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ECON 351* -- NOTE 11 
 

The Multiple Classical Linear Regression Model (CLRM): 
Specification and Assumptions  

 
1.  Introduction 

 
CLRM stands for the Classical Linear Regression Model. The CLRM is also 
known as the standard linear regression model.   
 
Three sets of assumptions define the multiple CLRM -- essentially the same 
three sets of assumptions that defined the simple CLRM, with one 
modification to assumption A8.     
 
1. Assumptions respecting the formulation of the population regression 

equation, or PRE. 
 

Assumption A1 
 
2. Assumptions respecting the statistical properties of the random error term 

and the dependent variable.   
 

Assumptions A2-A4 
 

• Assumption A2:  The Assumption of Zero Conditional Mean Error 
• Assumption A3:  The Assumption of Constant Error Variances 
• Assumption A4:  The Assumption of Zero Error Covariances 

 
3. Assumptions respecting the properties of the sample data.   
 

Assumptions A5-A8 
 

• Assumption A5:  The Assumption of Independent Random Sampling 
• Assumption A6:  The Assumption of Sufficient Sample Data (N > k) 
• Assumption A7:  The Assumption of Nonconstant Regressors 
• Assumption A8:  The Assumption of No Perfect Multicollinearity   
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2.  Formulation of the Population Regression Equation (PRE) 
 
Assumption A1:  The population regression equation, or PRE, takes the form 
 

  Y     (A1) i

k

2j
jij1ikiki33i221i uX=uXXX +β+β+β++β+β+β= ∑

=
L

 
As in the simple CLRM, the PRE (A1) incorporates three distinct assumptions.   
 
A1.1:  Assumption of an Additive Random Error Term.    
 
⇒ The random error term ui enters the PRE additively.  

 

   1
u
Y

i

i =
∂
∂   for all i ( ∀ i).     

 
A1.2:  Assumption of Linearity-in-Parameters or Linearity-in-Coefficients.    
 
⇒ The PRE is linear in the population regression coefficients βj (j = 1, ..., k).   

 
Let [ kii3i2i XXX1x L= ] be the (k×1) vector of regressor values for 
observation i.   
 

 )x(fY
ij

j

i =
∂β
∂    where )x( ijf  contains no unknown parameters, j = 1, ..., k. 

  
A1.3:  Assumption of Parameter or Coefficient Constancy.    
 
⇒ The population regression coefficients βj (j = 1, 2, ..., k) are (unknown) 

constants that do not vary across observations.   
 

j  =  a constant ∀ i  (j = 1, 2, ..., k).   ji β=β
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3.  Properties of the Random Error Term 
 
Assumption A2:  The Assumption of Zero Conditional Mean Error 
 

The conditional mean, or conditional expectation, of the random error 
terms ui for any given values Xji of the regressors Xj is equal to zero:   

 
( ) ( ) i      0xuEX,,X,XuE iikii3i2i ∀==K         (A2) 

 
where [ kii3i2i XXX1x L= ] denotes the (k×1) vector of regressor values 
for a particular observation, namely observation i.   

 
Implications of Assumption A2 
 
• Implication 1 of A2.  Assumption A2 implies that the unconditional mean of 

the population values of the random error term u equals zero:     
 

( ) 0xuE ii =  ⇒    ( ) 0uE i =  ∀ i.          (A2-1) 
 
• Implication 2 of A2: the Orthogonality Condition.  Assumption A2 also 

implies that the population values Xji of the regressor Xj and ui of the 
random error term u have zero covariance -- i.e., the population values of 
Xj and u are uncorrelated:   

 
( ) 0xuE ii =   ⇒   ( ) ( ) 0uXEu,X ijiijiCov ==  ∀ i,  j = 1, 2, …, k    (A2-2) 

 
Note that zero covariance between Xji and ui implies zero correlation 
between Xji and ui, since the simple correlation coefficient between Xji 
and ui, denoted as ρ(Xji, ui), is defined as 

 

  ρ( , )
( , )

( ) ( )
( , )

( ) ( )
.X u

Cov X u
Var X Var u

Cov X u
sd X sd uji i

ji i

ji i

ji i

ji i

≡ =    

 
From this definition of ρ(Xji, ui), it is obvious that  

 

