Examples of Multiple Linear Regression Models

Data: Stata tutorial data set in text file auto1.raw or auto1.txt.

Sample data: A cross-sectional sample of 74 cars sold in North America in 1978.

Variable definitions:

```
price_{i} = the \ price \ of \ the \ i-th \ car \ (in \ US \ dollars); wgt_{i} = the \ weight \ of \ the \ i-th \ car \ (in \ pounds); mpg_{i} = the \ fuel \ efficiency \ of \ the \ i-th \ car \ (in \ miles \ per \ gallon); foreign_{i} = 1 \ if \ the \ i-th \ car \ is \ manufactured \ outside \ North \ America, = 0 \ otherwise.
```

File: examples.doc Page 1 of 21

Multiple Linear Regression Model (1)

The PRE is:

price_i =
$$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + u_i$$
. (1)
 $k = 3$; $k - 1 = 2$

• The regressor wgt_i² is called an *interaction* variable. It is the product of wgt_i with itself; it is a *second-order* polynomial term in the variable wgt_i.

Marginal or partial effect of wgt_i

The marginal effect of wgt_i on price_i is obtained by partially differentiating regression equation (2) with respect to wgt_i .

$$\frac{\partial \operatorname{price}_{i}}{\partial \operatorname{wgt}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} | \operatorname{wgt}_{i})}{\partial \operatorname{wgt}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} | \bullet)}{\partial \operatorname{wgt}_{i}} = \beta_{2} + 2\beta_{3} \operatorname{wgt}_{i}.$$

• Marginal effect of wgt_i on $price_i$ is a linear function of wgt_i . It is not a constant.

Hypotheses of interest

1. The *marginal* effect of wgt_i on $price_i$ is zero: i.e., wgt_i has no effect on $price_i$; or car $price_i$ is unrelated to car wgt_i .

•
$$H_0$$
: $\beta_2 = 0$ and $\beta_3 = 0$ $\Rightarrow \frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i = 0$.

Restricted model corresponding to H_0 : set $\beta_2 = 0$ and $\beta_3 = 0$ in PRE (1).

price_i =
$$\beta_1 + u_i$$
.
 $k_0 = 1$; $k_0 - 1 = 0$

•
$$H_1$$
: $\beta_2 \neq 0$ and/or $\beta_3 \neq 0$ \Rightarrow $\frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i$.

Unrestricted model corresponding to H₁: is PRE (1).

File: examples.doc Page 2 of 21

2. The *marginal* effect of wgt_i on $price_i$ is *constant*: i.e., it does not depend on wgt_i .

•
$$H_0$$
: $\beta_3 = 0$ \Rightarrow $\frac{\partial \, price_i}{\partial \, wgt_i} = \beta_2 + 2\beta_3 wgt_i = \beta_2$.

Restricted model corresponding to H_0 : set $\beta_3 = 0$ in PRE (1).

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + u_{i}.$$

$$k_0 = 2;$$
 $k_0 - 1 = 1$

•
$$H_1$$
: $\beta_3 \neq 0 \implies \frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i$.

Unrestricted model corresponding to H₁: is PRE (1).

price_i =
$$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + u_i$$
. (1)
 $k = 3$; $k - 1 = 2$

The OLS SRE for Model (1)

. regress price wgt wgtsq

Source	SS	df	MS		Number of obs	= 74
Model Residual 	250285462 384779934 635065396	71 5419 	 142731 435.69 525.97		F(2, 71) Prob > F R-squared Adj R-squared Root MSE	= 0.0000 $= 0.3941$
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
wgt wgtsq _cons	-7.273097 .0015142 13418.8	2.691747 .0004337 3997.822	-2.702 3.491 3.357	0.009 0.001 0.001	-12.64029 .0006494 5447.372	-1.905906 .002379 21390.23

. test wgt wgtsq

F-test of hypothesis 1

File: examples.doc Page 3 of 21

3. The marginal effect of wgt_i on $price_i$ is decreasing in wgt_i : i.e., the marginal effect of wgt_i on $price_i$ exhibits decreasing marginal returns in wgt_i .

