ECON 351* -- Introduction to NOTE 21

Introduction to Dummy Variable Regressors

1. An Example of Dummy Variable Regressors

• A model of North American car prices given by the PRE

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}frn_{i} + \beta_{6}frn_{i}wgt_{i} + \beta_{7}frn_{i}wgt_{i}^{2} + u_{i}$$
 (3) where

price_i = the price of the i-th car (in US dollars); wgt_i = the weight of the i-th car (in pounds); mpg_i = the fuel efficiency of the i-th car (in miles per gallon); frn_i = 1 if the i-th car is foreign, = 0 if the i-th car is domestic; N = 74 = the number of observations in the estimation sample.

• The regressor frn_i is a binary variable called an indicator or dummy variable.

By definition, the binary variable frn; takes only two values:

 $frn_i = 0$ if the i-th car is a *domestic* car, meaning it is manufactured *inside* North America.

Because by definition $\mathbf{frn_i} = \mathbf{1}$ for foreign cars, it is called a foreign-car indicator or dummy variable.

• The key to *interpreting* regression equation (3) is to recognize that it in fact includes *two* distinct regression models for car prices -- one for domestic cars, the other for foreign cars.

File: intronote21.doc ... Page 1 of 18 pages

• The regression equation for domestic cars

Set dummy variable $frn_i = 0$ in equation (3):

price_i =
$$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + \beta_5 frn_i + \beta_6 frn_i wgt_i + \beta_7 frn_i wgt_i^2 + u_i$$
 (3

price_i = $\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + \beta_5 frn_i + \beta_6 frn_i wgt_i + \beta_7 frn_i wgt_i^2 + u_i$

= $\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + \beta_5 0 + \beta_6 (0) wgt_i + \beta_7 (0) wgt_i^2 + u_i$

= $\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + u_i$ (3d)

• The regression equation for foreign cars

Set dummy variable $frn_i = 1$ in equation (3):

price_i =
$$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + \beta_5 frn_i + \beta_6 frn_i wgt_i + \beta_7 frn_i wgt_i^2 + u_i$$
 (3)
price_i = $\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + \beta_5 frn_i + \beta_6 frn_i wgt_i + \beta_7 frn_i wgt_i^2 + u_i$
= $\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + \beta_5 1 + \beta_6 (1) wgt_i + \beta_7 (1) wgt_i^2 + u_i$
= $\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + \beta_5 + \beta_6 wgt_i + \beta_7 wgt_i^2 + u_i$
= $(\beta_1 + \beta_5) + (\beta_2 + \beta_6) wgt_i + (\beta_3 + \beta_7) wgt_i^2 + \beta_4 mpg_i + u_i$ (3f)

Note that in the foreign-car price equation (3f),

- foreign-car intercept coefficient = $\beta_1 + \beta_5$
- foreign-car *slope* coefficient on $wgt_i = \beta_2 + \beta_6$
- foreign-car *slope* coefficient on wgt_i -squared = $\beta_3 + \beta_7$

• Compare foreign-car equation (3f) with domestic-car equation (3d):

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + u_{i}$$
(3d)

$$price_{i} = (\beta_{1} + \beta_{5}) + (\beta_{2} + \beta_{6})wgt_{i} + (\beta_{3} + \beta_{7})wgt_{i}^{2} + \beta_{4}mpg_{i} + u_{i}$$
(3f)

Question: How are the regression coefficients β_5 , β_6 and β_7 in regression (3) interpreted?

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}frn_{i} + \beta_{6}frn_{i}wgt_{i} + \beta_{7}frn_{i}wgt_{i}^{2} + u_{i}$$
 (3)

Answer: By inspection and comparison of the domestic-car equation (3d) and the foreign-car equation (3f), we see that

 β_5 = foreign intercept ($\beta_1 + \beta_5$) – domestic intercept (β_1)

 β_6 = foreign coefficient of wgt_i ($\beta_2 + \beta_6$) – domestic coefficient of wgt_i (β_2)

 β_7 = foreign coefficient of wgt_i^2 ($\beta_3 + \beta_7$) – domestic coefficient of wgt_i^2 (β_3)

2. How Dummy Variable Regressors Enter Regression Models

- *Indicator* (*dummy*) variables enter as regressors in linear regression models in one of two basic ways.
 - 1. As Additive Regressors: Differences in Intercepts

When indicator (dummy) variables are introduced additively as additional regressors in linear regression models, they allow for **different** *intercept* **coefficients** across identifiable subsets of observations in the population.