( )Cov X uji i, = 0  ⇒  ( )ρ X uji i, = 0.   
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• Implication 3 of A2.  Assumption A2 implies that the conditional mean of the 

population Yi values corresponding to given values Xji of the regressors Xj (j = 
2, …, k) equals the population regression function (PRF):     
 

( ) 0xuE ii =   ⇒  ( ) kiki33i221iii XXX)x(fxYE β++β+β+β== L   

  ∀ i.       (A2-3) ∑
=
β+β=

k

2j
jij1 X

 
• Meaning of the Zero Conditional Mean Error Assumption A2:   
 

Each set of regressor values [ ]kii3i2i XXX1x L=  identifies a segment or 
subset of the relevant population, specifically the segment that has those 
particular values of the regressors. For each of these population segments or 
subsets, assumption A2 says that the mean of the random error u is zero.  
 
Assumption A2 rules out both linear dependence and nonlinear dependence 
between each Xj and u; that is, it requires that Xj and u be statistically 
independent for all j = 2, …, k.   
 

• Violations of the Zero Conditional Mean Error Assumption A2   
 
• Remember that the random error term u represents all the unobservable, 

unmeasured and unknown variables other than the regressors Xj, j = 2, …, 
k that determine the population values of the dependent variable Y.   
 

• Anything that causes the random error u to be correlated with one or more 
of the regressors Xj (j = 2, …, k) will violate assumption A2:   

 
( ) 0u,XCov j ≠   or  ( ) 0u,X j ≠ρ    ⇒ ( ) 0xuE ≠ .  

 
If Xj and u are correlated, then ( )xuE  must depend on Xj and so cannot be 
zero.  
 
Note that the converse is not true:  

 
( ) 0u,XCov j =   or  ( ) 0u,X j =ρ   for all j does not imply that  ( ) 0xuE = .   
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• Common causes of correlation or dependence between the Xj and u -- i.e., 

common causes of violations of assumption A2.   
 

1. Incorrect specification of the functional form of the relationship 
between Y and the Xj, j = 2, …, k.     
Examples: Using Y as the dependent variable when the true model has ln(Y) 
as the dependent variable. Or using Xj as the independent variable when the 
true model has ln(Xj) as the independent variable.  
 

2. Omission of relevant variables that are correlated with one or more of 
the included regressors Xj, j = 2, …, k.    

 
3. Measurement errors in the regressors Xj, j = 2, …, k.   

 
4. Joint determination of one or more Xj and Y.   
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Assumption A3: The Assumption of Constant Error Variances 
      The Assumption of Homoskedastic Errors 
      The Assumption of Homoskedasticity  
 

The conditional variances of the random error terms ui are identical for all 
observations -- i.e., for all sets of regressor values [ ]kii3i2i XXX1x L=   
-- and equal the same finite positive constant σ2 for all i: 

 
( ) ( ) i0xuExuVar 2

i
2
iii ∀>σ==           (A3) 

                        
where σ2 is a finite positive (unknown) constant and [ ]kii3i2i XXX1x L=  
is the (k×1) vector of regressor values for observation i.   
 

• Implication 1 of A3:  Assumption A3 implies that the unconditional variance 
of the random error u is also equal to 2σ :   

 
( ) ( )[ ] ( ) 22

i
2

iii uE)u(EuEuVar σ==−=  ∀ i.    
 

where ( ) ( )2
ii uEuVar =  because 0)u(E i =  by A2-1. 

 
• Implication 2 of A3:  Assumption A3 implies that the conditional variance of 

the regressand Y  corresponding to given set of regressor values i

[ kii3i2i XXX1x L= ] equals the conditional error variance σ2:     
 

( ) 0xuVar 2 >σ=  ⇒  ( ) .0xYVar 2 >σ=          (A3-2) 

or 

( ) i0xuVar 2
ii ∀>σ=  ⇒  ( ) .i0xYVar 2

ii ∀>σ=      (A3-2) 
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• Meaning of the Homoskedasticity Assumption A3   
 
• For each set of regressor values, there is a conditional distribution of 

random errors, and a corresponding conditional distribution of population Y 
values.  

