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able in a linear equation estimated by instrumental variables. We show that all the
test statistics— Student’s ¢, Anderson-Rubin, Kleibergen’s K, and likelihood ratio
(LR) —can be written as functions of six random quantities. This leads to a number
of interesting results about the properties of the tests under weak-instrument asymp-
totics. We then propose several new procedures for bootstrapping the three non-exact
test statistics and a conditional version of the LR test. These use more efficient es-
timates of the parameters of the reduced-form equation than existing procedures.
When the best of these new procedures is used, K and conditional LR have excellent
performance under the null, and LR also performs very well. However, power consid-
erations suggest that the conditional LR test, bootstrapped using this new procedure
when the sample size is not large, is probably the method of choice.
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1. Introduction

This paper is concerned with tests for the value of the coefficient of the single right-
hand-side endogenous variable in a linear structural equation estimated by instru-
mental variables. We consider the Wald (or t) test, Kleibergen’s (2002) K test, which
can be thought of as an LM test, and the likelihood ratio (LR) test, as well as its
conditional variant (Moreira, 2003), which we refer to as CLR. Both asymptotic and
bootstrap versions of these tests are studied, and their relationships to the Anderson-
Rubin (AR) test (Anderson and Rubin, 1949) are explored. The analysis allows for
instruments that may be either strong or weak.

The major theoretical contributions of the paper depend on a simple way of writing all
the test statistics of interest as functions of six random quantities. This makes it easy
to understand the properties of all the tests under both weak and strong instruments.
Our theoretical results are supported by extensive simulations.

Our results also make it inexpensive to simulate and bootstrap all the test statistics
under the assumption of normally distributed disturbances. Although, in practice,
it is generally preferable to use bootstrap methods based on resampling residuals,
our experiments suggest that results from the parametric bootstrap under normality
provide a very good guide to the performance of methods that resample residuals.

The paper’s main practical contribution is to propose new procedures for bootstrap-
ping the test statistics we study. These use more efficient estimates of the parameters
of the reduced-form equation than existing procedures, and what seems to be the
best procedure also employs a form of bias correction. Using this procedure instead
of more conventional ones greatly improves the performance under the null of all the
tests. The improvement is generally greatest for the Wald test and least for the K
test, because the latter already works very well in most cases. Using the new proce-
dures also severely reduces the apparent power of the Wald test when the instruments
are weak, making its power properties much more like those of the other tests.

The practical conclusions we come to differ only modestly from those of other recent
papers, such as Andrews, Moreira, and Stock (2006, 2007) and Moreira, Porter, and
Suarez (2004). The K test, when bootstrapped using one of our new methods, seems
to be the most reliable procedure under the null when the instruments are weak and
the sample size is small. However, the CLR test of Moreira (2003), which involves
simulation, also seems to be very reliable when the instruments are weak and the
sample size is reasonably large. When the CLR test is bootstrapped, it performs as
well as the K test, except in very small samples. Power considerations suggest that
either the conditional LR test or the ordinary LR test, when the latter is bootstrapped
using the same new method, seem to be the best procedures overall.

In the next section, we discuss the four test statistics and show that they are all
functions of six random quantities. Then, in Section 3, we show how all the statistics
can be simulated very efficiently under the assumption of normally distributed dis-
turbances. In Section 4, we consider the asymptotic properties of the statistics under
both strong and weak instruments. In Section 5, we discuss some new and old ways of
bootstrapping the statistics and show how, in some cases, the properties of bootstrap
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tests differ from those of asymptotic tests. Finally, in Section 6, we present extensive
simulation evidence on the performance of asymptotic and bootstrap tests based on
all of the test statistics.

2. The Four Test Statistics

The model treated in this paper consists of just two equations,

Y1 = Py2 + Zy + w1, and (1)
Yo = W + us. (2)

Here y; and y- are n—vectors of observations on endogenous variables, Z is an n X k
matrix of observations on exogenous variables, and W is an n x! matrix of instruments
such that 8(Z) C 8§(W), where the notation 8(A) means the linear span of the
columns of the matrix A. The disturbances are assumed to be serially uncorrelated
and, for many of the analytical results, normally distributed. We assume that [ > k,
so that the model is either exactly identified or, more commonly, overidentified.

The parameters of this model are the scalar 3, the k-vector ~, the [-vector 7, and
the 2 x 2 contemporaneous covariance matrix of the disturbances w; and wo:

2

zz{ % f”g@]. (3)

pPO102 g5
Equation (1) is the structural equation we are interested in, and equation (2) is a
reduced-form equation for the second endogenous variable y5. We wish to test the
hypothesis that 3 = 0. There is no loss of generality in considering only this null
hypothesis, since we could test the hypothesis that § = [y for any nonzero (3, by
replacing the left-hand side of (1) by y1 — Goy2.

Since we are not directly interested in the parameters contained in the /-vector 7, we
may without loss of generality suppose that W = [Z W], with ZTW; = O. Notice
that W7 can easily be constructed by projecting the columns of W that do not belong
to 8(Z) off Z.

The 2SLS (or IV) estimate /3 from (1), with instruments the columns of W, satisfies
the estimating equation

Yo Pi(y1 — By2) = 0, (4)

where P, = Py, is the matrix that projects on to §(W7). This follows because
Z"W; = O. The vector 1, of 25LS residuals from (1) is orthogonal to Z, and so

@ = Mz (y1 — By2). (5)

We consider four test statistics: an asymptotic ¢ statistic on which we may base a Wald
test, the Anderson-Rubin (AR) statistic, Kleibergen’s K statistic, and a likelihood
ratio (LR) statistic.



From the estimating equations (4) and from expression (5) for the residuals @4, it can
be shown that the asymptotic ¢ statistic for a test of the hypothesis that =0 is

1/2 P
t= - ﬂﬁp . (6)
Y2 F1y1
IPryell | Mz (y1 — 2 Zy,)
v Prys

It can be seen that the right-hand side of (6) is homogeneous of degree zero with
respect to y; and also with respect to yo. Consequently, the distribution of the
statistic is invariant to the scales of each of the endogenous variables. In addition,
the expression is unchanged if y; and ys are replaced by the projections Mzy; and
Mzy>, since PPMyz = MzP, = Py, given the orthogonality of W7 and Z. The
second factor in the denominator can be rewritten as

yTP y yTP y 2\1/2
y Mgy — 2y Mgy, 2290y My, (%) |
y2 Pry2 y2 Prys2

Thus it is not hard to see that the statistic (6) depends on the data only through the
six quantities

v’ Py, ' Piya, Y2 Piys, 91 Mwyi, v Mwys, and yo Mwys;  (7)
notice that y;' Mzy; = v/ (Mw + Py)yj, for i,j = 1,2.

These six quantities, which we can think of as sufficient statistics, can easily be calcu-
lated by means of four OLS regressions on just two sets of regressors. By regressing
y; on Z and W for i = 1,2, we obtain four sets of residuals. Using the fact that
Py, = (Mw — Mz)y;, all six quantities can be obtained as sums of squared resid-
uals, differences of sums of squared residuals, inner products of residual vectors, or
inner products of differences of residual vectors.

Another way to test a hypothesis about 3 is to use the famous test statistic of Ander-
son and Rubin (1949). The Anderson-Rubin statistic for the hypothesis that 5 = [y
can be written as

_n —1 (Y1 = Boy2) 'Pi(y1 — Foye) (8)
I —k (y1 — Boy2) "Mw (y1 — Boy2)

Notice that, when 5y = [, the AR statistic depends on the data only through the first
and fourth of the six quantities (7). Under the normality assumption, this statistic is
exactly distributed as F(I — k,n — [) under the null hypothesis. However, because it
has | — k degrees of freedom, it has lower power than statistics with only one degree
of freedom when [ — k > 1.

AR(Bo)

Kleibergen (2002) therefore proposed a modification of the Anderson-Rubin statistic
which has only one degree of freedom. His statistic for testing 8 = 0, which can also
be interpreted as an LM statistic, is

-

Y1 Pr,wayn
K=(n-1])Z——————2- 9
( ) yi' Mwy: )
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which is asymptotically distributed as x?(1) under the null hypothesis that 3 = 0. The
matrix Ppgr, w# projects orthogonally on to the one-dimensional subspace generated
by the vector Mz W, where 7 is a vector of efficient estimates of the reduced-form
parameters. These estimates will be discussed below in the context of bootstrapping.

Under our assumptions, the vector Mz W is equal to the vector Wy, where 7y is
the vector of OLS estimates from the artificial regression

Mzys; = Winm, + 0Mzy, + residuals. (10)

Noting that MMz = My, we see that the estimate of § from this regression is
given by the FWL regression®

Mwys = 6 Mw1y, + residuals,

so that § = y1 Mwys/yi My y,. Substituting this result into (10) then shows that

M
Y1 wY2 1>. (11)

Wist, = Pi(Mzys — 6Mzy,) = P, (yz ~ My,

From this, it can be seen that the K statistic, like the ¢ statistic and the AR statistic,
depends on the data only through the six quantities (7). Allowing for notational
differences and our special assumptions, equation (11) is the same as the expression
given on page 1785 of Kleibergen (2002).

The explicit expression of K in terms of these six quantities is

_ (=)@ Py Mwy — 3 Piyi y) Mwy,)®
y2 Prys (Y1 Mwy1)® + yi' Prys i Mwyr (yi' Mwys)?
—2y,"Prys yi' Mw ya (y1' Mwy1)?