2. As Multiplicative Regressors: Dummy Variable Interaction Terms

When indicator (dummy) variables are introduced multiplicatively as additional regressors in linear regression models, they enter as **dummy variable interaction terms** -- that is, as the product of a dummy variable with some other regressor (either a continuous variable or another dummy variable). They allow for **different** *slope* **coefficients** across identifiable subsets of observations in the population.

3. Four Different Models of North American Car Prices

• To illustrate the use of indicator (dummy) variables as regressors in linear regression models, consider the following four linear regression models for North American car prices.

<u>Model 1:</u> Contains no dummy variable regressors. Allows for **no coefficient** differences between *foreign* and *domestic* cars.

$$price_i = \beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + u_i$$
(1)

<u>Model 2</u>: Allows for different foreign-car and domestic-car intercepts by introducing the foreign-car indicator variable frn_i as an additional *additive* regressor in Model 1.

$$price_i = \beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + \delta_1 frn_i + u_i$$
(2)

<u>Model 3</u>: Allows for (1) different foreign-car and domestic-car intercepts and (2) different foreign-car and domestic-car slope coefficients on the regressors wgt_i and wgt_i^2 . Introduces the foreign-car interaction terms $frn_i wgt_i$ and $frn_i wgt_i^2$ as additional multiplicative regressors in Model 2.

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \delta_{1}frn_{i} + \delta_{2}frn_{i}wgt_{i} + \delta_{3}frn_{i}wgt_{i}^{2} + u_{i}$$
 (3)

<u>Model 4</u>: Allows *all* regression coefficients -- both *intercept* and *slope* coefficients -- to differ between foreign and domestic cars. It allows for (1) different foreign-car and domestic-car *intercepts* and (2) different foreign-car and domestic-car *slope coefficients* on *all three* regressors in Model 1, namely wgt_i, wgt_i², and mpg_i. Introduces the foreign-car interaction term frn_impg_i as an additional *multiplicative* regressor in Model 3.

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i}$$

$$+ \delta_{1}frn_{i} + \delta_{2}frn_{i}wgt_{i} + \delta_{3}frn_{i}wgt_{i}^{2} + \delta_{4}frn_{i}mpg_{i} + u_{i}$$
(4)

File: intronote21.doc ... Page 4 of 18 pages

4. Interpreting Model 4: A Full-Interaction Regression Model

<u>Model 4</u>

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i}$$

$$+ \delta_{1}frn_{i} + \delta_{2}frn_{i}wgt_{i} + \delta_{3}frn_{i}wgt_{i}^{2} + \delta_{4}frn_{i}mpg_{i} + u_{i}$$
(4)

• The *population regression function* for Model 4 is obtained by taking the conditional expectation of regression equation (4) for any given values of the three explanatory variables wgt_i, mpg_i and frn_i:

$$E(\operatorname{price}_{i} | \operatorname{wgt}_{i}, \operatorname{mpg}_{i}, \operatorname{frn}_{i}) = \beta_{1} + \beta_{2} \operatorname{wgt}_{i} + \beta_{3} \operatorname{wgt}_{i}^{2} + \beta_{4} \operatorname{mpg}_{i} + \delta_{1} \operatorname{frn}_{i} + \delta_{2} \operatorname{frn}_{i} \operatorname{wgt}_{i} + \delta_{3} \operatorname{frn}_{i} \operatorname{wgt}_{i}^{2} + \delta_{4} \operatorname{frn}_{i} \operatorname{mpg}_{i}$$

$$(4.1)$$

• The *domestic-car* regression equation and *domestic-car* regression function are obtained by setting the foreign-car indicator variable $frn_i = 0$ in (4) and (4.1):

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + u_{i}$$
(4d)

$$E(\text{price}_{i}|\text{wgt}_{i}, \text{mpg}_{i}, \text{frn}_{i} = 0) = \beta_{1} + \beta_{2}\text{wgt}_{i} + \beta_{3}\text{wgt}_{i}^{2} + \beta_{4}\text{mpg}_{i}$$
 (4.2)

• The *domestic-car* regression coefficients are β_j for all j = 1, ..., 4:

domestic-car intercept coefficient $= \beta_1$ domestic-car slope coefficient of $wgt_i = \beta_2$ domestic-car slope coefficient of $wgt_i^2 = \beta_3$ domestic-car slope coefficient of $mpg_i = \beta_4$