 
• Assumption A3 says that the variance of the random errors for any 

particular set of regressor values [ ]kii3i2i XXX1x L=  is the same as the 
variance of the random errors for any other set of regressor values 

[ kss3s2s XXX1x L= ] (for all is xx ≠ ).   
 

In other words, the variances of the conditional random error distributions 
corresponding to each set of regressor values in the relevant population are all 
equal to the same finite positive constant 2σ .  

 
( ) ( ) 0xuVarxuVar 2

ssii >σ==   for all  is xx ≠ .   
 
• Implication A3-2 says that the variance of the population Y values for 

[ kii3i2i XXX1xx L== ] is the same as the variance of the population Y 
values for any other set of regressor values [ ]kss3s2s XXX1xx L==  (for 
all is xx ≠ ).  The conditional distributions of the population Y values around 
the PRF have the same constant variance 2σ  for all sets of regressor values.   

 
( ) ( ) 0xYVarxYVar 2

ssii >σ==   for all  is xx ≠ . 
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Assumption A4: The Assumption of Zero Error Covariances 
      The Assumption of Nonautoregressive Errors 
      The Assumption of Nonautocorrelated Errors  
 

Consider any pair of distinct random error terms ui and us (i ≠ s) 
corresponding to two different sets (or vectors) of values of the regressors  
xi  ≠  xs.  This assumption states that ui and us have zero covariance:   

 
  ( ) ( ) .si0x,xuuEx,xu,u sisisisiCov ≠∀==        (A4) 

 
 

• Implication of A4:  Assumption A4 implies that the conditional covariance of 
any two distinct values of the regressand, say Yi and Ys where i ≠ s, is equal to 
zero:     

 
( )Cov u u x x i si s i s, , = ∀ ≠0  ⇒    ( )Y Y x x i si s i s, , = ∀ ≠0Cov   .

 
• Meaning of A4:  Assumption A4 means that there is no systematic linear 

association between ui and us, or between Yi and Ys, where i and s 
correspond to different observations (or different sets of regressor values 

si xx ≠ ).     
 

1. Each random error term ui has zero covariance with, or is uncorrelated 
with, each and every other random error term us (s ≠ i).   

 
2. Equivalently, each regressand value Yi has zero covariance with, or is 

uncorrelated with, each and every other regressand value Ys (s ≠ i). 
 

♦ The assumption of zero covariance, or zero correlation, between each pair 
of distinct observations is weaker than the assumption of independent 
random sampling A5 from an underlying population.   

 
♦ The assumption of independent random sampling implies that the sample 

observations are statistically independent.  The assumption of statistically 
independent observations is sufficient for the assumption of zero 
covariance between observations, but is stronger than necessary.   
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4.  Properties of the Sample Data 
 
Assumption A5: Random Sampling or Independent Random Sampling 
 
The sample data consist of N randomly selected observations on the regressand Y 
and the regressors Xj (j = 1, ..., k), the observable variables in the PRE described 
by A1.  These N randomly selected observations can be written as N row vectors:    
 

   
[ ]
( )

.N,,1i)x,Y(
N,,1iX,,X,X,1,Y

)x,Y(,),x,Y(),x,Y(dataSample

ii

kii3i2i

NN2211

K

KK

K

=≡
=≡

≡
 

 
• Implications of the Random Sampling Assumption A5      
 

The assumption of random sampling implies that the sample observations 
are statistically independent.   
 
1. It thus means that the error terms ui and us are statistically independent, 

and hence have zero covariance, for any two observations i and s.  
 

Random sampling ⇒ ( )sisi x,xu,uCov  = ( )si u,uCov  = 0  ∀  i ≠ s. 
 

2. It also means that the dependent variable values Yi and Ys are statistically 
independent, and hence have zero covariance, for any two observations i 
and s. 

 
  Random sampling ⇒ ( )sisi x,xY,YCov  = ( )si Y,YCov  = 0  ∀  i ≠ s. 
 

The assumption of random sampling is therefore sufficient for assumption A4 
of zero covariance between observations, but is stronger than necessary.  
 

• When is the Random Sampling Assumption A5 Appropriate?    
 
The random sampling assumption is often appropriate for cross-sectional 
regression models, but is hardly ever appropriate for time-series regression 
models.  
 