•
$$H_0$$
: $\beta_3 = 0$ or $\beta_3 \ge 0$ \Rightarrow $\frac{\partial^2 \operatorname{price}_i}{\partial \operatorname{wgt}_i^2} = 2\beta_3 \ge 0$.

•
$$H_1$$
: $\beta_3 < 0 \implies \frac{\partial \, price_i}{\partial \, wgt_i} = \beta_2 + 2\beta_3 wgt_i \quad and \quad \frac{\partial^2 \, price_i}{\partial \, wgt_i^2} = 2\beta_3 < 0$.
 $\Rightarrow \quad a \, one\text{-sided} \, alternative \, hypothesis$
 $\Rightarrow \quad a \, left\text{-tail} \, test$

Perform a *left-tail* **t-test** using the OLS coefficient estimate $\hat{\beta}_3$ of β_3 for the *unrestricted* **model** corresponding to H₁, which is PRE (1):

price_i =
$$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + u_i$$
. (1)
 $k = 3; \quad k - 1 = 2; \quad N - k = N - 3.$

4. The *marginal* effect of wgt_i on *price*_i is *increasing* in wgt_i : i.e., the marginal effect of wgt_i on $price_i$ exhibits *increasing* marginal returns in wgt_i .

•
$$H_0$$
: $\beta_3 = 0$ or $\beta_3 \le 0$ \Rightarrow $\frac{\partial^2 \operatorname{price}_i}{\partial \operatorname{wgt}_i^2} = 2\beta_3 \le 0$.

•
$$H_1$$
: $\beta_3 > 0 \implies \frac{\partial \, price_i}{\partial \, wgt_i} = \beta_2 + 2\beta_3 wgt_i \quad and \quad \frac{\partial^2 \, price_i}{\partial \, wgt_i^2} = 2\beta_3 > 0.$
 $\Rightarrow \quad a \, one\text{-sided} \, alternative \, hypothesis$
 $\Rightarrow \quad a \, right\text{-tail} \, test$

Perform a *right-tail* **t-test** using the OLS coefficient estimate $\hat{\beta}_3$ of β_3 for the *unrestricted* model corresponding to H₁, which is PRE (1):

price_i =
$$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + u_i$$
. (1)
 $k = 3;$ $k - 1 = 2;$ $N - k = N - 3.$

File: examples.doc Page 4 of 21

Multiple Linear Regression Model (2)

The PRE is:

price_i =
$$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + u_i$$
. (2)
 $k = 4$; $k - 1 = 3$.

Marginal or partial effect of wgt_i

The marginal effect of wgt_i on price_i is obtained by partially differentiating regression equation (2) with respect to wgt_i .

$$\frac{\partial \, price_{_{i}}}{\partial \, wgt_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, wgt_{_{i}}, \, mpg_{_{i}})}{\partial \, wgt_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, \bullet)}{\partial \, wgt_{_{i}}} = \beta_{_{2}} + 2\, \beta_{_{3}} wgt_{_{i}} \, .$$

• Marginal effect of wgt_i on $price_i$ is a linear function of wgt_i ; it is not a constant.

Marginal or partial effect of mpgi

The marginal or partial effect of mpg_i mpg_i on price_i is obtained by partially differentiating regression equation (2) with respect to mpg_i.

$$\frac{\partial \, price_{_{i}}}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, wgt_{_{i}}, \, mpg_{_{i}})}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, \bullet)}{\partial \, mpg_{_{i}}} = \beta_{_{4}} \, .$$

• Marginal effect of *mpg_i* on *price_i* is *constant*: it does not vary with any observable variable.

Hypotheses of interest

- 1. The marginal effect of wgt_i on $price_i$ is zero: i.e., wgt_i has no effect on $price_i$; or car $price_i$ is unrelated to car wgt_i .
- 2. The marginal effect of wgt_i on $price_i$ is constant: i.e., it does not depend on wgt_i .
- 3. The *marginal* effect of *mpg_i* on *price_i* is *zero*: i.e., *mpg_i* has no effect on *price_i*; or car *price_i* is unrelated to fuel efficiency as measured by *mpg_i*.

File: examples.doc Page 5 of 21

1. The marginal effect of wgt_i on $price_i$ is zero: i.e., wgt_i has no effect on $price_i$; or car $price_i$ is unrelated to car wgt_i .