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i}$$

$$+ \delta_{1}frn_{i} + \delta_{2}frn_{i}wgt_{i} + \delta_{3}frn_{i}wgt_{i}^{2} + \delta_{4}frn_{i}mpg_{i} + u_{i}$$
(4)

$$E(\operatorname{price}_{i} | \operatorname{wgt}_{i}, \operatorname{mpg}_{i}, \operatorname{frn}_{i}) = \beta_{1} + \beta_{2} \operatorname{wgt}_{i} + \beta_{3} \operatorname{wgt}_{i}^{2} + \beta_{4} \operatorname{mpg}_{i} + \delta_{1} \operatorname{frn}_{i} + \delta_{2} \operatorname{frn}_{i} \operatorname{wgt}_{i} + \delta_{3} \operatorname{frn}_{i} \operatorname{wgt}_{i}^{2} + \delta_{4} \operatorname{frn}_{i} \operatorname{mpg}_{i}$$

$$(4.1)$$

• The *foreign-car* regression equation and *foreign-car* regression function are obtained by setting the foreign-car indicator variable $frn_i = 1$ in (4) and (4.1):

$$\begin{aligned} \text{price}_{i} &= \beta_{1} + \beta_{2} \text{wgt}_{i} + \beta_{3} \text{wgt}_{i}^{2} + \beta_{4} \text{mpg}_{i} + \delta_{1} + \delta_{2} \text{wgt}_{i} + \delta_{3} \text{wgt}_{i}^{2} + \delta_{4} \text{mpg}_{i} + u_{i} \\ &= (\beta_{1} + \delta_{1}) + (\beta_{2} + \delta_{2}) \text{wgt}_{i} + (\beta_{3} + \delta_{3}) \text{wgt}_{i}^{2} + (\beta_{4} + \delta_{4}) \text{mpg}_{i} + u_{i} \\ &= \alpha_{1} + \alpha_{2} \text{wgt}_{i} + \alpha_{3} \text{wgt}_{i}^{2} + \alpha_{4} \text{mpg}_{i} + u_{i} \end{aligned} \tag{4f}$$

$$E(\operatorname{price}_{i} | \operatorname{wgt}_{i}, \operatorname{mpg}_{i}, \operatorname{frn}_{i} = 1)$$

$$= \beta_{1} + \beta_{2} \operatorname{wgt}_{i} + \beta_{3} \operatorname{wgt}_{i}^{2} + \beta_{4} \operatorname{mpg}_{i} + \delta_{1} + \delta_{2} \operatorname{wgt}_{i} + \delta_{3} \operatorname{wgt}_{i}^{2} + \delta_{4} \operatorname{mpg}_{i}$$

$$= (\beta_{1} + \delta_{1}) + (\beta_{2} + \delta_{2}) \operatorname{wgt}_{i} + (\beta_{3} + \delta_{3}) \operatorname{wgt}_{i}^{2} + (\beta_{4} + \delta_{4}) \operatorname{mpg}_{i}$$

$$= \alpha_{1} + \alpha_{2} \operatorname{wgt}_{i} + \alpha_{3} \operatorname{wgt}_{i}^{2} + \alpha_{4} \operatorname{mpg}_{i}$$

$$(4.3)$$

• The *foreign-car* regression coefficients are $\alpha_j = \beta_j + \delta_j$ for all j = 1, ..., 4:

foreign-car intercept coefficient
$$= \alpha_1 = \beta_1 + \delta_1$$

foreign-car slope coefficient of $wgt_i = \alpha_2 = \beta_2 + \delta_2$
foreign-car slope coefficient of $wgt_i^2 = \alpha_3 = \beta_3 + \delta_3$
foreign-car slope coefficient of $mpg_i = \alpha_4 = \beta_4 + \delta_4$

• Solving the equations $\alpha_j = \beta_j + \delta_j$ for δ_j yields the result $\delta_j = \alpha_j - \beta_j$ for j = 1, ..., 4. This gives us the interpretation of the δ_j coefficients in Model 4.