 
ECON 351* -- Note 11 ovrnot11.doc: Multiple Regression Models … Page 9 of 19 pages 



ECONOMICS 351* -- NOTE 11 (Summary)  M.G. Abbo
 
 
Assumption A6: The number of sample observations N is greater than the 
number of unknown parameters k:   
 
  number of sample observations  >  number of unknown parameters 
 
               N  >  k.          (A6) 
 
• Meaning of A6:  Unless this assumption is satisfied, it is not possible to 

compute from a given sample of N observations estimates of all the unknown 
parameters in the model.    

 
 
Assumption A7:   Nonconstant Regressors  
 
The sample values Xji of each regressor Xj (j = 2, …, k) in a given sample (and 
hence in the population) are not all equal to a constant:   
 
  Xji   ≠  cj   ∀  i = 1, ..., N   where the cj are constants (j = 2, ..., k) .   (A7) 
 
 
• Technical Form of A7:  Assumption A7 requires that the sample variances of 

all k−1 non-constant regressors Xj (j = 2, ..., k) must be finite positive 
numbers for any sample size N; i.e.,   

  sample variance of Xji  ≡ Var(Xji)  =  
∑ −

−
i ji jX X

N
( )2

1
 =  sX

2
j
 > 0,   

where  are finite positive numbers for all j = 2, ..., k.    sX j

2 0>

 
• Meaning of A7:  Assumption A7 requires that each nonconstant regressor Xj 

(j = 2, …, k) takes at least two different values in any given sample.     
 

Unless this assumption is satisfied, it is not possible to compute from the 
sample data an estimate of the effect on the regressand Y of changes in the 
value of the regressor Xj.  In other words, to calculate the effect of changes in 
Xj on Y, the sample values Xji of the regressor Xj must vary across observations 
in any given sample.   
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Assumption A8:  No Perfect Multicollinearity  
 
The sample values of the regressors Xj (j = 2, ..., k) in a multiple regression 
model do not exhibit perfect or exact multicollinearity.   
 

This assumption is relevant only in multiple regression models that contain 
two or more non-constant regressors.   
 
This assumption is the only new assumption required for the multiple linear 
regression model.     

 
• Statement of Assumption A8:  The absence of perfect multicollinearity 

means that there exists no exact linear relationship among the sample values 
of the non-constant regressors Xj (j = 2, ..., k).   

 
♦ An exact linear relationship exists among the sample values of the non-

constant regressors if the sample values of the regressors Xj (j = 2, ..., k) 
satisfy a linear relationship of the form    

 
   λ λ λ λ1 2 2 3 3 0+ + + + =X X Xi i k kiL   ∀ =i 1 2, , , .K N

k)

     (1) 
 

where the λ  are fixed constants, not all of which equal 
zero.     

j j( , , ,= 1 2 K

 
♦ Assumption A8 -- the absence of perfect multicollinearity -- means that 

there exists no relationship of the form (1) among the sample values Xji of 
the regressors Xj (j = 2, ..., k).   

 
• Meaning of Assumption A8:   
 

♦ Each non-constant regressor Xj (j = 2, ..., k) must exhibit some independent 
linear variation in the sample data.   

 
♦ Otherwise, it is not possible to estimate the separate linear effect of each 

and every non-constant regressor on the regressand Y.   
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• Example of Perfect Multicollinearity    
 

Consider the following multiple linear regression model:   
 

 Y X X ui i i i= + + +β β β1 2 2 3 3                                 (i =  1,...,N).     (2) 
 

Suppose that the sample values of the regressors X2i and X3i satisfy the 
following linear equality for all sample observations:    

 
    or  X i2 3= X i3 X Xi i2 33 0− =  ∀ i = 1,...,N .       (3) 
 

The exact linear relationship (3) can be written in the general form (1).   
 