•
$$H_0$$
: $\beta_2 = 0$ and $\beta_3 = 0$ $\Rightarrow \frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i = 0$.

Restricted model corresponding to H_0 : set $\beta_2 = 0$ and $\beta_3 = 0$ in PRE (2).

$$price_{i} = \beta_{1} + \beta_{4}mpg_{i} + u_{i}.$$

$$k_0 = 2$$
; $k_0 - 1 = 1$.

•
$$H_1$$
: $\beta_2 \neq 0$ and/or $\beta_3 \neq 0$ \Rightarrow $\frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i$.

Unrestricted model corresponding to H₁: is PRE (2).

price_i =
$$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + u_i$$
. (2)
 $k = 4$; $k - 1 = 3$.

2. The marginal effect of wgt_i on $price_i$ is constant: i.e., it does not depend on wgt_i .

•
$$H_0$$
: $\beta_3 = 0$ \Rightarrow $\frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i = \beta_2$.

Restricted model corresponding to H_0 : set $\beta_3 = 0$ in PRE (2).

$$price_i = \beta_1 + \beta_2 wgt_i + \beta_4 mpg_i + u_i$$
.

$$k_0 = 3;$$
 $k_0 - 1 = 2$

•
$$H_1$$
: $\beta_3 \neq 0 \implies \frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i$.

Unrestricted model corresponding to H₁: is PRE (2).

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + u_{i}$$
. (2)

$$k = 4;$$
 $k - 1 = 3.$

File: examples.doc Page 6 of 21

3. The *marginal* effect of *mpg_i* on *price_i* is *zero*: i.e., *mpg_i* has no effect on *price_i*; or car *price_i* is unrelated to fuel efficiency as measured by *mpg_i*.

$$\bullet \quad H_0: \ \beta_4 = 0 \qquad \Rightarrow \qquad \frac{\partial \, price_i}{\partial \, mpg_i} = \beta_4 \, = \, 0 \, .$$

Restricted model corresponding to H_0 : set $\beta_4 = 0$ in PRE (2).

price_i =
$$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + u_i$$
.
 $k_0 = 3$; $k_0 - 1 = 2$

•
$$H_1$$
: $\beta_4 \neq 0$ \Rightarrow $\frac{\partial \, price_i}{\partial \, mpg_i} = \beta_4$.

Unrestricted model corresponding to H₁: is PRE (2).

price_i =
$$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + u_i$$
. (2)
 $k = 4$; $k - 1 = 3$.

File: examples.doc Page 7 of 21

The OLS SRE for Model (2)

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + u_{i}.$$
(2)

. regress price wgt wgtsq mpg

Source	SS S	df	MS		Number of obs F(3, 70)	
Model Residual	262753599 372311797	70 531	84533.2 8739.95		Prob > F R-squared Adj R-squared	= 0.0000 = 0.4137 = 0.3886
Total	635065396	73 869	9525.97		Root MSE	= 2306.2
price	Coef.	Std. Err.	t 	P> t	[95% Conf.	Interval]
wgt wgtsq mpg _cons	-9.039563 .0016794 -124.7675 19804.79	2.905512 .000443 81.49014 5751.709	-3.111 3.791 -1.531 3.443	0.003 0.000 0.130 0.001	-14.83442 .0007958 -287.2945 8333.365	-3.244703 .002563 37.75945 31276.21

. test wgt wgtsq

F-test of hypothesis 1

$$F(2, 70) = 11.59$$

Prob > F = 0.0000

. test wgtsq

F-test of hypothesis 2

$$(1)$$
 wgtsq = 0.0

$$F(1, 70) = 14.37$$

 $Prob > F = 0.0003$

. test mpg

F-test of hypothesis 3

$$(1) mpg = 0.0$$

$$F(1, 70) = 2.34$$

 $Prob > F = 0.1303$

. lincom mpg

t-test of hypothesis 3

(1) mpg = 0.0

- '	Coef.		 [95% Conf.	Interval]
	-124.7675		-287.2945	37.75945

File: examples.doc Page 8 of 21

Multiple Linear Regression Model (3)

The PRE is:

price_i =
$$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + \beta_5 mpg_i^2 + u_i$$
. (3)
 $k = 5$; $k - 1 = 4$.

