summary of

New Keynesian Phillips Curve Identification Results

Result 1. The hybrid NKPC imposes the King and Watson (1994) real business cycle
identification on the structural VAR (10) for {x̃t , πt} and the Solow-Gordon identifying
assumption on the impact matrix of the unrestricted simultaneous equations system
of {x̃t , πt}.

Result 2. The number of regressors in (7) is J + 1. The parameters in ρ̃ can be
identified from estimation of the law of motion for xt , (4). With three parameters
{γf , γb, λ} to identify, J ≥ 1 is necessary for identification in the solved model (7).
J ≥ 2 is necessary for overidentification.

Result 3. If zt = {πt−1, xt , xt−1, xt−2, . . . , xt−J+1}, then J ≥ 2 is necessary for identi-
fication by GMM and J ≥ 3 is necessary for overidentification.

Result 4. If zt−1 = {πt−1, xt−1, xt−2, . . . , xt−J}, so that only lagged information is
used, then again J ≥ 2 is necessary for identification by GMM and J ≥ 3 is necessary
for overidentification.

Result 5. If a consistent estimate λ̂ is available, then if J ≥ 1 is necessary for the
identification of γf and γb in the solved-system environment. In the single-equation
environment with instruments zt , J ≥ 1 is necessary for identification and J ≥ 2
for overidentification. With instruments zt−1, however, J ≥ 2 remains necessary for
identification and J ≥ 3 for overidentification.

Result 6. The conditions for identification do not change if the investigator imposes
γb = 0, so that the NKPC is purely forward-looking.

Result 7. Solving forward and truncating provides no additional information to aid
identification (or improve efficiency).

Result 8. Whether zt or zt−1 is adopted, the GMM residual is a MA(1) process. Both
of these instrument sets are valid, but any instrument set must exclude lagged GMM
residuals. In addition, the loss of precision from excluding xt from the instrument
set depends on parameters in its law of motion and on the hybrid NKPC parameters.

Result 9. Predicting x with once-lagged or twice-lagged inflation adds no identifying
information. J ≥ 3 is necessary for the VAR to add overidentifying information. Thus
Results 2 and 3 continue to apply within the VAR.

Result 10. The coefficient on πt−1 in the solved hybrid NKPC is independent of the
process followed by marginal cost iff inflation does not Granger-cause marginal cost.

Result 11. In the NKTM, the hybrid NKPC cannot be identified by GMM.

Result 12. Either the shock to inflation, the output gap, or the interest rate must be
persistent for the NKPC to be identified by GMM in the NKTM.

Result 13. When the NKTM possesses multiple equilibria and the rational expecta-
tions forecast errors are a (linear) function of the fundamental and extrinsic shocks,
the GMM estimator of the hybird-NKPC is not identified.

Result 14. With the Taylor rule in the NKTM, the current nominal interest rate, Rt , is
not a valid instrument in the NKPC.

Result 15. Lagged interest rates are valid but inefficient instruments.

Result 16. Persistence in monetary policy may provide an alternate source of
identification.



Table 2

Granger Non-Causality Tests

Country Lag length (d.f.) p π �� �→ x p x �� �→ π

U.S. 3 0.18 0.05

U.S. 4 0.24 0.08

U.K. 4 0.01 0.00

U.K. 5 0.01 0.00

Canada 3 0.00 0.73

Canada 4 0.00 0.63

Notes: The lag lengths, Ĵ, are the same as those selected by information criteria. Entries are p-values for

the null hypothesis that the first variable does not Granger cause the second variable. Data sources and
sample sizes are given in the data appendix.



Table 3

U.S. New Keynesian Phillips Curve

E
[

πt − γfEtπt+1 − γbπt−1 − λxt|zt
]

= 0

1949Q1 – 2001Q4 T = 212

Instruments γ̂f γ̂b λ̂ χ2(df)
(se) (se) (se) (p)

{πt−1, xt , xt−2} 0.685 0.300 0.001 —
(0.357) (0.247) (0.007)

{πt−1, xt , ..., xt−2} 0.527 0.415 0.009 2.11(1)
(0.298) (0.205) (0.005) (0.35)

{πt−1, xt , ..., xt−4} 0.706 0.275 0.008 3.47(3)
(0.223) (0.158) (0.006) (0.48)

{πt−1, πt−2, xt , ..., xt−4} 0.701 0.278 0.009 3.48(4)
(0.188) (0.141) (0.005) (0.63)

Notes: The entire sample runs from 1949Q1 to 2002Q1. Estimation is based on a 1947Q1−2001Q4 sample.

Tests of the over-identifying restrictions use the J-statistic.