1. For the linear regression model given by PRE (2), equation (1) takes the 
form  

 
    λ λ λ1 2 2 3 3 0+ +X Xi i = ∀ =i N1 2, , , .K  
 
2. Set , λ , and λ1 0= 2 1= λ 3 3= −  in the above equation:   
 
   X Xi i2 33 0− = ∀ =i 1 2, , , .K N    (identical to equation (3) above.) 
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• Consequences of Perfect Multicollinearity   
 

1. Substitute for X2i in PRE (2) the equivalent expression :  i3i2 X3X =
  

  
( )

( )
(4a)                 .3     where                    uX

uX3
uXX3

uXX3
uXXY

323ii331

ii3321

ii33i321

ii33i321

ii33i221i

β+β=α+α+β=
+β+β+β=
+β+β+β=
+β+β+β=

+β+β+β=

  

 
◊ It is possible to estimate from the sample data the regression coefficients β1 

and α3.   
 
◊ But from the estimate of α3 it is not possible to compute estimates of the 

coefficients β2 and β3.  Reason:  The equation  
 
   323 3 β+β=α
 

is one equation containing two unknowns, namely β2 and β3.    
 

Result:  It is not possible to compute from the sample data estimates of both 
β2 and β3, the separate linear effects of X2i and X3i on the regressand Yi.   
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2.  Alternatively, substitute for X3i in PRE (2) the equivalent expression 

X
X

i
i

3
2

3
= :    

 
Y X X u

X
X

u

X X u

X u

X u

i i i i

i
i

i

i i i

i i

i i

= + + +

= + + 




+

= + + +

= + +





+

= + + = +

β β β

β β β

β β
β

β β
β

β α α β
β

1 2 2 3 3

1 2 2 3
2

1 2 2
3

2

1 2
3

2

1 2 2 2 2
3

3

3

3

3
                       where                      (4b).

  
 
◊ It is possible to estimate from the sample data the regression coefficients β1 

and α2.   
 
◊ But from the estimate of α2 it is not possible to compute estimates of the 

coefficients β2 and β3.  Reason:  The equation  
 

  
3

3
22

β
+β=α  

 
is one equation containing two unknowns, namely β2 and β3.    

 
Result:  Again, it is not possible to compute from the sample data estimates 
of both β2 and β3, the separate linear effects of X2i and X3i on the regressand 
Yi.   
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5. Interpreting Slope Coefficients in Multiple Linear  
Regression Models 

 
• Consider the multiple linear regression model given by the following 

population regression equation (PRE): 
 

ii44i33i221i uXXXY +β+β+β+β=            (5) 
 

X2, X3 and X4 are three distinct independent or explanatory variables that 
determine the population values of Y.    

 
Because regression equation (5) contains more than one regressor, it is called a 
multiple linear regression model.  

 
• The population regression function (PRF) corresponding to PRE (5) is:   

 
( ) ( ) i44i33i221i4i3i2iii XXXX,X,XYExYE β+β+β+β==    (6) 

 
where ix  is the 1×4 row vector of regressors:  )XXX1(x i4i3i2i = .   
 

Interpreting the Slope Coefficients in Multiple Regression Model (5) 
 

• Each slope coefficient βj is the marginal effect of the corresponding 
explanatory variable Xj on the conditional mean of Y.  Formally, the slope 
coefficients {βj : j = 2, 3, 4} are the partial derivatives of the population 
regression function (PRF) with respect to the explanatory variables {Xj : j 
= 2, 3, 4}:  

 
( ) ( )

j
ji

kii3i2i

ji

ii

X
X,,X,XYE

X
xYE

β=
∂

∂
=

∂
∂ K

  j = 2, 3, 4    (7) 
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For example, for j = 2 in multiple regression model (5):   
 

( )
2

i2

i44i33i221

i2

i4i3i2i

X
)XXX(

X
X,X,XYE

β=
∂

β+β+β+β∂
=

∂
∂

    (8) 

 
• Interpretation:  A partial derivative isolates the marginal effect on the 

conditional mean of Y of small variations in one of the explanatory variables, 
while holding constant the values of the other explanatory variables in the 
PRF.    
 
Example:  In multiple regression model (5)   
 

ii44i33i221i uXXXY +β+β+β+β=            (5) 
 
with population regression function 
 

( ) i44i33i221i4i3i2i XXXX,X,XYE β+β+β+β=        (6) 
 
the slope coefficients β2, β3 and β4 are interpreted as follows:  
 

β2  = the partial marginal effect of X2 on the conditional mean of Y 
holding constant the values of the other regressors X3 and X4.   