Marginal or partial effect of wgti

$$\frac{\partial \operatorname{price}_{i}}{\partial \operatorname{wgt}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} \big| \operatorname{wgt}_{i}, \operatorname{mpg}_{i})}{\partial \operatorname{wgt}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} \big| \bullet)}{\partial \operatorname{wgt}_{i}} = \beta_{2} + 2\beta_{3} \operatorname{wgt}_{i}.$$

• Marginal effect of wgt_i on $price_i$ is a linear function of wgt_i ; it is not a constant.

Marginal or partial effect of mpgi

$$\frac{\partial \operatorname{price}_{i}}{\partial \operatorname{mpg}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} \big| \operatorname{wgt}_{i}, \operatorname{mpg}_{i})}{\partial \operatorname{mpg}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} \big| \bullet)}{\partial \operatorname{mpg}_{i}} = \beta_{4} + 2\beta_{5} \operatorname{mpg}_{i}.$$

• Marginal effect of mpg_i on $price_i$ is a linear function of mpg_i ; it is not a constant.

Hypotheses of interest

- 1. The marginal effect of wgt_i on $price_i$ is zero: i.e., wgt_i has no effect on $price_i$; or car $price_i$ is unrelated to car wgt_i .
- 2. The *marginal* effect of wgt_i on $price_i$ is *constant*: i.e., it does not depend on wgt_i or mpg_i .
- 3. The *marginal* effect of *mpg_i* on *price_i* is *zero*: i.e., *mpg_i* has no effect on *price_i*; or car *price_i* is unrelated to fuel efficiency as measured by *mpg_i*.
- **4.** The *marginal* effect of mpg_i on $price_i$ is *constant*: i.e., it does not depend on mpg_i or wgt_i .

File: examples.doc Page 9 of 21

1. The *marginal* effect of wgt_i on $price_i$ is zero: i.e., wgt_i has no effect on $price_i$; or $car\ price_i$ is unrelated to $car\ wgt_i$.

•
$$H_0$$
: $\beta_2 = 0$ and $\beta_3 = 0$ $\Rightarrow \frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i = 0$.

Restricted model corresponding to H_0 : set $\beta_2 = 0$ and $\beta_3 = 0$ in PRE (3).

price_i =
$$\beta_1 + \beta_4 mpg_i + \beta_5 mpg_i^2 + u_i$$
.
 $k_0 = 3$; $k_0 - 1 = 2$.

•
$$H_1$$
: $\beta_2 \neq 0$ and/or $\beta_3 \neq 0$ \Rightarrow $\frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i$

Unrestricted model corresponding to H₁: is PRE (3).

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + u_{i}.$$

$$k = 5; \quad k - 1 = 4.$$
(3)

2. The *marginal* effect of wgt_i on $price_i$ is *constant*: i.e., it does not depend on wgt_i or mpg_i .

•
$$H_0$$
: $\beta_3 = 0$ \Rightarrow $\frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2$

Restricted model corresponding to H_0 : set $\beta_3 = 0$ in PRE (3).

price_i =
$$\beta_1 + \beta_2 wgt_i + \beta_4 mpg_i + \beta_5 mpg_i^2 + u_i$$
.
 $k_0 = 4$; $k_0 - 1 = 3$.

•
$$H_1$$
: $\beta_3 \neq 0 \implies \frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i$

Unrestricted model corresponding to H₁: is PRE (3).

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + u_{i}.$$

$$k = 5; \quad k - 1 = 4.$$
(3)

File: examples.doc Page 10 of 21

3. The marginal effect of mpg_i on $price_i$ is zero: i.e., mpg_i has no effect on $price_i$; or car $price_i$ is unrelated to fuel efficiency as measured by mpg_i .

•
$$H_0$$
: $\beta_4 = 0$ and $\beta_5 = 0$ \Rightarrow $\frac{\partial \, price_i}{\partial \, mpg_i} = \beta_4 + 2 \beta_5 mpg_i = 0$.