Table 4

U.S. NKPC: Tests of H0 : γf = γf0

πt − γf0πt+1 = α0 +α1πt−1 +α2xt +α3ut

Anderson-Rubin Statistic

1949Q1 – 2001Q4 T = 212

γf0 = 0.00 0.20 0.50 0.60 0.70 0.80 0.90 0.99
(p) (p) (p) (p) (p) (p) (p) (p)

ut =

{xt−2} 2.15 1.31 0.21 0.04 0.00 0.07 0.21 0.39
(0.14) (0.25) (0.65) (0.83) (0.97) (0.80) (0.64) (0.53)

{xt−1, xt−2} 4.43 5.17 5.85 5.83 5.68 5.45 5.17 4.90
(0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01)

{xt−1, ..., xt−4} 2.47 2.92 3.34 3.33 3.24 3.10 2.93 2.77
(0.05) (0.02) (0.01) (0.01) (0.01) (0.02) (0.02) (0.03)

Notes: The Anderson-Rubin statistics in the top panel are based on equation (31) of the paper, under the
null that γf0=0. Dufour (2003) contains details of the Anderson-Rubin statistic and test. Otherwise, see
the notes to table 3.



Table 5

U.S. NKPC: Tests of H0 : γf = γf0, γb = γb0

πt − γf0πt+1 − γb0πt−1 = α0 +α1πt−1 +α2xt +α3ut

Anderson-Rubin Statistic

1949Q1 – 2001Q4 T = 212

γf0 = 0.00 0.25 0.50 0.68
(p) (p) (p) (p)

ut = {xt−2}

γb0 = 0.00 4.49 3.35 1.68 0.52
(0.04) (0.07) (0.20) (0.47)

γb0 = 0.30 4.38 2.68 0.63 0.00
(0.04) (0.10) (0.43) (0.98)

γb0 = 0.45 4.00 1.97 0.16 0.13
(0.05) (0.17) (0.69) (0.72)

ut = {xt−1, xt−2}

γb0 = 0.00 2.77 2.86 3.19 3.62
(0.06) (0.06) (0.04) (0.03)

γb0 = 0.30 3.48 4.13 5.17 5.71
(0.03) (0.02) (0.01) (0.00)

γb0 = 0.45 3.92 4.87 5.94 6.15
(0.02) (0.01) (0.00) (0.00)

ut = {xt−1, ..., xt−4}

γb0 = 0.00 2.15 2.10 2.11 2.19
(0.08) (0.08) (0.08) (0.93)

γb0 = 0.30 2.29 2.51 2.95 3.25
(0.06) (0.04) (0.02) (0.01)

γb0 = 0.45 2.38 2.79 3.40 3.64
(0.05) (0.03) (0.01) (0.01)

Notes: The Anderson-Rubin statistics in the top panel are based on equation (33) of the paper, under the
null that γf0=0 and γb0=0. Otherwise, see the notes to tables 3 and 4.



Table 6

U.K. New Keynesian Phillips Curve

E
[

πt − γfEtπt+1 − γbπt−1 − λxt|zt
]

1961Q1 – 2000Q4 T = 168

Instruments γ̂f γ̂b λ̂ χ2(df)
(se) (se) (se) (p)

{πt−1, xt , xt−1} -2.699 2.396 0.924 —
(4.782) (3.047) (1.531)

{πt−1, xt−1, ..., xt−4} 0.935 0.019 0.334 4.40(2)
(0.266) (0.192) (0.152) (0.22)

{πt−1, xt , ..., xt−4} 0.234 0.535 0.062 9.82(3)
(0.200) (0.120) (0.133) (0.04)

{πt−1, πt−2, xt , ..., xt−4} 0.233 0.621 -0.045 15.94(4)
(0.153) (0.107) (0.089) (0.01)

Notes: The estimation sample runs 1961Q1 to 2000Q4, based on the complete 1959Q3−2001Q2 sample.

Otherwise, see the notes to table 3.



Table 7

U.K. NKPC: Tests of H0 : γf = γf0

πt − γf0πt+1 = α0 +α1πt−1 +α2xt +α3ut

Anderson-Rubin Statistic

1961Q1 – 2000Q4 T = 168

γf0 = 0.00 0.20 0.50 0.60 0.70 0.80 0.90 0.99
(p) (p) (p) (p) (p) (p) (p) (p)

ut =

{xt−1} 6.84 6.53 5.00 4.32 3.63 2.98 2.40 1.94
(0.01) (0.01) (0.03) (0.04) (0.06) (0.09) (0.12) (0.17)

{xt−1, ..., xt−4} 4.52 4.58 4.53 4.47 4.40 4.32 4.24 4.18
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Notes: See the notes to tables 4 and 6.