• Interpretation of the regression coefficients δ_j (j = 1, ..., 4) in Model 4

$$\begin{aligned} \text{price}_{i} &= \beta_{1} + \beta_{2} \text{wgt}_{i} + \beta_{3} \text{wgt}_{i}^{2} + \beta_{4} \text{mpg}_{i} \\ &+ \delta_{1} \text{frn}_{i} + \delta_{2} \text{frn}_{i} \text{wgt}_{i} + \delta_{3} \text{frn}_{i} \text{wgt}_{i}^{2} + \delta_{4} \text{frn}_{i} \text{mpg}_{i} + u_{i} \end{aligned} \tag{4}$$

$$E(\operatorname{price}_{i} | \operatorname{wgt}_{i}, \operatorname{mpg}_{i}, \operatorname{frn}_{i}) = \beta_{1} + \beta_{2} \operatorname{wgt}_{i} + \beta_{3} \operatorname{wgt}_{i}^{2} + \beta_{4} \operatorname{mpg}_{i} + \delta_{1} \operatorname{frn}_{i} + \delta_{2} \operatorname{frn}_{i} \operatorname{wgt}_{i} + \delta_{3} \operatorname{frn}_{i} \operatorname{wgt}_{i}^{2} + \delta_{4} \operatorname{frn}_{i} \operatorname{mpg}_{i}$$

$$(4.1)$$

Each of the δ_j coefficients in Model 4 equals a *foreign-car* regression coefficient *minus* the corresponding *domestic-car* regression coefficient: $\delta_j = \alpha_j - \beta_j$ for all j.

- $\delta_1 = \alpha_1 \beta_1$ = foreign intercept coefficient – domestic intercept coefficient
- $\delta_2 = \alpha_2 \beta_2$ = foreign slope coefficient of wgt_i domestic slope coefficient of wgt_i
- $\delta_3 = \alpha_3 \beta_3$ = foreign slope coefficient of $wgt_i^2 domestic$ slope coefficient of wgt_i^2
- $\delta_4 = \alpha_4 \beta_4$ = foreign slope coefficient of mpg_i – domestic slope coefficient of mpg_i

• The difference between the foreign-car regression function and the domestic-car regression function is the foreign-domestic car difference in mean car prices for given equal values of the explanatory variables wgt_i and mpg_i.

$$\begin{split} E(\text{price}_i | \text{wgt}_i, \text{mpg}_i, \text{frn}_i = 1) \\ = \beta_1 + \beta_2 \text{wgt}_i + \beta_3 \text{wgt}_i^2 + \beta_4 \text{mpg}_i + \delta_1 + \delta_2 \text{wgt}_i + \delta_3 \text{wgt}_i^2 + \delta_4 \text{mpg}_i \quad (4.3) \end{split}$$

$$E(\operatorname{price}_{i} | \operatorname{wgt}_{i}, \operatorname{mpg}_{i}, \operatorname{frn}_{i} = 0) = \beta_{1} + \beta_{2} \operatorname{wgt}_{i} + \beta_{3} \operatorname{wgt}_{i}^{2} + \beta_{4} \operatorname{mpg}_{i}$$

$$(4.2)$$

Subtract equation (4.2) for domestic cars from equation (4.3) for foreign cars:

$$\begin{split} E(\text{price}_i \mid wgt_i, \, mpg_i, \, frn_i = 1) &- E(\text{price}_i \mid wgt_i, \, mpg_i, \, frn_i = 0) \\ &= \beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + \delta_1 + \delta_2 wgt_i + \delta_3 wgt_i^2 + \delta_4 mpg_i \\ &- \beta_1 - \beta_2 wgt_i - \beta_3 wgt_i^2 - \beta_4 mpg_i \\ &= \delta_1 + \delta_2 wgt_i + \delta_3 wgt_i^2 + \delta_4 mpg_i \end{split}$$

Result:

$$E(\text{price}_i | \text{wgt}_i, \text{mpg}_i, \text{frn}_i = 1) - E(\text{price}_i | \text{wgt}_i, \text{mpg}_i, \text{frn}_i = 0)$$
$$= \delta_1 + \delta_2 \text{wgt}_i + \delta_3 \text{wgt}_i^2 + \delta_4 \text{mpg}_i$$

Interpretation:

- The foreign-domestic difference in the conditional mean value of car price for given values wgt_i and mpg_i of the explanatory variables wgt and mpg is a *function* of wgt_i and mpg_i. It is *not* a *constant*, but instead depends on the values of the explanatory variables wgt and mpg.
- The conditional foreign-domestic mean car price difference addresses the following question: What is the *foreign-domestic* difference in mean car price for *identical* (equal) values of the explanatory variables wgt and mpg? What is the mean price difference between foreign and domestic cars of the same size (wgt) and fuel efficiency (mpg)?

5. An Alternative Estimating Equation for Model 4

The regression equation for Model 4 can be written in an alternative but equivalent way.