Restricted model corresponding to H_0 : set $\beta_4 = 0$ and $\beta_5 = 0$ in PRE (3).

price_i =
$$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + u_i$$
.
 $k_0 = 3$; $k_0 - 1 = 2$.

•
$$H_1$$
: $\beta_4 \neq 0$ and/or $\beta_5 \neq 0$ \Rightarrow $\frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_4 + 2\beta_5 \operatorname{mpg}_i$.

Unrestricted model corresponding to H₁: is PRE (3).

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + u_{i}.$$

$$k = 5; \quad k - 1 = 4.$$
(3)

4. The *marginal* effect of mpg_i on $price_i$ is *constant*: i.e., it does not depend on mpg_i or wgt_i .

•
$$H_0$$
: $\beta_5 = 0$ \Rightarrow $\frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_4 + 2\beta_5 \operatorname{mpg}_i = \beta_4$.

Restricted model corresponding to H_0 : set $\beta_5 = 0$ in PRE (3).

price_i =
$$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + u_i$$
.
 $k_0 = 4$: $k_0 - 1 = 3$.

•
$$H_1$$
: $\beta_5 \neq 0 \implies \frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_4 + 2\beta_5 \operatorname{mpg}_i$

Unrestricted model corresponding to H₁: is PRE (3).

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + u_{i}.$$

$$k = 5; \quad k - 1 = 4.$$
(3)

File: examples.doc Page 11 of 21

Model (3)

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + u_{i}.$$
 (3)

The OLS SRE for Model (3)

. regress price wgt wgtsq mpg mpgsq

Source	SS S	df	MS		Number of obs $F(4, 69)$	
Model Residual	272062621 363002775		5655.2 909.79		Prob > F R-squared Adj R-squared	= 0.0000 = 0.4284
Total	635065396	73 8699!	525.97		Root MSE	= 2293.7
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
wgt wgtsq mpg mpgsq cons	-7.99723 .0014407 -615.2419 9.323582	2.994029 .0004757 377.5204 7.009083 6878.057	-2.671 3.028 -1.630 1.330 3.618	0.009 0.003 0.108 0.188 0.001	-13.97015 .0004916 -1368.375 -4.659156 11163.61	-2.024306 .0023898 137.8907 23.30632 38606.3

. test wgt wgtsq

F-test of hypothesis 1

$$(1)$$
 wgt = 0.0

(2) wgtsq = 0.0

$$F(2, 69) = 5.34$$

Prob > F = 0.0070

. test wgtsq

F-test of hypothesis 2

$$(1)$$
 wgtsq = 0.0

$$F(1, 69) = 9.17$$

 $Prob > F = 0.0035$

. test mpg mpgsq

F-test of hypothesis 3

$$(1)$$
 mpg = 0.0

(2) mpgsq = 0.0

$$F(2, 69) = 2.07$$

Prob > F = 0.1340

. test mpgsq

F-test of hypothesis 4

(1) mpgsq = 0.0

$$F(1, 69) = 1.77$$

Prob > F = 0.1878

Multiple Linear Regression Model (4)

The PRE is:

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + u_{i}.$$
 (4)

$$k = 6; \quad k - 1 = 5.$$

Marginal or partial effect of wgt_i

$$\frac{\partial \, price_{_{i}}}{\partial \, wgt_{_{i}}} = \frac{\partial \, E(price_{_{i}} \big| \, wgt_{_{i}}, \, mpg_{_{i}})}{\partial \, wgt_{_{i}}} = \frac{\partial \, E(price_{_{i}} \big| \, \bullet)}{\partial \, wgt_{_{i}}} = \beta_{_{2}} + 2\, \beta_{_{3}} wgt_{_{i}} + \beta_{_{6}} mpg_{_{i}}.$$

• Marginal effect of wgt_i on $price_i$ is a linear function of wgt_i and mpg_i ; it is not a constant.

Marginal or partial effect of mpg_i

$$\frac{\partial \, price_{_{i}}}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, wgt_{_{i}}, \, mpg_{_{i}})}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, \bullet)}{\partial \, mpg_{_{i}}} = \beta_{_{4}} + 2\beta_{_{5}} mpg_{_{i}} + \, \beta_{_{6}} wgt_{_{i}}.$$

• Marginal effect of mpg_i on $price_i$ is a linear function of mpg_i and wgt_i ; it is not a constant.