(12)

We see directly from this expression that the statistic K, like the ¢t and AR statistics,
is invariant to the scales of y; and ys.

It is well known that, except for an additive constant, the concentrated loglikelihood
function for the model specified by (1), (2), and (3) can be written as

~Tlog (1 + l __](; AR(ﬁ)), (13)

n

where AR(() is the Anderson-Rubin statistic (8) evaluated at #. Using (8) and the
fact that Mz = Mw + Pj, the loglikelihood function (13) becomes

1Mz (y, —yzﬁ)H2)
IMw (y1 — y28)I1? )

LUp) = —% log ( (14)

1 For an exposition of the FWL regression, see, for instance, Davidson and MacKinnon
(2004, Chapter 2).
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The LR statistic for a test of 3 = 0 is Q(K(BML) —£(0)), where Byt is the ML estimate.
As shown by Anderson and Rubin (1949), the statistic can also be defined in terms
of the value of the ratio that is the argument of the logarithm in (14), minimized
with respect to §. We denote this minimized value by #. The LR statistic is then
n(log kg — log k), where kg is the ratio evaluated at g = 0.

Standard arguments show that & is the smaller of the two roots of the determinantal
equation

‘ v (Mz — sMw)y1 yi (Mz — sMw)yz | _

Yo' (Mz — iMw)y1  y2 (Mz — kMw)y>

Some tedious algebra then shows that

SS+TT 1
LR =nlog(l+ SS/n) — nlog(l + 2+—n — %\/(SS —TT)2 + 45’T2>, (15)
where
P
SS=n —2_1 191
Y1 Mwy,
T T
n y1 Piy1 yi Mwyo
ST =—— (y,'Piys — 16
T T 2
n P, M
TT =X (szPlyz vl My, — 2y1 Prys yi My, + 2 1y1T(y1 wy2) )
y1 Mwy:
and
A =y Mwyi yo Mwys — (yi' Mwys)*. (17)

The notation is chosen so as to be reminiscent of that used by Moreira (2003) in his
discussion of a conditional LR test. His development is different from ours in that
he assumes for most of his analysis that the contemporaneous disturbance correlation
matrix X' is known. We do however discuss his conditional approach to the LR test in
what follows. Moreira also introduces a simplified statistic, LR, which is obtained by
Taylor expanding the logarithms in (15) and discarding terms of order smaller than
unity as n — oo. This procedure yields

LR, = %(SS—TT+ J(SS—TT)? +4ST2>. (18)

We see that both LR and LRy are invariant to the scales of y; and y, and depend
only on the six quantities (7).

Some more tedious algebra shows that the Kleibergen statistic (12) can also be ex-
pressed in terms of the quantities ST and 11" as follows.

n—18T?



Moreira (2003) demonstrates this relation (without the degrees-of-freedom adjust-
ment) for the case in which the disturbance covariance matrix is assumed known.
Finally, is worth noting that, except for the initial deterministic factors, S5 is equal
to the Anderson-Rubin statistic AR(0).

3. Simulating the Test Statistics

Now that we have expressions for the test statistics of interest in terms of the six
quantities (7), we can explore the properties of these statistics and how to simulate
them efficiently. Our results will also be used in the next two sections when we discuss
asymptotic and bootstrap tests.

In view of the scale invariance that we have established for all the statistics, the
contemporaneous covariance matrix of the disturbances u; and wus can without loss
of generality be set equal to

p 1
with both variances equal to unity. Thus we can represent the disturbances in terms of

two independent n-vectors, say v and vs, of independent standard normal elements,
as follows:

2:[1 p], (20)

Uy = vy, Uy = pv1 + V9, (21)

where r = (1 — p?)'/2. We now show that we can write all the test statistics as
functions of vy, vo, the exogenous variables, and just three parameters.

With the specification (21), we see from (2) that

Yy Mwys = (pv; + rve) My (pv1 + rv)

= p2'v1TMW'v1 + r2v) My vs + 2p7’v1TMW'v2, (22)
and T Ty T T T,
Y2 Prys = m1 Wi Wimy + 270 Wi (por +1v2) (23)
+ p2’U1TP1’01 + 7“2122—|—P102 + 2,07”01—|—Pl’vz-
Now let Wim = aw;, with ||w;|| = 1. The square of the parameter a is the so-called

scalar concentration parameter; see Phillips (1983, p. 470) and Stock, Wright, and
Yogo (2002). Further, let w,'v; = x;, for i = 1,2. Clearly, x; and x5 are independent
standard normal variables. Then

™ W Wim, = a® and 7 Wilv; = ax;, i=1,2. (24)
Thus (23) becomes
yQTPlyg =a%+ 2a(pxy + ras) + p2v1TP1v1 + r2vy Pivg + 2prvlTP1'v2. (25)
From (1), we find that
yi' Mwy: = vi' Mwv; + 28(pvi Mw v + rvi Mwvs) + 2y Mwys.  (26)
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Similarly,

Y Py = vy Piuy + 28ys Pyvy + (%ys Prys
= v Pyv; + 2B(ax1 + pvi Pioy + 1o Pivg) + By Piye. (27)

Further, from both (1) and (2),

yi My yz = pvi My, + rvi’ Myvg + Bys My ys, and (28)
Y1 Piys = axy + pvy Piv; + rv) Pivs + By2 Piys. (29)

The relations (22), (25), (26), (27), (28), and (29) show that the six quantities (7)
can be generated in terms of eight random variables and three parameters. The eight
random variables are x1 and x5, along with six quadratic forms of the same sort as
those in (7),

T T T T T T
U1 Pl’Ul, U1 Pl’UQ, U2 Pl’l)g, (] Mw'vl, U1 ]\4w’l)27 and (%) Mw’UQ, (30)

and the three parameters are a, p, and 5. Under the null hypothesis, of course, 3 = 0.
Since P; My, = O, the first three variables of (30) are independent of the last three.

If we knew the distributions of the eight random variables on which all the statistics
depend, we could simulate them directly. We now characterize these distributions.
The symmetric matrix
v Piv; vy Pyv;
{UJPﬂM U2TP1U2] (31)

follows the Wishart distribution W(Is, ! — k), and the matrix

vlTMWvl 'UlTMW’UQ
v Mwv, vy Mwvs

follows the distribution W(Iy,n — ). It follows from the analysis of the Wishart
distribution in Anderson (1984, Section 7.2) that vl Mwv; is equal to a random
variable tM which follows the chi-squared distribution with n — [ degrees of freedom,
vi Mwvs is the square root of t{‘/{ multiplied by a standard normal variable zj;
independent of it, and vo Myyvs is 23, plus a chi-squared variable 3 with n — 1 — 1
degrees of freedom, independent of zy; and ¢,

The elements of the matrix (31) can, of course, be characterized in the same way.
However, since the elements of the matrix are not independent of x; and zs, it is
preferable to define v9 Pvsy as x% plus t§2, v Pivy as 129 plus the square root of tfg
times zp, and v1' Pyv; as 2% + 2% + tf;. Here t1] and t£, are both chi-squared, with
l—k—2andl—k—1 degrees of freedom, respectively, and zp is standard normal.
All these variables are mutually independent, and they are also independent of x;
and xo. Of course, if [ — k < 2, chi-squared variables with zero or negative degrees of
freedom are to be set to zero, and if [ — k = 0, then zp = 0.

—7—



An alternative way to simulate the test statistics, which does not require the nor-
mality assumption, is to make use of a much simplified model. This model may help
to provide an intuitive understanding of the results in the next two sections. The
simplified model is

Y1 = By2 +uq, (32)
Y2 = awy + uz, (33)

where the disturbances are generated according to (21). Here the n-vector w; € §(W)
with ||wq]| = 1, W being, as before, an n x [ matrix of instruments. By normalizing
w; in this way, we are implicitly using weak-instrument asymptotics; see Staiger and
Stock (1997). Clearly, we may choose a > 0. The DGPs of this simple model, which
are completely characterized by the parameters (3, p, and a, can generate the six
quantities (7) so as to have the same distributions as those generated by any DGP of
the more complete model specified by (1), (2), and (3).

If the disturbances are not Gaussian, the distributions of the statistics depend not
only on the parameters a, p, and § but also on the vector w; and the linear span
of the instruments. We may suspect, however, that this dependence is weak, and
limited simulation evidence (not reported) strongly suggests that this is indeed the
case. The distribution of the disturbances seems to have a much greater effect on the
distributions of the test statistics than the features of W.

4. Asymptotic Theory

To fix ideas, we begin with a short discussion of the conventional asymptotic theory
of the tests discussed in Section 2. By “conventional”, we mean that the instruments
are assumed to be strong, in a sense made explicit below. Under this assumption, the
tests are all classical. In particular, Kleibergen (2002) shows that the K statistic is a
version of the Lagrange Multiplier test.

The reduced-form equation (33) of the simplified model of the previous section is
written in terms of an instrumental variable w; such that ||w;|| = 1. Conventional
asymptotics would set ||w1||? = n and let the parameter a be independent of the
sample size. Our setup is better suited to the weak-instrument asymptotics of Staiger
and Stock (1997). For conventional asymptotics, we may suppose that a = n'/2q, for
« constant as the sample size n — oo.