• Define a Domestic Car Indicator Variable

Define an **indicator or dummy variable** for *domestic cars* named *dom*_i:

dom_i = 1 if the i-th car is a *domestic* car, meaning it is manufactured *inside* North America:

 $dom_i = 0$ if the i-th car is a *foreign* car, meaning it is manufactured *outside* North America.

By definition, the domestic car indicator variable dom_i is related to the foreign car indicator variable frn_i as follows:

$$\mathbf{dom_i} = \mathbf{1} - \mathbf{frn_i}$$
 for all i $\mathbf{dom_i} + \mathbf{frn_i} = \mathbf{1}$ so that $\mathbf{frn_i} = \mathbf{1} - \mathbf{dom_i}$ for all i $\mathbf{frn_i} = \mathbf{0}$ and $\mathbf{dom_i} = \mathbf{1}$

• For foreign cars: $\mathbf{frn_i} = 1$ and $\mathbf{dom_i} = 0$

One Estimating Equation for Model 4

The estimating equation for Model 4 we have used so far includes a full set of **interaction terms** in the **foreign car indicator variable** *frn_i*:

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i}$$

$$+ \delta_{1}frn_{i} + \delta_{2}frn_{i}wgt_{i} + \delta_{3}frn_{i}wgt_{i}^{2} + \delta_{4}frn_{i}mpg_{i} + u_{i}$$
(4A)

The car type whose dummy variable is excluded from equation (4A) is domestic cars; *domestic cars* therefore constitute the **base group** for car type in equation (4A).

File: intronote21.doc ... Page 9 of 18 pages

Derivation of a Second Estimating Equation for Model 4

In equation (4A), substitute for the foreign indicator variable $\mathbf{frn_i}$ the equivalent expression $\mathbf{1} - \mathbf{dom_i}$; i.e., set $\mathbf{frn_i} = \mathbf{1} - \mathbf{dom_i}$ in equation (4A).

$$\begin{aligned} price_i &= \beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i \\ &+ \delta_1 frn_i + \delta_2 frn_i wgt_i + \delta_3 frn_i wgt_i^2 + \delta_4 frn_i mpg_i + u_i \end{aligned} \tag{4A}$$

1.
$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \delta_{1}(1 - dom_{i})$$

$$+ \delta_{2}(1 - dom_{i})wgt_{i} + \delta_{3}(1 - dom_{i})wgt_{i}^{2} + \delta_{4}(1 - dom_{i})mpg_{i} + u_{i}$$

$$\begin{aligned} 2. \ \ price_{i} &= \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \delta_{1} + \delta_{2}wgt_{i} + \delta_{3}wgt_{i}^{2} + \delta_{4}mpg_{i} \\ &- \delta_{1}dom_{i} - \delta_{2}dom_{i}wgt_{i} - \delta_{3}dom_{i}wgt_{i}^{2} - \delta_{4}dom_{i}mpg_{i} + u_{i} \end{aligned}$$

3.
$$\begin{aligned} \text{price}_{i} &= (\beta_1 + \delta_1) + (\beta_2 + \delta_2) wgt_i + (\beta_3 + \delta_3) wgt_i^2 + (\beta_4 + \delta_4) mpg_i \\ &- \delta_1 dom_i - \delta_2 dom_i wgt_i - \delta_3 dom_i wgt_i^2 - \delta_4 dom_i mpg_i + u_i \end{aligned}$$

In the foreign-car regression equation (4f), we previously defined the coefficients $\beta_j + \delta_j$ as α_j (j = 1, 2, 3, 4), the foreign-car regression coefficients. In the above regression equation set $\beta_j + \delta_j = \alpha_j$ for j = 1, 2, 3, 4:

$$\begin{aligned} price_i &= \alpha_1 + \alpha_2 wgt_i + \alpha_3 wgt_i^2 + \alpha_4 mpg_i \\ &- \delta_1 dom_i - \delta_2 dom_i wgt_i - \delta_3 dom_i wgt_i^2 - \delta_4 dom_i mpg_i + u_i \end{aligned}$$

Finally, replace the $-\delta_j$ coefficients with γ_j for j = 1, 2, 3, 4:

$$\begin{aligned} price_i &= \alpha_1 + \alpha_2 wgt_i + \alpha_3 wgt_i^2 + \alpha_4 mpg_i \\ &+ \gamma_1 dom_i + \gamma_2 dom_i wgt_i + \gamma_3 dom_i wgt_i^2 + \gamma_4 dom_i mpg_i + u_i \end{aligned} \tag{4B}$$

Regression equation (4B) is a second estimating equation for Model 4; it is *observationally equivalent* to regression equation (4A). *Foreign cars* constitute the **base group** for car type in equation (4B).