Table 8

U.K. NKPC: Tests of H0 : γf = γf0, γb = γb0

πt − γf0πt+1 − γb0πt−1 = α0 +α1πt−1 +α2xt +α3ut

Anderson-Rubin Statistic

1961Q1 – 2000Q4 T = 168

γf0 = 0.00 0.25 0.50 0.68
(p) (p) (p) (p)

ut = {xt−1}

γb0 = 0.00 3.57 3.84 4.06 3.98
(0.06) (0.05) (0.05) (0.05)

γb0 = 0.30 5.12 5.57 5.85 5.00
(0.02) (0.02) (0.02) (0.03)

γb0 = 0.60 6.54 6.83 6.69 4.47
(0.01) (0.01) (0.01) (0.04)

ut = {xt−1, ..., xt−4}

γb0 = 0.00 1.83 2.00 2.25 3.18
(0.13) (0.10) (0.07) (0.02)

γb0 = 0.30 2.57 2.91 3.34 4.36
(0.04) (0.02) (0.01) (0.00)

γb0 = 0.60 3.79 4.26 4.69 4.89
(0.01) (0.00) (0.00) (0.00)

Notes: See the notes to tables 6, 4, and 5.



Table 9

Canadian New Keynesian Phillips Curve

E
[

πt − γfEtπt+1 − γbπt−1 − λxt|zt
]

= 0

1963Q1 – 2000Q4 T = 152

Instruments γ̂f γ̂b λ̂ χ2(df)
(se) (se) (se) (p)

{πt−1, xt , xt−2} -0.197 0.868 0.039 —
(2.085) (1.374) (0.074)

{πt−1, xt , ..., xt−2} 0.277 0.562 0.021 0.29(1)
(0.768) (0.514) (0.027) (0.86)

{πt−1, xt−1, ..., xt−4} 1.052 1.466 0.061 1.25(3)
(1.274) (0.876) (0.049) (0.87)

{πt−1, πt−2, xt−1, ..., xt−4} 0.716 0.274 0.005 2.48(4)
(0.167) (0.121) (0.009) (0.78)

Notes: The estimation sample is 1963Q1−2000Q4 with leads and lags taken from a 1961Q1−2001Q1 sample.

Otherwise, see the notes to table 3.



Table 10

Canadian NKPC: Tests of H0 : γf = γf0

πt − γf0πt+1 = α0 +α1πt−1 +α2xt +α3ut

Anderson-Rubin Statistic

1963Q1 – 2000Q4 T = 152

γf0 = 0.00 0.20 0.50 0.60 0.70 0.80 0.90 0.99
(p) (p) (p) (p) (p) (p) (p) (p)

ut =

{xt−2} 0.01 0.07 0.22 0.28 0.33 0.37 0.41 0.43
(0.91) (0.80) (0.64) (0.60) (0.57) (0.54) (0.52) (0.51)

{xt−1, xt−2} 0.40 0.31 0.20 0.18 0.18 0.19 0.20 0.22
(0.67) (0.74) (0.82) (0.84) (0.84) (0.83) (0.82) (0.80)

{xt−1, ..., xt−4} 0.69 0.82 0.95 0.96 0.96 0.94 0.91 0.87
(0.60) (0.52) (0.44) (0.43) (0.43) (0.44) (0.46) (0.48)

Notes: See the bottom of tables 9 and 4.



Table 11

Canadian NKPC: Tests of H0 : γf = γf0, γb = γb0

πt − γf0πt+1 − γb0πt−1 = α0 +α1πt−1 +α2xt +α3ut

Anderson-Rubin Statistic

1963Q1 – 2000Q4 T = 152

γf0 = -0.20 0.20 0.35 0.50
(p) (p) (p) (p)

ut = {xt−2}

γb0 = 0.00 0.29 0.09 0.03 0.00
(0.59) (0.76) (0.86) (1.00)

γb0 = 0.50 0.10 0.02 0.14 0.34
(0.75) (0.89) (0.71) (0.56)

γb0 = 0.85 0.00 0.25 0.46 0.64
(0.98) (0.61) (0.50) (0.42)

ut = {xt−1, xt−2}

γb0 = 0.00 0.18 0.06 0.02 0.00
(0.84) (0.94) (0.98) (1.00)

γb0 = 0.50 0.26 0.22 0.24 0.29
(0.77) (0.80) (0.78) (0.75)

γb0 = 0.85 0.46 0.51 0.52 0.53
(0.63) (0.60) (0.69) (0.69)

ut = {xt−1, ..., xt−4}

γb0 = 0.00 0.35 0.46 0.54 0.64
(0.84) (0.77) (0.71) (0.63)

γb0 = 0.50 0.39 0.74 0.91 1.03
(0.81) (0.57) (0.46) (0.40)

γb0 = 0.85 0.57 0.97 1.05 1.05
(0.68) (0.42) (0.38) (0.38)

Notes: See the bottom of tables 9, 4, and 5.