Under the null, § = 0. Under local alternatives, we let 5 = n~1/2b, for b constant as
n — oo. Conventional asymptotics applied to (22), (25), (26), (27), (28), and (29)
then give

Yyl Pry; = (1 + ab)® +t8, n"ly) Mwy, £ 1,
7’171/2’y1TP1y2 é axy + Oé2b, nilyITMwa é P, (34)
n"ly) Piys £ o nly)d Myys < 1.



Using these results, it is easy to check that, for 3 = 0, the statistics ¢2, K, and LR,
given by (6), (12), and (15), respectively, are all asymptotically equal to (z; + ab)?.
They have a common asymptotic distribution of y? with one degree of freedom and
noncentrality parameter o?b?> = a?32. Incidentally, we can also see that the Anderson-
Rubin statistic AR(0), as given by (8), is asymptotically equal to (z1 +ab)?+ 2%+t
with [ — k degrees of freedom and the same noncentrality parameter. Thus AR(0) is
asymptotically equal to the same noncentral x?(1) random variable as the other three
statistics, plus an independent central x?(I — k — 1) random variable.

We now turn to the more interesting case of weak-instrument asymptotics, for which
a is kept constant as n — oo. The three right-hand results of (34) are unchanged,
but the left-hand ones have to be replaced by the following equations, which involve
no asymptotic approximation, but hold even in finite samples:

yi' Piyy = af + 2p + 11,
yi' Piys = azq + p(x% + 2% + tfl) + r(mlmg + zP\/tg), and
yo Prys = a® + 2a(pzy + ra0) + p? (27 + 2 + 1)

+ 2 (22 4+ th) + 2pr<x1x2 + zP\/tQPQ).

Since the Anderson-Rubin statistic AR(0) is exactly pivotal for the model we are
studying, its distribution under the null that g = 0 depends neither on a nor on p.
Since the quantity SS in (16) is equal to AR(0) except for degrees-of-freedom fac-
tors, it too is exactly pivotal. Its asymptotic distribution under weak-instrument
asymptotics is that of y;"Pyy;. Thus, as we see from the first line of (35),

(35)

SS £ a3 + 2% + 11, (36)

which follows the central x?(I — k) distribution.

Although Kleibergen’s K statistic is not exactly pivotal, it is asymptotically pivotal
under both weak-instrument and strong-instrument asymptotics. From (12), and
using (34) and (35), we can see, after some algebra, that, under weak-instrument
asymptotics and under the null,

(yi' Pry2 — pyi' Prys)?
Yo' Pryz — 2pyi Prys + p*yi' Piy
2 2
(axl +r(z170 + 2p\/th, )) (acl(a—i—rxg) —f—TZP\/th)

a? + 2arwo + r2(z3 + t§2) (a+rxs)? + r2t§2 (37)

K2

Although the last expression above depends on a and p, it is in fact just a chi-squared
variable with one degree of freedom. To see this, argue conditionally on all random
variables except x7 and zp, recalling that all the random variables in the expression
are mutually independent. The numerator is the square of a linear combination of the
standard normal variables x1 and zp, and the denominator is the conditional variance
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of this linear combination. Thus the conditional asymptotic distribution of K is x?,
and so also its unconditional distribution. As Kleibergen (2002) remarks, this implies
that K is asymptotically pivotal in all configurations of the instruments, including
that in which a = 0 and the instruments are completely invalid.

For the LR statistic, we can write down expressions asymptotically equal to the quan-
tities ST and TT in (16). First, from (17), we have

A/n? £ 1 —p%

It is then straightforward to check that

a 1 /
ST: m(@ﬁl +’I"((L’1CU2 ‘I‘Zp t§2 )),

and

o 1
TT = — e (a® + 2arxs + r?(23 + thy)). (38)

Comparison with (37) then shows that, in accordance with (19), K = ST?/TT.

It is clear from (38) and (36) that SS and TT are asymptotically independent, since
the former depends only on the random variables x1, zp, and !}, while the latter
depends only on x5 and t£,. The discussion based on (37) shows that, conditional
on TT, ST is distributed as vTT times a standard normal variable and that K is
asymptotically distributed as 3.

Even though SS and ST are not conditionally independent, the variables ST and
SS—ST?/TT are so asymptotically. This follows because, conditionally on x5 and ¢4,
the normally distributed variable z1(a + rzs) + rzpy/td, is a linear combination of
the standard normal variables 1 and zp that partially constitute the asymptotically
chi-squared variable SS. These properties led Moreira (2003) to suggest that the
distribution of the statistics LR and LR, which are deterministic functions of S5,
ST, and TT, conditional on a given value of T7T, say tt, can be estimated by a
simulation experiment in which ST and SS — ST?/TT are generated as independent
variables distributed respectively as N(0,t¢t) and x? , ;. The variable SS is then
generated by combining these two variables, replacing TT" by tt. Such an experiment
has a bootstrap interpretation that we develop in the next section.

It may be helpful to make explicit the link between the quantities S.S, ST, and T'T,
defined in (16), and the vectors S and T used in Andrews, Moreira, and Stock (2006).
For the simplified model given by (32) and (33), these vectors can be expressed as

1
S=W', and T = ;WT(yg — pY1).

It is straightforward to check that, with these definitions, §'S, S'T, and T'T are
what the expressions S5, ST, and 1TI" would become if the three quadratic forms in
the right panel of (34) were replaced by their asymptotic limits.

—10—



The results (35) are independent of b. This shows that, for local alternatives of the
sort used in conventional asymptotic theory, no test statistic that depends only on
the six quantities (7) can have asymptotic power greater than asymptotic size under
weak-instrument asymptotics. However, if instead we consider fixed alternatives, with
parameter § independent of n, then the expressions do depend on (.

For notational ease, denote the three right-hand sides in (35) by Y11, Y12, and Yao,
respectively. Then it can be seen that the weak-instrument results become

yl—rPlyl = Y11 + 28Y12 + % Yao, ”_lleMWyl =1+ 28p + 3,
Y1 Piys = Yis + (Yao, nly Mwys £ p+ 5, (39)
Y2 Prys = Yoo, nly) Mywys = 1.

Notice that, if we specialize the above results, letting § be O(nfl/ 2) and letting a
be O(n'/?), then we obtain the conventional strong-instrument results (34).

We have not written down the weak-instrument asymptotic expression for the Wald ¢
statistic given in (6), because it is complicated and not very illuminating. Suffice it to
say that it depends nontrivially on the parameters a and p, as does its distribution.
Consequently, the statistic ¢ is not asymptotically pivotal. Indeed, in the terminology
of Dufour (1997), it is not even boundedly pivotal, by which we mean that rejection
probabilities of tests based on it cannot be bounded away from one. We will see this
explicitly in a moment.

The estimating equations (4) imply that the IV estimate of 3 is 8= y1' P1y2/yo Piys.
Under weak-instrument asymptotics, we see from (39) that

BE B+ Yia/Yas. (40)

Since E(Y12/Ya2) # 0, it follows that {3 is biased and inconsistent. The square of the
t statistic (6) can be seen to be asymptotically equal to

Yoo (Yia + BY22)?
Y3 — 2pY12Yae + Y5

(41)

under weak-instrument asymptotics. Observe that this expression is of the order of
(3? as 3 — oo. Thus, for fixed a and p, the distributions of t?> for 3 = 0 and 3 # 0
can be arbitrarily far apart.

For 3 = 0, however, the distribution of #?, for a and p sufficiently close to 0 and 1,
respectively, is also arbitrarily far from that with fixed a # 0 and p # 1. It is this
fact that leads to the failure of t? to be boundedly pivotal. Let a and r = (1 — p?)*/?
be treated as small quantities, and then expand the denominator of expression (41)
through the second order in small quantities. Note that, to this order, p = 1 — 72 /2.
Then we see that, to the desired order,

1
Y12 = ’UlTP1’U1 + (CL.I‘l + ’I’”UlTPQ’UQ) — §T2’01TP1’01, and

Yoo = vy Pyvq + 2(azy + rvlTPlvg) + (a2 + 2arzo + r’vy Plvg — %7‘2’01TP1U1).
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Consequently, to the order at which we are working,
Yoy — 2pY12Ya0 + Y5 = 1% (vi Pivg)?

To leading order, the numerator of (41) for 8 = 0 is just (vi Pyv1)?3, and so, in the
neighborhood of a = 0 and r = 0, we have from (41) that

T 'vlTPl'vl/rz. (42)

The numerator here is just a chi-squared variable, but the denominator can be arbi-
trarily close to zero. Thus the distribution of t2 can be moved arbitrarily far away
from any finite distribution by letting a tend to zero and p tend to one.

The points in the parameter space at which @ = 0 and p = £1, which implies that
r = 0, are points at which 3 is completely unidentified. To see this, consider the DGP
from model (32) and (33) that corresponds to these parameter values. The DGP can
be written as

yo =v1, y1=(1£73)yo. (43)

It follows from (40) that B = 1+ (. This is not surprising, since the second equation
in (43) fits perfectly. This fact then accounts for the ¢ statistic tending to infinity.

All the other tests have power that does not tend to 1 when 8 — oo under weak-
instrument asymptotics. For K, some algebra shows that

o (Yiz — pYi1 + B(Yao — Y1) + (2(pYa2 — le))2
- D(1 + 209 1 7) ’

K (44)

where
D = Y5, —2pY12+p°Y11+23(pYoo — (14p*) Yo+ pY11) + 8% (Y11 —2pY12+p*Ya2). (45)
As 3 — oo, the complicated expression (44) tends to the much simpler limit of

(pYa2 — Y12)?
Y11 — 2pY12 + p?Yao

(46)

Thus, unlike t2, the K statistic does not become unbounded as 3 — oco. Conse-
quently, under weak-instrument asymptotics, the test based on K is inconsistent for
any nonzero [, in the sense that the rejection probability does not tend to 1 however
large the sample size.