Hypotheses of interest

- 1. The *marginal* effect of wgt_i on $price_i$ is zero: i.e., wgt_i has no effect on $price_i$; or car $price_i$ is unrelated to car wgt_i .
- **2.** The *marginal* effect of wgt_i on $price_i$ is *constant*: i.e., it does not depend on wgt_i and/or mpg_i .
- 3. The *marginal* effect of mpg_i on $price_i$ is zero: i.e., mpg_i has no effect on $price_i$; or car $price_i$ is unrelated to fuel efficiency as measured by mpg_i .
- **4.** The *marginal* effect of mpg_i on $price_i$ is *constant*: i.e., it does not depend on mpg_i and/or wgt_i .

File: examples.doc Page 13 of 21

Page 14 of 21

1. The marginal effect of wgt_i on $price_i$ is zero: i.e., wgt_i has no effect on $price_i$; or $car\ price_i$ is unrelated to $car\ wgt_i$.

•
$$H_0$$
: $\beta_2 = 0$ and $\beta_3 = 0$ and $\beta_6 = 0$ \Rightarrow $\frac{\partial \, price_i}{\partial \, wgt_i} = \beta_2 + 2\beta_3 wgt_i + \beta_6 mpg_i = 0$

Restricted model corresponding to H_0 : set $\beta_2 = 0$ and $\beta_3 = 0$ and $\beta_6 = 0$ in PRE (4).

$$price_i = \beta_1 + \beta_4 mpg_i + \beta_5 mpg_i^2 + u_i$$
.

$$k_0 = 3$$
; $k_0 - 1 = 2$.

•
$$H_1$$
: $\beta_2 \neq 0$ and/or $\beta_3 \neq 0$ and/or $\beta_6 \neq 0 \Rightarrow \frac{\partial \, price_i}{\partial \, wgt_i} = \beta_2 + 2 \, \beta_3 wgt_i + \beta_6 mpg_i$

Unrestricted model corresponding to H₁: is PRE (4).

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + u_{i}.$$
 (4)
 $k = 6$; $k - 1 = 5$.

2. The *marginal* effect of wgt_i on $price_i$ is *constant*: i.e., it does not depend on wgt_i and/or mpg_i .

•
$$H_0$$
: $\beta_3 = 0$ and $\beta_6 = 0$ $\Rightarrow \frac{\partial \, price_i}{\partial \, wgt_i} = \beta_2 + 2 \beta_3 wgt_i + \beta_6 mpg_i = \beta_2$

Restricted model corresponding to H_0 : set $\beta_3 = 0$ and $\beta_6 = 0$ in PRE (4).

$$price_i = \beta_1 + \beta_2 wgt_i + \beta_4 mpg_i + \beta_5 mpg_i^2 + u_i.$$

$$k_0 = 4;$$
 $k_0 - 1 = 3.$

•
$$H_1$$
: $\beta_3 \neq 0$ and/or $\beta_6 \neq 0$ $\Rightarrow \frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i + \beta_6 \operatorname{mpg}_i$

Unrestricted model corresponding to H₁: is PRE (4).

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + u_{i}$$
. (4)

$$k = 6;$$
 $k - 1 = 5.$

File: examples.doc

3. The *marginal* effect of mpg_i on $price_i$ is zero: i.e., mpg_i has no effect on $price_i$; or car $price_i$ is unrelated to fuel efficiency as measured by mpg_i .

•
$$H_0$$
: $\beta_4 = 0$ and $\beta_5 = 0$ and $\beta_6 = 0$ \Rightarrow $\frac{\partial \, price_i}{\partial \, mpg_i} = \beta_4 + 2\beta_5 mpg_i + \beta_6 wgt_i = 0$

Restricted model corresponding to H_0 : set $\beta_4 = 0$ and $\beta_5 = 0$ and $\beta_6 = 0$ in PRE (4).

$$price_{_{i}}=\,\beta_{_{1}}+\beta_{_{2}}wgt_{_{i}}+\beta_{_{3}}wgt_{_{i}}^{^{2}}+u_{_{i}}\,.$$

$$k_0 = 3$$
; $k_0 - 1 = 2$.