• Interpretation of Second Estimating Equation (4B) for Model 4

Equation (4B) and its implied regression function are:

$$\begin{aligned} \text{price}_{i} &= \alpha_{1} + \alpha_{2} \text{wgt}_{i} + \alpha_{3} \text{wgt}_{i}^{2} + \alpha_{4} \text{mpg}_{i} \\ &+ \gamma_{1} \text{dom}_{i} + \gamma_{2} \text{dom}_{i} \text{wgt}_{i} + \gamma_{3} \text{dom}_{i} \text{wgt}_{i}^{2} + \gamma_{4} \text{dom}_{i} \text{mpg}_{i} + u_{i} \end{aligned} \tag{4B}$$

$$E(\text{price}_{i} \middle| \text{wgt}_{i}, \text{mpg}_{i}, \text{dom}_{i}) = \alpha_{1} + \alpha_{2} \text{wgt}_{i} + \alpha_{3} \text{wgt}_{i}^{2} + \alpha_{4} \text{mpg}_{i} \\ &+ \gamma_{1} \text{dom}_{i} + \gamma_{2} \text{dom}_{i} \text{wgt}_{i} + \gamma_{3} \text{dom}_{i} \text{wgt}_{i}^{2} + \gamma_{4} \text{dom}_{i} \text{mpg}_{i} \end{aligned} \tag{4B.1}$$

• The *foreign-car* regression equation and *foreign-car* regression function are obtained by setting the domestic-car indicator variable $dom_i = 0$ in (4B) and (4B.1):

$$price_{i} = \alpha_{1} + \alpha_{2}wgt_{i} + \alpha_{3}wgt_{i}^{2} + \alpha_{4}mpg_{i} + u_{i}$$
(4f)

$$E(\operatorname{price}_{i} | \operatorname{wgt}_{i}, \operatorname{mpg}_{i}, \operatorname{dom}_{i} = 0) = \alpha_{1} + \alpha_{2} \operatorname{wgt}_{i} + \alpha_{3} \operatorname{wgt}_{i}^{2} + \alpha_{4} \operatorname{mpg}_{i}$$

• The *domestic-car* regression equation and *domestic-car* regression function are obtained by setting the domestic-car indicator variable $dom_i = 1$ in (4B) and (4B.1):

$$\begin{aligned} \text{price}_{i} &= \alpha_{1} + \alpha_{2} w g t_{i} + \alpha_{3} w g t_{i}^{2} + \alpha_{4} m p g_{i} + \gamma_{1} + \gamma_{2} w g t_{i} + \gamma_{3} w g t_{i}^{2} + \gamma_{4} m p g_{i} + u_{i} \\ &= (\alpha_{1} + \gamma_{1}) + (\alpha_{2} + \gamma_{2}) w g t_{i} + (\alpha_{3} + \gamma_{3}) w g t_{i}^{2} + (\alpha_{4} + \gamma_{4}) m p g_{i} + u_{i} \\ &= \beta_{1} + \beta_{2} w g t_{i} + \beta_{3} w g t_{i}^{2} + \beta_{4} m p g_{i} + u_{i} \end{aligned} \tag{4d}$$

$$E(\text{price}_{i} | \text{wgt}_{i}, \text{mpg}_{i}, \text{dom}_{i} = 1)$$

$$= \alpha_{1} + \alpha_{2} \text{wgt}_{i} + \alpha_{3} \text{wgt}_{i}^{2} + \alpha_{4} \text{mpg}_{i} + \gamma_{1} + \gamma_{2} \text{wgt}_{i} + \gamma_{3} \text{wgt}_{i}^{2} + \gamma_{4} \text{mpg}_{i}$$

$$= (\alpha_{1} + \gamma_{1}) + (\alpha_{2} + \gamma_{2}) \text{wgt}_{i} + (\alpha_{3} + \gamma_{3}) \text{wgt}_{i}^{2} + (\alpha_{4} + \gamma_{4}) \text{mpg}_{i}$$

$$= \beta_{1} + \beta_{2} \text{wgt}_{i} + \beta_{2} \text{wgt}_{i}^{2} + \beta_{4} \text{mpg}_{i}$$

where $\beta_i = \alpha_i + \gamma_i$ for j = 1, 2, 3, 4 are the domestic-car regression coefficients.