A similar result holds for the AR test. It is easy to see that

a Y11 420812 + %Yo,
SS = —
1+28p+p%  poco

}/22a (47)

which does not depend on 3. Thus, since AR is proportional to SS, we see that
the asymptotic distribution of AR does not depend on [ under weak-instrument
asymptotics.
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Similar results also hold for the LR and LRy statistics. By an analysis like the one
that produced (47), we have that

o Y1z — pY11 + B(Yaa — Y11) + 3% (pYa2 — Y12) . pYoo — Yio

ST = and
r(1+26p+ (%) fooo T
a D Vi1 — 2pYia + p*Yay
TT = — ,
r3(1+20p + 32) p—oo r*

where D is given by (45). From (18), therefore,

1
LRy — -
0 B—oo 212

1/2
(Y7 — 2Y11Ya(1 — 2p%) — 4pY11 Y12 + Y5h + 4Y75 — 4pY12Y20) : )

(Y22(1 —2p%) + 2pYis — Virt

The inconsistency of the LRy test follows from the fact that this random variable has
a bounded distribution. This is true for the LR test as well, but we will spare readers
the details.

We saw above that, when a = 0 and p = 1, the parameter 3 is unidentified. We
expect, therefore, that a test statistic for the hypothesis that 7 = 0 would have the
same distribution whatever the value of 3. This turns out to be the case for the
K statistic. If one computes the limit of expression (44) for a = 0, r — 0, the limiting
expression is just (vy Pivs)? /vy Pivs, independently of the value of 3. Presumably a
more complicated calculation would show that the same is true for LR and LRj.

The result that the AR, K, and LR tests are inconsistent under weak-instrument
asymptotics appears to contradict some of the principal results of Andrews, Moreira,
and Stock (2006). The reason for this apparent contradiction is that we have made a
different, and in our view more reasonable, assumption about the covariance matrix of
the disturbances. We assume that the matrix X, defined in (3) as the covariance ma-
trix of the disturbances in the structural equation (1) and the reduced form equation
(2), remains constant as [ varies. In contrast, Andrews, Moreira, and Stock (2006)
assumes that the covariance matrix of the reduced form disturbances does so.

In terms of our parametrization, the covariance matrix of the disturbances in the two
reduced form equations is

of +2pBoios + (%03 poios + Boj (48)
poios + Bo3 o3 '

This expression depends on 3 in a nontrivial way. In order for it to remain constant
as ( changes, both p and o1 must be allowed to vary. Thus the assumption that (48)
is fixed, which was made by Andrews, Moreira, and Stock (2006), implies that (3)
cannot remain constant as |3 — oo.

A little algebra shows that, as § — oo with the covariance matrix (48) held fixed,
the parameters 3 and p of the observationally equivalent DGP of the model given by
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(32) and (33) along with (21) tend to +1 and F1 respectively. Thus the omnipresent
denominator 1 + 23p + 3% tends to zero in either of these limits. But it is clear
from (39) that this means that the estimate of 0% from the full model (1) and (2)
tends to zero.

Based on the above remark, our view is that it is more reasonable that (3) should
remain constant than that (48) should. The parameter p is a much more interesting
parameter than the correlation in (48). Even when p = 0, in which case the OLS
estimator of ( is consistent, the correlation between the two reduced form disturbances
tends to £1 as 8 — £oo. Thus we believe that the latter correlation is not a sensible
quantity to hold fixed. In any case, it is rather disturbing that something as seemingly
innocuous as the parametrization of the covariance matrix of the disturbances can have
profound consequences for the analysis of power when the instruments are weak.

5. Bootstrapping the Test Statistics

There are several ways to bootstrap the non-exact test statistics that we have been
discussing (Wald, K, and LR). In this section, we discuss five different parametric
bootstrap procedures, three of which are new. We obtain a number of interesting
theoretical results. We also briefly discuss how to convert the new procedures into
semiparametric bootstraps. In the next section, we will see that two of the new
procedures, and one of them in particular, perform extremely well when used with all
three of the test statistics.

For all the statistics, we perform B bootstrap simulations and calculate the bootstrap
P value as

1 B
pr(7) = 5 ZI(T; > 7), (49)

where 7 denotes the actual test statistic and 7;° denotes the statistic calculated using
the 7' bootstrap sample.

Dufour (1997) makes it clear that bootstrapping is not in general a cure for the
difficulties associated with the Wald statistic t. However, since the Wald statistic
is still frequently used in practice when there is no danger of weak instruments, it is
interesting to look at the performance of the bootstrapped Wald test when instruments
are strong. When they are weak, we confirm Dufour’s result about the ineffectiveness
of bootstrapping. In the context of our new bootstrap methods, this manifests itself
in an almost complete loss of power, for reasons that we analyze.

Since the K statistic is asymptotically pivotal under weak-instrument asymptotics, it
should respond well to bootstrapping, at least under the null. The LR statistic is not
asymptotically pivotal, but, as shown by Moreira (2003), a conditional LR test gives
the asymptotically pivotal statistic we call CLR. As we explain below, the implemen-
tation of this conditional likelihood ratio test is in fact a form of bootstrapping, so
that bootstrapping the conditional test is a sort of double bootstrap, and thus much
more computationally intensive than the other bootstrap tests we consider.

— 14—



For any bootstrapping procedure, the first task, and usually the most important one,
is to choose a suitable bootstrap DGP; see Davidson and MacKinnon (2006a). An
obvious but important point is that the bootstrap DGP must be able to handle both
of the endogenous variables, that is, y; and ys. A straightforward, conventional
approach is to estimate the parameters (3, v, 7, 01, 02, and p of the model specified
by (1), (2), and (3), and then to generate simulated data using these equations with
the estimated parameters.

However, the conventional approach estimates more parameters than it needs to. The
bootstrap DGP should take advantage of the fact that the simple model specified by
(32) and (33) can generate statistics with the same distributions as those generated
by the full model. Equation (32) becomes especially simple when the null hypothesis
is imposed: It says simply that y; = wq. If this approach is used, then only the
parameters a and p need to be estimated. In order to estimate a, we may substitute
an estimate of 7 into the definition (24) with an appropriate scaling factor to take
account of the fact that a is defined for DGPs with unit disturbance variances.

Since we have assumed up to now that the disturbances of our model are Gaussian, it
is appropriate to use a parametric bootstrap in which the disturbances are normally
distributed. In practice, however, investigators will often be reluctant to make this
assumption. At the end of this section, we therefore discuss semiparametric bootstrap
techniques that resample the residuals. In the next section, we will see that the
performance of the parametric and semiparametric bootstraps appears to be very
similar when the disturbances are in fact normally distributed.

We investigate five different ways of estimating the parameters p and a. To estimate p,
we just need residuals from equations (32) and (33), or, in the general case, (1) and
(2). To estimate a, we need estimates of the vector 7r; from the reduced-form equation
(33), or from (2), along with residuals from that equation. If 4; and o denote the
two residual vectors, and 7t; denotes the estimate of 71, then our estimates are

.. T..
.. Uy U2
_ _and 50
P~ Carin g i) 2 ™ (50)
i = \/n W Wi il (51)

Existing methods, and the new ones that we propose, use various estimates of 71 and
various residual vectors.

The simplest way to estimate p and a is probably to use the restricted residuals
uy = Mzy, = Mwyi + Py,

which, in the case of the simple model, are just equal to y;, along with the OLS
estimates 7r; and OLS residuals @s from the FWL regression

szg = W17I'1 + Uuo. (52)

—15—



We call this widely-used method the RI bootstrap, for “Restricted, Inefficient”. It
can be expected to work much better than the pairs bootstrap that was studied by
Freedman (1983) and better than other parametric procedures that do not impose
the null hypothesis.

As the name implies, the problem with the RI bootstrap is that 7r; is not an efficient
estimator. That is why Kleibergen (2002) did not use 7r; in constructing the K
statistic. Instead, he used the estimates 7r; from equation (10). It can be shown that
these estimates are asymptotically equivalent to the ones that would be obtained by
using 3SLS or FIML on the system consisting of equations (1) and (2). The estimated
vector of disturbances from equation (10) is not the vector of OLS residuals but rather
the vector uy = Mzys — Wi

Instead of equation (10), it may be more convenient to run the regression
Yo = Whim + Z7y + §Mzy,+ residuals. (53)

This is just the reduced form equation augmented by the residuals from restricted
estimation of the structural equation. The vector ug is equal to the vector of OLS
residuals from regression (53) plus 0Mzy;. We call the bootstrap that uses u, 71,
and @y the RE bootstrap, for “Restricted, Efficient”.

Two other bootstrap methods do not impose the restriction that § = 0 when estimat-
ing p and a. For the purposes of testing, it is a bad idea not to impose this restriction,
as we argued in Davidson and MacKinnon (1999). However, it is quite inconvenient
to impose restrictions when constructing bootstrap confidence intervals, and since
confidence intervals are implicitly obtained by inverting tests, it is of interest to see
how much harm is done by not imposing the restriction.