 
β3  = the partial marginal effect of X3 on the conditional mean of Y 

holding constant the values of the other regressors X2 and X4.   
 

β4  = the partial marginal effect of X4 on the conditional mean of Y 
holding constant the values of the other regressors X2 and X3.   

 
• Including X3 and X4 in the regression function allows us to estimate the partial 

marginal effect of X2 on ( )432 X,X,XYE  while  
 

• holding constant the values of X3 and X4    
• controlling for the effects on Y of X3 and X4   
• conditioning on X3 and X4.   
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Interpreting the Slope Coefficient β2 in Multiple Regression Model (5) 

 
ii44i33i221i uXXXY +β+β+β+β=             (5) 

  
( ) i44i33i221i4i3i2i XXXX,X,XYE β+β+β+β=         (6) 

 
• Denote the initial values of the explanatory variables X2, X3 and X4 as X20, 

X30 and X40. 
 
The initial value of the population regression function for Y for the initial 
values of X2, X3 and X4 is:  
 

( ) 4043032021403020 XXXX,X,XYE β+β+β+β=        (9) 
 

• Now change the value of the explanatory variable X2 by 2X∆ , while holding 
constant the values of the other two explanatory variables X3 and X4 at their 
initial values X30 and X40.  
 
The new value of X2 is therefore 
 

22021 XXX ∆+=  
 

The change in the value of X2 is thus 
 

20212 XXX −=∆  
 
The new value of the population regression function for Y at the new value 
of the explanatory variable X2 is:   
 

( )403021 X,X,XYE   = 4043032121 XXX β+β+β+β   

    = 40430322021 XX)XX( β+β+∆+β+β   

    = 404303222021 XXXX β+β+∆β+β+β    (10) 
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• The change in the conditional mean value of Y associated with the change 

 in the value of X2X∆ 2 is obtained by subtracting the initial value of the 
population regression function given by (9) from the new value of the 
population regression function given by (10):    
 

( )432 X,X,XYE∆   =  ( )403021 X,X,XYE   − ( )403020 X,X,XYE   

         =  404303222021 XXXX β+β+∆β+β+β   
         − ( 4043032021 XXX β+β+β+β )  

         =  404303222021 XXXX β+β+∆β+β+β   
         4043032021 XXX β−β−β−β−   

         =  22 X∆β              (11) 
 

• Solve for β2 in (11):   
  

0X,0X2

432
2

43
X

)X,X,XY(E

=∆=∆








∆

∆
=β   =  

( )
2

432

X
X,X,XYE

∂
∂

  

 
β2  = the partial marginal effect of X2 on the conditional mean of Y 

holding constant the values of the other regressors X3 and X4.   
 

Comparing Slope Coefficients in Simple and Multiple Regression Models 
 

• Compare the multiple linear regression model  
 

ii44i33i221i uXXXY +β+β+β+β=               (5) 
 

with the simple linear regression model 
 

ii221i uXY +β+β=                  (12) 
 
• Question: What is the difference between the slope coefficient β2 in these two 

regression models?   
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• Answer: Compare the population regression functions for these two models.  
 
For the multiple regression model (5), the population regression function is 
 

( )i4i3i2 X,X,XYE   = i44i33i221 XXX β+β+β+β   
 
As we have seen, the slope coefficient β2 in multiple regression model (5) is  
 

β2 in model (5)  =  
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For the simple regression model (12), the population regression function is 
 

( )i2XYE   = β   i221 Xβ+
 

The slope coefficient β2 in simple regression model (12) is  
 

β2 in model (12)  =  
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• Compare β2 in model (5) with β2 in model (12)   

 
β2 in multiple regression model (5) controls for -- or accounts for -- the effects 
of X3 and X4 on the conditional mean value of the dependent variable Y.  

 

β2 in multiple regression model (5) is therefore referred to as the adjusted 
marginal effect of X2 on Y.  

 
β2 in simple regression model (12) does not control for  -- or account for -- the 
effects of X3 and X4 on the conditional mean value of the dependent variable Y.  

 

β2 in simple regression model (12) is therefore referred to as the 
unadjusted marginal effect of X2 on Y.  

 
 