Compare Estimating Equations (4A) and (4B) for Model 4

Equation (4A):

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i}$$

$$+ \delta_{1}frn_{i} + \delta_{2}frn_{i}wgt_{i} + \delta_{3}frn_{i}wgt_{i}^{2} + \delta_{4}frn_{i}mpg_{i} + u_{i}$$
(4A)

where:

- the domestic-car regression coefficients are β_i (j = 1, 2, 3, 4)
- the foreign-car regression coefficients are $\alpha_j = \beta_j + \delta_j$ (j = 1, 2, 3, 4)
- implied expressions for β_j are: $\beta_j = \alpha_j \delta_j$ (j = 1, 2, 3, 4)

Equation (4B):

$$price_{i} = \alpha_{1} + \alpha_{2}wgt_{i} + \alpha_{3}wgt_{i}^{2} + \alpha_{4}mpg_{i}$$

$$+ \gamma_{1}dom_{i} + \gamma_{2}dom_{i}wgt_{i} + \gamma_{3}dom_{i}wgt_{i}^{2} + \gamma_{4}dom_{i}mpg_{i} + u_{i}$$
(4B)

where:

- the domestic-car regression coefficients are $\beta_j = \alpha_j + \gamma_j$ (j = 1, 2, 3, 4)
- the foreign-car regression coefficients are α_i (j = 1, 2, 3, 4)
- implied expressions for α_j are: $\alpha_j = \beta_j \gamma_j$ (j = 1, 2, 3, 4)

Compare expressions for *foreign-car* coefficients α_j from equations (4A) and (4B):

$$\alpha_i = \beta_i + \delta_i$$
 in (4A) and $\alpha_i = \beta_i - \gamma_i$ in (4B) implies that $\delta_i = -\gamma_i$

Compare expressions for *domestic-car* coefficients β_j from equations (4A) and (4B):

$$\beta_{\rm j} = \alpha_{\rm j} - \delta_{\rm j} \ \ \text{in (4A)} \quad \ \ \text{and} \quad \ \ \beta_{\rm j} = \alpha_{\rm j} + \gamma_{\rm j} \ \ \text{in (4B)} \quad \ \ \text{implies that} \ \ \gamma_{\rm j} = - \delta_{\rm j}$$

Results: Equations (4A) and (4B) are observationally equivalent regression equations.

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i}$$

$$+ \delta_{1}frn_{i} + \delta_{2}frn_{i}wgt_{i} + \delta_{3}frn_{i}wgt_{i}^{2} + \delta_{4}frn_{i}mpg_{i} + u_{i}$$
(4A)

$$price_{i} = \alpha_{1} + \alpha_{2}wgt_{i} + \alpha_{3}wgt_{i}^{2} + \alpha_{4}mpg_{i}$$

$$+ \gamma_{1}dom_{i} + \gamma_{2}dom_{i}wgt_{i} + \gamma_{3}dom_{i}wgt_{i}^{2} + \gamma_{4}dom_{i}mpg_{i} + u_{i}$$
(4B)

1. The δ_j coefficients in (4A) and the γ_j coefficients in (4B) are equal in magnitude but opposite in sign.

$$\delta_j$$
 coefficients = foreign-domestic coefficient differences = $\alpha_j - \beta_j$
 γ_j coefficients = domestic-foreign coefficient differences = $\beta_j - \alpha_j$

- 2. Equations (4A) and (4B) yield *identical* estimates of the *foreign-car* coefficients α_j and the *domestic-car* coefficients β_j .
- **3.** OLS estimation of equations (4A) and (4B) yields identical values of:

RSS = the residual sum-of-squares

ESS = the explained sum-of-squares

 R^2 = the ordinary R-squared

 \overline{R}^2 = the adjusted R-squared

 $\hat{\sigma}^2$ = the estimator of the error variance σ^2

 $ANOVA - F_0 = the ANOVA F-statistic$

Example: OLS estimates of Equations (4A) and (4B)