The UI bootstrap, for “Unrestricted, Inefficient”, uses the unrestricted residuals
from IV estimation of (1), along with the estimates 7y and residuals @y from OLS
estimation of (2). The UE bootstrap, for “Unrestricted, Efficient”, also uses w1, but
the other quantities come from the artificial regression

Mzys = Wim + 0uq + residuals, (54)

which is similar to regression (10). Of course, a regression analogous to (53) could
be used instead of (54). A fifth bootstrap method will be proposed after we have
obtained some results on which it depends.

It is possible to write the estimates of a and p used by all four of these bootstrap
schemes as functions solely of the six quantities (7). This makes it possible to program
the bootstrap very efficiently. Because many of the functions are quite complicated,
we will spare readers most of the details. However, we need the following results for
the RE bootstrap:

.
M

yi' Mwys + wylﬁjﬂh

_ y1 Mw iy,

p= (55)

a1 5 172
<(y1TMwy1 +yl Piy1) (szMwyz + (M) yFP1y1)>
y1 Mwy:
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and

-
T T Y1 Mwy»
Yo Piys — 2y Pryo =—F/—7""
Y1 ' Mwyi

a2 = Y . (56)

T 2
M-
Yo' Mwys + yi' Piy: <w>
y1 Mwy:

2
) (yl—rMWy2>

Davidson and MacKinnon (1999) show that the size distortion of bootstrap tests may
be reduced by use of a bootstrap DGP that is asymptotically independent of the
statistic that is bootstrapped. In general, this is true only for bootstrap DGPs that
are based on efficient estimators. Thus it makes sense to use the efficient estimator 7r;
rather than the inefficient estimator 7r; in order to estimate a, and, via the reduced-
form residuals, p. Either restricted or unrestricted residuals from (1) can be used as
the extra regressor in estimating 7r; without interfering with the desired asymptotic
independence, but general considerations of efficiency suggest that restricted residuals
are the better choice. Thus we would expect that, when conventional asymptotics
yield a good approximation, the best choice for bootstrap DGP is RE.

Under weak-instrument asymptotics, things are rather different. We use the results of
(35) and the right-hand results of (34) to see that, with data generated by the model
(32) and (33) under the null hypothesis,

~ a ~ a ~ o~ o~ a
a% =1, US =1, and poio9 =p.

Thus the RE bootstrap estimator p, as defined by (55), is a consistent estimator, as
is the estimator used by the RI bootstrap. It can be checked that this result does
not hold for any of the estimators that use unrestricted residuals from equation (32),
since they depend on the inconsistent IV estimate of 3; recall (40).

The weak-instrument asymptotic version of (56) under the null can be seen to be

a? £ a® + 2arxq + r* (a3 + thy). (57)

Unless r = 0, then, @ is inconsistent. It is also biased, the bias being equal to 72 (I—k).
It seems plausible, therefore, that the bias-corrected estimator

ape = max(0,a* — (I —k)(1 — p%)) (58)

may be better for the purposes of defining the bootstrap DGP. Thus we consider a
fifth bootstrap method, REC, for “Restricted, Efficient, Corrected.” It differs from
RE in that it uses apc instead of @. This has the effect of reducing the R? of the
reduced-form equation in the bootstrap DGP.

For the purposes of an analysis of power, it is necessary to look at the properties of
the estimates p and @ under the alternative, that is, for nonzero 3. From (39), we
see that

G2E14+28p+ 0% G521, and §5152 = p+ 5,
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from which we find that
a p+p3
(20 + P

As 8 — oo, then, we see that p — 1, for all values of a and p. For the rate of
convergence, it is better to reason in terms of the parameter r = (1 — p?)/2. We have

F

R U (p+p8)7> r’ '
L+28p+ 32  1+426p+ (2

Thus 7 = O,(87!) as  — oo.

The calculation for a2 is a little more involved. From (56) and (39), we find that
2(p+ ) p+8
1+428p + 32 1+ 28p + 32

= (1+ 25110 ¥ 52)2 (14 Bp)Ya2 = 2(p + B)(1 + Bp) Y2 + (p + 8)*Y11).

2
a’ = Yoo — (le + BYa22) + ( > (Yll +28Y12 + ﬁ2Y22)

Clearly, this expression is of the order of 372 in probability as 3 — oo, so that @ — 0,
again for all @ and p. In fact, it is clear that a = Op(ﬁfl) as 0 — oo, from which we
conclude that a and 7 tend to zero at the same rate as § — oo, as in the calculation
that led to (42).

These results can be understood intuitively by considering (32) and (33). Estimation
of p uses residuals which for that model are just the vector y; = [ys + v;. For
large 3, this residual vector is almost collinear with ys, and so also with the residual
vector us. The estimated correlation coefficient therefore tends to 1. Similarly, when
y1 is introduced as an extra regressor for the estimation of a, it is highly collinear with
the dependent variable and explains almost all of it, leaving no apparent explanatory
power for the weak instruments.

For large § then, the RE bootstrap DGP is characterized by parameters a and p close
to 0 and 1, respectively. As we saw near the end of the last section, at this point
in the parameter space (3 is unidentified, and the Wald statistic has an unbounded
distribution. These facts need not be worrisome for the bootstrapping of statistics that
are asymptotically pivotal with weak instruments, but they mean that the bootstrap
version of the Wald test, like the Kleibergen and LR tests, is inconsistent, having a
probability of rejecting the null hypothesis that does not tend to one as  — 0.

To see this, we make use of expression (42) to see that the distribution of the Wald
statistic t?, for a and 7 small and of the same order and 3 = 0, is of order r—2. For
large (3, therefore, the distribution of the bootstrap Wald statistic, under the null, is
of order 7~2, which we have just seen is the same order as $2. But the distribution of
the Wald statistic itself for large 3 is also of order 32, unlike the K and LR statistics.
Although the distribution of the actual statistic ¢? for large 3 and that of the bootstrap
statistic (¢*)? are not the same, and are unbounded, the distributions of #2/3% and
(t*)2/3? are of order unity in probability, and, having support on the whole real line,
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they overlap. Thus the probability of rejection of the null by the bootstrap test does
not tend to 1 however large § may be.

This conclusion, which is borne out by the simulation experiments of the next section,
bears some discussion. In Horowitz and Savin (2000), it is pointed out that, unless
one is working with pivotal statistics, it is not in general possible to define an em-
pirically relevant definition of the power of a test that does not have true level equal
to its nominal level. They conclude that the best measure in practice is the rejection
probability of a well-constructed bootstrap test.

In Davidson and MacKinnon (2006b), we point out that, even for well-constructed
bootstrap tests, ambiguity remains in general. Only when the bootstrap DGP is
asymptotically independent of the asymptotically pivotal statistic being bootstrapped
can level adjustment be performed unambiguously on the basis of the DGP in the null
hypothesis of which the parameters are the probability limits of the estimators used
to define the bootstrap DGP. This result, as proved, applies only to the parametric
bootstrap, and, more importantly here, to cases in which these estimators have non-
random probability limits. But, as we have seen, that is not the case here. It seems
therefore that there is no theoretically satisfying measure of the power of tests for
which the bootstrap DGP is asymptotically nonrandom. It is therefore pointless to
try to refine our earlier result for the Wald test, whereby we learn merely that its
bootstrap version is inconsistent.

Because the Wald statistic is not boundedly pivotal, a test based on it has size equal
to one, as shown by Dufour (1997). Dufour also draws the conclusion that no Wald-
type confidence set based on a statistic that is not at least boundedly pivotal can be
valid, whether or not the confidence set is constructed by bootstrapping. If, however,
instead of using a conventional bootstrap confidence set, we invert the bootstrap
Wald test to obtain a confidence set that contains all parameter values which are not
rejected by a bootstrap Wald test, we may well obtain confidence sets with a level of
less than one, since, on account of the inconsistency of the bootstrap test, unbounded
confidence sets can arise with positive probability.

We mentioned earlier that Moreira’s conditional LR test has a bootstrap interpreta-
tion. We may consider the variable T'T" defined in (16) as a random variable on which
a bootstrap distribution is conditioned. In fact, as can be seen from (38) and (57),
TT is equivalent under weak-instrument asymptotics to a?/r% Given a value for T'T,
Moreira shows that the statistics LR and LRy are asymptotically pivotal. Thus,
rather than estimating both a and p and using the estimates to generate bootstrap
versions of the six sufficient statistics (7), we can evaluate TT and then generate
“bootstrap” versions of the two (conditionally) sufficient statistics SS and ST based
on their asymptotic conditional distributions, as discussed earlier. From this we ob-
tain a conditional empirical distribution which is used to compute a P value for the
CLR test in the usual way.

This procedure is not quite a real bootstrap, although it is almost as computation-
ally intensive as a fully parametric bootstrap based on simulating the six quantities,
because the “bootstrap” conditional distributions of S.S and ST are not known ex-
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actly. Instead, they are approximated on the basis of the distributions when the
contemporaneous covariance matrix is known.

Of course, it is possible to bootstrap the CLR test, but this amounts to a form of
double bootstrap, which is expensive and requires some care to implement correctly.
Suppose we perform s simulations to calculate a CLR test P value p. Since this P
value is 1/s times the number of simulations for which the simulated LR statistic,
conditional on T'T', exceeds the actual LR statistic, it can take on only s+ 1 different
values. Now imagine bootstrapping this entire procedure. If we also use s simulations
to compute each bootstrap statistic pj, then p7 can only take on the same s + 1
values as p. Thus the actual and bootstrap statistics will be equal with probability
approximately 1/(s + 1). To avoid this problem, we either need to make s very
large or use a different number of simulations, say s*, for the bootstrap statistics.
The bootstrap P value is computed by a modified version of (49), with I(p; < p)
replacing I(7} > 7).

Some remarks concerning bootstrap validity are in order at this point. If the statistic
that is bootstrapped is asymptotically pivotal, then the bootstrap is valid asymp-
totically in the sense that the difference between the bootstrap distribution and the
distribution under the true DGP, provided the latter satisfies the null hypothesis,
converges to zero as the sample size tends to infinity; see, among many others, David-
son and MacKinnon (2006a). The bootstrap provides higher-order refinements if, in
addition, the bootstrap DGP consistently estimates the true DGP under the null;
see Beran (1988). Yet another level of refinement can be attained if the statistic
bootstrapped is asymptotically independent of the bootstrap DGP; see Davidson and
MacKinnon (1999). All of these requirements are satisfied by any of the statistics
considered here under strong-instrument asymptotics if the RE or REC bootstrap is
used.

Besides the AR statistic, only the K statistic and CLR test P value are asymptotically
pivotal with weak instruments, and so it is only for them that we can conclude without
further ado that the bootstrap is valid with weak-instrument asymptotics. However,
even if the statistic bootstrapped is not asymptotically pivotal, the bootstrap may
still be valid if the bootstrap DGP consistently estimates the true DGP under the
null. But with weak instruments this is true of no conceivable bootstrap method,
since there is no consistent estimate of the parameter a. Consequently, however large
the sample size may be, the bootstrap distributions of the Wald statistic and the
LR statistic are different from their true distributions.

Although our discussion has focused on parametric bootstrap procedures, we do not
necessarily recommend that they should be used in practice, since the assumption
of Gaussian disturbances may often be uncomfortably strong. All of the parametric
bootstrap procedures that we have discussed have semiparametric analogs which do
not require that the disturbances should be normally distributed. We will discuss only
the RE and REC bootstraps, partly because they are new, partly because they will
be seen in the next section to work very well, and partly because it will be obvious
how to construct semiparametric analogs of the other procedures.

—20—



For the semiparametric RE bootstrap, we first estimate equation (1) under the null
hypothesis to obtain restricted residuals Mzy;. We then run regression (10) or,
equivalently, regression (53). The residual vector o that we want to resample from is
the vector of residuals from the regression plus 0 Mzy;. The bootstrap DGP is then

Y =u; - o

u] us| ~ EDF|lu; wol. 59
o wim s, ]~ EDFlE @) (59)
Thus the bootstrap disturbances are resampled from the joint EDF of the two residual
vectors. This preserves the sample correlation between them.

For the REC bootstrap, we need to use a different set of fitted values in the reduced-
form equation. To do so, we first compute a? using either the formula (56) or, more

conveniently,
L, A WIWiR
’l],QT ’112 / n

which is the square of (51) evaluated at the appropriate values of 71 and us. Then
we calculate a3 from (58). The bootstrap DGP is almost the same as (59), except
that the fitted values Wi, are replaced by apc/a times Wiy, This reduces the
length of the vector of fitted values somewhat. The fitted values actually shrink to
zero in the extreme case in which agc = 0.

The quantity a? is very closely related to the “test statistic” for weak instruments
recently proposed by Stock and Yogo (2005). When it is large, the instruments are
almost certainly not weak, and even asymptotic inference should be reasonably reli-
able. When it is very small, however, many tests are likely to overreject severely, and
those that do not are likely to be seriously lacking in power. There is evidence on
these points in the next section.

6. Simulation Evidence

In this section, we report the results of a large number of simulation experiments with
data generated by the simplified model (32) and (33). All experiments had 100,000
replications for each set of parameter values. In most cases, we used fully parametric
bootstrap DGPs, but we also investigated the semiparametric ones discussed at the
end of the preceding section.

In most of the experiments, n = 50. A different choice for n, but for the same value(s)
of a, would have had only a modest effect on the results for most of the bootstrap tests.
Many of the asymptotic tests are quite sensitive to n, however, and we later provide
some evidence on this point. For the base cases, we consider every combination of
a=2and a = 8 with p = 0.1 and p = 0.9. The limiting R? of the reduced-form
regression (33) is a?/(n +a?). Thus, when a = 2, the instruments are very weak, and
when a = 8, they are moderately strong. When p = 0.1, there is not much correlation
between the structural and reduced-form disturbances, and when p = 0.9, there is a
great deal of correlation.
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All our results are presented graphically. Within each figure, the horizontal scale is
always the same, but the vertical scale often changes, because otherwise it would be
impossible to see many important differences between alternative tests and bootstrap
methods. Readers should check the vertical scales carefully when comparing results
in different panels of the same figure.

Figures 1 through 4 concern the properties of asymptotic tests. Figure 1 shows the
rejection frequencies for the Wald, K, LR, and CLR tests (with s = 199) for the four
base cases as functions of [ — k. These are all increasing functions, so test perfor-
mance generally deteriorates as the number of over-identifying restrictions, I — k — 1,
increases. Of particular note are the extremely poor performance of the Wald test
when p = 0.9 and the surprisingly poor performance of the LR test when p = 0.1. It
is also of interest that the Wald test underrejects severely when p, a, and [ — k are all
small. This is a case that is rarely investigated in simulation experiments.

Figure 2 shows rejection frequencies as functions of p for four values of a. In this
and all subsequent figures, [ — k = 7, so that there are six overidentifying restrictions.
As expected, performance improves dramatically as a increases. The Wald test is
extremely sensitive to p. The others, especially K and CLR, are much less so. Only
when p is small and a is large does the Wald test perform at all well.

In Figure 3, we consider values of n between 20 and 1280 that increase by factors of
approximately v/2. This figure, which appears to be novel, makes it clear that the
mediocre performance of K and CLR evident in the first two figures is a consequence
of using n = 50. The performance of both these tests always improves dramatically
as n increases. Recall that K and CLR are asymptotically pivotal under both weak-
instrument and conventional asymptotics. Thus it is not surprising that they can
safely be used as asymptotic tests when the sample size is large but the instruments
are weak. The performance of LR also improves as n increases, but it continues to
overreject, sometimes very severely, even for large values of n. The Wald test is the
least sensitive to n, but its performance often deteriorates as n increases.

Figure 4 shows what happens as a varies. We consider values from a = 1 to a = 90.51
that increase by factors of v/2. As expected, the performance of the Wald and LR
tests improves dramatically as a increases. There is little effect on K and only a
modest effect on CLR. The latter tests would instead benefit from a larger sample
size, holding a constant.

Figures 5, 6, and 7 concern the properties of parametric bootstrap tests under the
null hypothesis. In all cases, B = 199. Figure 5 shows rejection frequencies for the
Wald, K, and LR tests as a function of a for two values of p, and Figure 6 shows
rejection frequencies for the same tests as a function of p for two values of a. Results
are presented for the five different bootstrap DGPs that were discussed in Section 5.
Procedures with an “R” use restricted estimates of the structural equation, while
procedures with a “U” use unrestricted estimates. Procedures with an “E” use efficient
estimates of the reduced-form equation, while procedures with an “I” use inefficient
ones. The REC procedure bias-corrects the estimate of a.

For the Wald test, our new RE and REC bootstraps perform reasonably well, although
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they do lead to severe underrejection in some cases. The other three methods lead
to very severe overrejection when p is not small. This is consistent with what other
authors have observed when investigating conventional bootstrap methods applied to
IV estimation; see, for example, Moreira, Porter, and Suarez (2004).

For the K test, all methods work very well, although REC is arguably the best of a
remarkably good bunch. For the LR test, REC is unquestionably the best method
in three out of four of the experiments, and it is arguably the best in the fourth,
where everything except UI performs quite well. Using REC leads to only modest
overrejection in the worst cases.

Figure 7 deals with the CLR test, bootstrapping which is about as computationally
intensive (and expensive) as a double bootstrap.? We used s = 199 and s* = 299 in
these experiments; these numbers were defined above in our discussion of the boot-
strap interpretation of the CLR test. Using different values would have produced
somewhat different results. Results for the CLR test are quite similar to those for the
LR test. Bootstrapping generally improves its performance, and the REC bootstrap
is clearly the procedure of choice. Its only defect seems to be a very modest tendency
to overreject when a is small.

Figures 8 and 9 concern power. Because there is no point comparing the powers of
tests that do not perform reliably under the null, we consider only the REC, RE, and
RI bootstraps. The last of these is included only for purposes of comparison, because
it is impossible to justify for the Wald test. In these figures, we present results for
the AR test (not bootstrapped, since it is exact) as well as for the three bootstrap
tests. To avoid the power loss associated with small values of B, we set B = 999
in these experiments. Since we would also have had to use large values of s and s,
for the same reason, including the CLR test in these experiments would have been
prohibitively expensive, and we did not do so.

Figure 8 deals with the weak-instrument case in which a = 2. In the left-hand panels,
p = 0.1, and in the right-hand panels, p = 0.9. No test has good power properties.
When p = 0.1, AR is probably the best test to use. It is often more powerful than K,
the only other test that is reliable under the null, and it is rarely much less powerful.
The apparently much greater power of Wald and LR with the RI bootstrap is spurious,
because these tests are not reliable under the null. Although it is true that the Wald
test actually underrejects here, we would not know in practice that p is very small,
and for larger values of p the Wald test with the RI bootstrap overrejects severely.