- . * Equation (4A)
- . regress price wgt wgtsq mpg frn frnwgt frnwgtsq frnmpg

Source	ss	df	MS		Number of obs F(7, 66)	= 74 = 18.65
Model Residual	421816157 213249239		59451.1 1049.07		Prob > F R-squared Adj R-squared	= 0.0000 = 0.6642
Total	635065396	73 869	9525.97		Root MSE	= 1797.5
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
wgt wgtsq mpg frn frnwgt frnwgtsq	.0018982 78.07451 -2474.355	3.023761 .0004203 115.5373 14701.79 10.2767	-2.91 4.52 0.68 -0.17 0.21 0.22	0.005 0.000 0.502 0.867 0.835 0.829	-14.85018 .001059 -152.6031 -31827.42 -18.37353 0034882	-2.77591 .0027374 308.7521 26878.71 22.66265 .0043388
frnmpg _cons	-100.1518	141.2379 7197.498	-0.71 1.66	0.829 0.481 0.101	-382.1422 -2398.214	181.8387 26342.32

- . * Equation (4B)
- . regress price wgt wgtsq mpg dom domwgt domwgtsq dommpg

Source	l ss	df	MS		Number of obs	= 74
	+				F(7, 66)	= 18.65
Model	421816157	7 6025	9451.1		Prob > F	= 0.0000
Residual	213249239	66 3231	.049.07		R-squared	= 0.6642
	+				Adj R-squared	= 0.6286
Total	635065396	73 8699	9525.97		Root MSE	= 1797.5
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
wgt	-6.668487	9.821781	-0.68	0.500	-26.27831	12.94133
wgtsq	.0023235	.0019145	1.21	0.229	001499	.0061459
mpg	-22.07724	81.23592	-0.27	0.787	-184.27	140.1155
dom	2474.355	14701.79	0.17	0.867	-26878.71	31827.42
domwgt	-2.144557	10.2767	-0.21	0.835	-22.66265	18.37353
domwgtsq	0004253	.0019601	-0.22	0.829	0043388	.0034882
dommpg	100.1518	141.2379	0.71	0.481	-181.8387	382.1422
_cons	9497.699	12819.46	0.74	0.461	-16097.18	35092.58

File: intronote21.doc ... Page 14 of 18 pages

Computing foreign-car coefficient estimates from Equation (4A)

- . * Following Equation (4A)
- . lincom _b[_cons] + _b[frn]
- (1) frn + cons = 0.0

price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
(1)	9497.699	12819.46	0.74	0.461	-16097.18	35092.58

- . lincom _b[wgt] + _b[frnwgt]
- (1) wgt + frnwgt = 0.0

price					[95% Conf.	-
•	-6.668487	9.821781	-0.68	0.500	-26.27831	12.94133

- . lincom _b[wgtsq] + _b[frnwgtsq]
 - (1) wgtsq + frnwgtsq = 0.0

price	Coef.		_	-
•			001499	

- . lincom _b[mpg] + _b[frnmpg]
- (1) mpg + frnmpg = 0.0

price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
•	-				-184.27	

- . * Equation (4B)
- . regress price wgt wgtsq mpg dom domwgt domwgtsq dommpg

price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
wgt	-6.668487	9.821781	-0.68	0.500	-26.27831	12.94133
wgtsq	.0023235	.0019145	1.21	0.229	001499	.0061459
mpg	-22.07724	81.23592	-0.27	0.787	-184.27	140.1155
dom	2474.355	14701.79	0.17	0.867	-26878.71	31827.42

output omitted

File: intronote21.doc ... Page 16 of 18 pages

Computing domestic-car coefficient estimates from Equation (4B)

- . * Following Equation (4B)
- . lincom _b[_cons] + _b[dom]
- (1) dom + _cons = 0.0

price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
					-2398.214	

- . lincom _b[wgt] + _b[domwgt]
- (1) wgt + domwgt = 0.0

price		• •	[95% Conf.	-
•			-14.85018	

- . lincom _b[wgtsq] + _b[domwgtsq]
 - (1) wgtsq + domwgtsq = 0.0

	Coef.		[95% Conf.	-
•			.001059	

- . lincom _b[mpg] + _b[dommpg]
- (1) mpg + dommpg = 0.0

price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
•	78.07451	115.5373	0.68	0.502	-152.6031	308.7521

- . * Equation (4A)
- . regress price wgt wgtsq mpg frn frnwgt frnwgtsq frnmpg

price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
wgt	-8.813044	3.023761	-2.91	0.005	-14.85018	-2.77591
wgtsq	.0018982	.0004203	4.52	0.000	.001059	.0027374
mpg	78.07451	115.5373	0.68	0.502	-152.6031	308.7521
frn	-2474.355	14701.79	-0.17	0.867	-31827.42	26878.71

output omitted

File: intronote21.doc ... Page 18 of 18 pages