When p = 0.9, all the tests have very strange-looking power functions. They have
far less power against positive values of § than against negative ones. The power
function for K has a curious dip for some negative values of (3, and in this region K
can be much less powerful than AR; see Poskitt and Skeels (2007), as well as Stock,

A recent paper by Hillier (2006) derives the exact conditional distribution of the
LR statistic under the assumption that the disturbance covariance matrix X' is known.
Critical values for the test can be obtained from this conditional distribution by nu-
merical methods. Use of these critical values might considerably reduce the compu-
tational burden of bootstrapping the CLR test.
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Wright, and Yogo (2002), whose simulation results are not directly comparable to
ours, since they use the same parametrization as Andrews, Moreira, and Stock (2006)
and assume that 3 is known. The minimum of the power function for the Wald test
also occurs well to the left of 3 = 0. The REC version of the LR test appears to be
the best of a bad lot. It seems to be reliable under the null, and it has noticeably
more power than AR against some alternatives.

Figure 9 deals with the case in which a = 8, so that the instruments are moderately
strong. All the tests now perform very much better, and both K and LR often
outperform AR. However, when p = 0.9, the power function for K once again has a
curious dip for some negative values of 3, and the power function for Wald has its
minimum noticeably to the left of 5 = 0. The power function for K when p = 0.1
is even stranger; power actually declines as the absolute value of 3 increases beyond
a certain point. The LR test does not have any of these problems, and it is quite
reliable, at least when bootstrapped using REC. Thus there appears to be a fairly
strong case for using the REC bootstrap version of LR. When a is reasonably large,
we would expect the CLR test, bootstrapped if n is small, to have power similar to
that of the REC bootstrap version of LR. See Andrews, Moreira, and Stock (2006).

As we mentioned at the end of the last section, it is probably better in practice to use
a semiparametric rather than a fully parametric bootstrap, because the normality as-
sumption is likely to be false. We therefore performed a number of experiments using
semiparametric versions of the REC and RE bootstraps. In every case, the semipara-
metric and fully parametric bootstraps yielded very similar results. Figures 10 and 11
show how the parametric and semiparametric bootstrap tests perform as functions
of the sample size. They show rejection frequencies under the null as a function of
the sample size for the REC and RE bootstraps, respectively, both parametric and
semiparametric, for four sets of parameter values. The similarity of the two sets of
results is striking. Note that the same random numbers were used to generate the
underlying data, but different ones were used for bootstrapping.

Figure 10, which shows the results for the REC bootstrap, makes it clear that the
decision to focus on the case n = 50 in most of our experiments is not entirely
inconsequential. The K test works very well indeed for all but the smallest sample
sizes, as does the CLR test, although the latter generally does not perform as well
when n is small. The Wald test underrejects for the smaller sample sizes in three cases
out of four, but its performance improves as n increases. When a = 2, the LR test
overrejects moderately for small sample sizes and underrejects moderately for large
ones. It just happens to perform very well for n = 50, so that our previous results
may paint a somewhat overoptimistic picture.

Figure 11 is similar to Figure 10, but it shows results for the RE bootstrap. Once
again, we see that the fully parametric and semiparametric bootstraps produce almost
identical results with normally distributed disturbances. At least in some cases, the
RE procedure is substantially inferior to the REC one. In particular, the LR test
overrejects quite severely when a = 2 and p = 0.1, and the Wald test now performs
less well for cases where a is small and n is large. However, for the K and CLR tests,
performance is once again excellent for large n, although n needs to be somewhat
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larger than for the REC bootstrap.

It emerges clearly from these last two figures that the rejection frequencies of the RE
bootstrap Wald and LR tests do not seem to converge to the nominal level as n — oo
when a = 2, whereas those of the K and CLR tests do so. This is in accord with
our discussion of the previous section. We echo Moreira, Porter, and Suarez (2004),
however, in noting that it is remarkable that the bootstrap Wald and LR tests perform
as well as they do.

7. Concluding Remarks

We have provided a detailed analysis of the properties of several tests for the coeffi-
cient of a single right-hand-side endogenous variable in a linear structural equation
estimated by instrumental variables. First, we showed that the Student’s ¢ (or Wald)
statistic, Kleibergen’s K statistic, and the LR statistic can be written as functions of
six random quantities. The Anderson-Rubin test is also a function of two of these six
quantities. Using these results, we obtained explicit expressions for the asymptotic
distributions of all the test statistics under both conventional and weak-instrument
asymptotics.

Under weak-instrument asymptotics, we found that none of the test statistics can
have any real asymptotic power against local alternatives. Even when the alternative
is fixed, AR, K, and LR are not consistent tests under weak-instrument asymptotics.
The t test has very different properties, however. It is unbounded as § — o0, so
that it appears to be consistent. But it is also unbounded as certain parameters of
the DGP tend to limiting values, so that it is not asymptotically pivotal, or even
boundedly pivotal. Note that these results depend in an essential way on how the
DGP is specified, in particular the disturbance covariance matrix.

We then proposed some new procedures for bootstrapping the three test statistics.
Our RE and REC procedures use more efficient estimates of the coefficients of the
reduced-form equation than existing procedures and impose the restriction of the null
hypothesis. In addition, the REC procedure corrects for the tendency of the reduced-
form equation to fit too well. A semiparametric version of this procedure is quite
easy to implement. In most cases, the REC bootstrap outperforms the RE bootstrap,
which in turn outperforms previously proposed methods. The improvement can be
quite dramatic.

The K and CLR tests have excellent performance under the null when bootstrapped
using either the RE or REC procedures, even when the sample size is small and the
instruments are weak. The LR test also performs very well in most cases, especially
when REC is used. Even the Wald test performs quite well when bootstrapped using
these procedures, although it sometimes underrejects fairly severely. Interestingly,
however, as we show analytically, the RE and REC bootstrap versions of the Wald
test are not consistent against fixed alternatives under weak-instrument asymptotics,
and they seem to be less powerful than the other tests when the instruments are weak.

All of our theoretical analysis is conducted under the assumption that the disturbances
are Gaussian, although some results do not in fact depend on this assumption. To
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our knowledge, little work has been done on the properties of tests in the presence of
weak instruments and non-Gaussian disturbances. We conjecture that the qualitative
features of the tests considered in this paper, both asymptotic and bootstrap, do not
greatly depend on the assumption of Gaussianity.

In the light of our results, it is tempting to conclude that, when the number of
overidentifying restrictions is large, so that the AR test may suffer significant power
loss, the best methods to use are variants of the LR test. When the sample size is
large, it appears to be safe to use the conditional LR test without bootstrapping.
When the instruments are reasonably strong, it appears to be safe to use the LR
test bootstrapped using the REC procedure. However, when the sample size is small
and the instruments are weak, it is best to use the bootstrap CLR test, preferably
bootstrapped using the REC procedure.
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— 928 —



1.0 0.50
71— Wald (¢) test

———— Wald (%) test

0.9 o K test 0454 ... K test
0.8 ------ LR test 040+ ------ LR test
074 T CLR test 0354 T CLR test
0.30 —
0.25
0.20 —
0.15
0.10 —
! 0.05
007717 TTrTrTr T T T T 1P OO0 e e e e e e e e e e e e e e e e
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Very weak instruments: a = 2 Weak instruments: a = 4
0.20 0.10
] ————Wald (¢) test 0.09 -
A K test O 08 —]
0154 ="~ LR test I N -"."."'”".....‘.".."\"_‘.',‘f.'.j..\.._‘(."f“""'..‘"
it CLR test 0.07
— 006 _\Av\"‘\’a‘\«‘//—J"\/‘r\r_ S apppn, .
0.10 0.05 —umagermeom i

P T A T IO
Vel e Recrasarenn 0 04
. *e . . N=TevvTias . ]
SR SAI LI z . teeateeenen e |
"'—\—A-v
-~
Y- 0.03

0 B K
] 0.02 - test
. - == LR test
: R CLR test

0.00 rrrrrrrrrrrrrrrrroror i 0.00 rrrrrrrrrrrrrrrrrororif
00 02 04 06 08 1.0 0.0 02 04 06 08 1.0
Moderately strong instruments: a = 8 Very strong instruments: a = 16

Figure 2. Rejection frequencies for asymptotic tests as functions of p for | —k =7, n = 50

—929—



0.50 0.25

0.45 Wald (t) test ] Wald (t) test
' K test oo ] K test «ooeeeeeeees
0.40 LR test ------ 0-20 7 LR test ------
0.35 CLR test -------- _ CLR test --------
0.30 4 . 0.15
0254 % el 1%
0.204 = T 0.10 4~
0154 = 1 T
0.10 "-.,'..:\\\\ 0.05 E ........................ e e
0.05 - e T TR R e e 7]
0.00 = | | | | | — " 0.00 | | | | | — N
20 40 80 160 320 640 1280 20 40 80 160 320 640 1280
a=2,p=0.1 a=38,p=0.1
1.0 0.20
0.9 |
0.8 |
- 0.15 4 .
0.7 - 1
. A v Wald () test
0-6 7 Wald (t) test | ‘1'-\ K test oo
0.5 : K test -ooveeeeees 0.10 : \,:.\\ LR test - =-----
0.4 - LR test ------ 40 CLR test --------
0.3 : CLR test -=--==-= : \\\\:f?‘\f‘:ﬁ_ﬁ;‘;;—;v«
| 0.05 - JR s 2o Y S
0.2 RN |
0.1 ..'77:3‘3:‘:;;;;__: ------------- ]
0.0 n 0.00 n

50 40 80 160 320 640 1280 20 40 80 160 320 640 1280
a=2,p=09 a=38,p=079

Figure 3. Rejection frequencies for weak-instrument asymptotic tests as a function of n for | — k=7

—-30—



0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

Wald (t) test

LR test
N CLR test

0.00

a  0.00

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05

Wald (t) test

LR test
CLR test

LR test
CLR test

p=0.9

T T T T 11
8§ 16 32 64

Figure 4. Rejection frequencies for asymptotic tests as functions of a, for | —k =7, n = 50

—31-—




0.10

0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01 - 13 e
000771 7T 7T T T T T T T T T 1@ 0-0?|||||||||||||a
1 2 4 8 16 32 64 1 2 4 8 16 32 o4
Wald test, p = 0.1 Wald test, p = 0.9
0.07 -
0.06
0.05
004 ° * = REC 0.044 ° * ° REC
1 ooo RE  ------ UE ] ooo RE  ------ UE
: RI ............. UI : RI ............. UI
03~ 7T T 77T T T7 1T 711 T ¢ 08B~ 71T7T 7171 T rrrrTrTr71714a
1 2 4 8 16 32 64 1 2 4 8 16 32 064
K test, p=10.1 K test, p=0.9
0.15 0.15
— [ ] [ ] [ ] REC —
0.13 o o o RE 0.13 1
_ RI _
014e N UE 0.11-
0.09 DO N e Ul 0.09 5.
0.07 1 0.07
0.05 - oo | (0,05 S
0.03 - 0031 e
0.01 A 0.01
N B B s e s e e s e T T T T T T T T T T T T T &
1 2 4 8 16 32 64 1 2 4 8 16 32 64
LR test, p =0.1 LR test, p =0.9

Figure 5. Rejection frequencies for bootstrap tests as functions of a, for | — k =7, n = 50

—32—



1.0

L] L] L[] REC
094 . o o RE
0.8 RI
0.7 ------ UE
0.6_ .............. UI
0.5 /,/'
0.4 1 i
0.3 //
02 — //,
014 - 0’-;-0-9'9'9'9'9’9'9' 99
00t rrrrrrrrrrrrrorrro1”
00 02 04 06 08 1.0
Wald test, a = 2
0.060
0.055
0.050
0.0455 e« o «REC ------ UE
: O O O RE .............. UI
— RI
(U720 ey e s e e e e e
0.0 0.2 0.4 0.6 0.8 1.0
K test, a =2

0.

I I O I I O
0 02 04 06 038

LR test, a = 2

p
1.0

0.15
—] L] L] L] REC
0.13+4 o o oRE
] RI
0.].1: ______ UE
009_ .............. UI
0.07 - o
0.05 —hsmsmnss o __QT;_G_Q_Q.Q.Q..Q..Q..Q..@.o...
0.03
0.01
I o
0.0 0.2 0.4 0.6 0.8 1.0
Wald test, a = 8
0.045- « o REC ------ UE
: O O O RE .............. UI
— RI
O Ry e o o e o e e e s e s e o 4
0.0 0.2 0.4 0.6 0.8 1.0
K test, a =8
(0201 S o o e e e e e e e e e o 4
0.0 0.2 0.4 0.6 0.8 1.0
LR test, a =8

Figure 6. Rejection frequencies for bootstrap tests as functions of p, for | —k =7, n = 50

—33—



0.08

0.07

0.06

0.05

0.04

0.03

I I O I I O
0 02 04 06 08

CLR test, a =2

e

P
1.0

T T T T 11
16 32 64
CLR test, p=10.1

0.06
0.05
4+ « <REC
] o o oRE --=---- UE
: RI .............. UI
0.04 rrrrrrrrrrrrrrrrrrrT1”
00 02 04 06 08 1.0
CLR test, a =8
0.03 a

T T T T T 1
16 32 64
CLR test, p =0.9

Figure 7. Rejection frequencies for bootstrap CLR tests for | —k =7, n = 50

34—



1.0

0.9 1
0.8 1
0.7 1
0.6 1
0.5
0.4 1
0.3 1
0.2 1
0.1

0.0

-3

I O
-2 -1 0 1 2 3

REC bootstrap, p = 0.1, a = 2

-3

TTT T T T T T T T T T T T T I T T T I TTTT]
-2 -1 0 1 2 3

RE bootstrap, p = 0.1, a = 2

1.0
0.9 1
0.8
0.7 1
0.6 -
0.5
0.4
0.3 1
0.2
0.1

0.0

-3

I I O
-2 -1 0 1 2 3

RI bootstrap, p = 0.1, a = 2

1.0

0.9 1
0.8 1
0.7 1

0.6 27

0.5
0.4
0.3 1
0.2
0.1

8 0.0

g

-3

1.0

I I O O
-2 -1 0 1 2 3

REC bootstrap, p = 0.9, a =2

0.9 1
0.8
0.7 1

0‘6 _'.."_‘...' .

0.5
0.4
0.3
0.2
0.1

0.0

ARW

g

-3

T T T T T T I T T T T T h
-2 -1 0 1 2 3

RE bootstrap, p = 0.9, a = 2

1.0
0.9 1
0.8 1
0.7 1

0.6 4.

0.5
0.4 -
0.3 1
0.2
0.1

0.0

-3

-2
RI bootstrap, p = 0.9, a = 2

-1 0 1 2 3

Figure 8. Power of bootstrap tests when instruments are weak, for [ —k =7, n = 50

—35—



1.0
0.9 1

0.8

0.7 1
0.6 1
0.5
0.4 1
0.3 1
0.2 1
0.1

0.0

-3

I O
-2 -1 0 1 2 3

REC bootstrap, p =0.1,a =8

1.0
0.9 1

08"

0.7 1
0.6
0.5
0.4
0.3 7
0.2 7
0.1

0.0

-3

TTT T T T T T T T T T T T T I T T T I TTTT]
-2 -1 0 1 2 3

RE bootstrap, p =0.1, a =8

1.0
0.9 1

0.8

0.7 1
0.6 -
0.5
0.4
0.3 1
0.2
0.1

0.0

-3

I I O
-2 -1 0 1 2 3

RI bootstrap, p =0.1, a = 8

1.0
0.9 1
0.8 1
0.7 1
0.6 1
0.5
0.4 1
0.3 1
0.2 1
0.1

8 0.0

-3

L e e
-2 -1 0 1 2 3

REC bootstrap, p = 0.9, a =8

1.0
0.9 1
0.8
0.7 1
0.6
0.5
0.4
0.3
0.2
0.1

B 0.0

-3

T T T T T T I T T T T T TTTh
-2 -1 0 1 2 3

RE bootstrap, p = 0.9, a = 8

1.0
0.9 1
0.8 1
0.7 1
0.6
0.5
0.4 -
0.3 1
0.2
0.1

B 0.0

g

-3

I I O
-2 -1 0 1 2 3

RI bootstrap, p = 0.9, a =8

Figure 9. Power of bootstrap tests when instruments are strong, for | —k =7, n = 50

—36—



1 * -
0139 \ 0.06 7
0119 =
i .
0.095 \ k ]
0079 . ™\ 0-05 2
= I N =
0.05 F--ereeeme Fe RE S Iz g e =
0.03 7 -
Jd o 0.04 H
0.01 3 =
T | T T | — n T T T T | — n
20 40 80 160 320 640 20 40 80 160 320 640
a=2,p=0.1 a=38,p=0.1
T 0.055
0.084 % ]
0.07 3 0.053 7
1 4 0.052 1 «
0.065  * 0.051 =
i CRERANY 1 3 Cel N oA
T e 0.050 R A TN R
0.05 Torreemr s pangrovesmmprmafis s e 0.049 3
] T 0.048
0.047 —
0.046
- I | | I — n 0.045 = | | | T — "
20 40 80 160 320 640 20 40 80 160 320 640
a=2,p=09 a=38,p=09
1< 1 (2 F—— LR (P)
o o o o Wald (SP) « « « « LR (SP)
................ K (P) ----------- CLR (P)
« * *« x K (SP) * % * + CLR (SP)

Figure 10. Rejection frequencies for REC bootstrap tests as a function of n for { — k=7

— 37—



* .
o ]
'Y 0.06
S :
o % o o 0.05
el kel ]
e TR e ke . .
W 0.04 7
T | T T | — I -5 T T T | — N
20 40 80 160 320 640 20 40 80 160 320 640
a=2,p=0.1 a=38,p=0.1
0.055 ]
0.054
0.053 7
0.052 4 ..
0.051
0.050
0.049
0.048
0.047
0.046
| | | | I — 1 0.045 —— | I | T — N
20 40 80 160 320 640 20 40 80 160 320 640
a=2,p=09 @a=8p=09
—— Wald (P)  mmem--- LR (P)
o o o o Wald (SP) e« o ¢« o LR (SP)
................ K (P) ----------- CLR (P)
« * *« x K (SP) * % * + CLR (SP)

Figure 11. Rejection frequencies for RE bootstrap tests as a function of n for { — k=7

— 38—