•
$$H_1$$
: $\beta_4 \neq 0$ and/or $\beta_5 \neq 0$ and/or $\beta_6 \neq 0 \Rightarrow \frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_4 + 2\beta_5 \operatorname{mpg}_i + \beta_6 \operatorname{wgt}_i$

Unrestricted model corresponding to H₁: is PRE (4).

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + u_{i}.$$
 (4)

$$k = 6; \quad k - 1 = 5.$$

4. The *marginal* effect of mpg_i on $price_i$ is *constant*: i.e., it does not depend on mpg_i and/or wgt_i .

•
$$H_0$$
: $\beta_5 = 0$ and $\beta_6 = 0$ $\Rightarrow \frac{\partial \, price_i}{\partial \, mpg_i} = \beta_4 + 2\beta_5 mpg_i + \beta_6 wgt_i = \beta_4$

Restricted model corresponding to H_0 : set $\beta_5 = 0$ and $\beta_6 = 0$ in PRE (4).

$$price_{_{i}} = \beta_{_{1}} + \beta_{_{2}}wgt_{_{i}} + \beta_{_{3}}wgt_{_{i}}^{^{2}} + \beta_{_{4}}mpg_{_{i}} + u_{_{i}}.$$

$$k_0 = 4;$$
 $k_0 - 1 = 3.$

•
$$H_1$$
: $\beta_5 \neq 0$ and/or $\beta_6 \neq 0$ $\Rightarrow \frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_4 + 2\beta_5 \operatorname{mpg}_i + \beta_6 \operatorname{wgt}_i$

Unrestricted model corresponding to H₁: is PRE (4).

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + u_{i}.$$
 (4)

$$k = 6;$$
 $k - 1 = 5.$

Model (4)

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + u_{i}$$
. (4)

The OLS SRE for Model (4)

. regress price wgt wgtsq mpg mpgsq wgtmpg

Source	SS	df 	MS		Number of obs F(5, 68)	
Model Residual	308384833 326680563		76966.6 1125.93		Prob > F R-squared Adj R-squared	= 0.0000 = 0.4856
Total	635065396	73 8699	9525.97		Root MSE	= 2191.8
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
wgt wgtsq mpg mpgsq wgtmpg _cons	-31.88985 .0034574 -3549.495 38.74472 .5421927 92690.55	9.148215 .0008629 1126.464 12.62339 .1971854 25520.53	-3.486 4.007 -3.151 3.069 2.750 3.632	0.001 0.000 0.002 0.003 0.008 0.001	-50.14483 .0017355 -5797.318 13.55514 .1487154 41765.12	-13.63487 .0051792 -1301.672 63.9343 .9356701 143616

. test wgt wgtsq wgtmpg

F-test of hypothesis 1

- (1) wgt = 0.0
- (2) wgtsq = 0.0
- (3) wgtmpg = 0.0

$$F(3, 68) = 6.42$$

 $Prob > F = 0.0007$

. test wgtsq wgtmpg

F-test of hypothesis 2

- (1) wgtsq = 0.0
- (2) wgtmpg = 0.0

$$F(2, 68) = 8.80$$

 $Prob > F = 0.0004$

. test mpg mpgsq wgtmpg

- (1) mpg = 0.0
- (2) mpgsq = 0.0
- (3) wgtmpg = 0.0

$$F(3, 68) = 4.03$$

 $Prob > F = 0.0106$

. test mpgsq wgtmpg

F-test of hypothesis 4

- (1) mpgsq = 0.0
- (2) wgtmpg = 0.0

$$F(2, 68) = 4.75$$

 $Prob > F = 0.0117$

File: examples.doc

Multiple Linear Regression Model (5)

The PRE is:

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + \beta_{7}foreign_{i} + u_{i}$$
... (5)

$$k = 7$$
; $k - 1 = 6$.

Marginal or partial effect of wgti

$$\frac{\partial \operatorname{price}_{i}}{\partial \operatorname{wgt}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} \big| \operatorname{wgt}_{i}, \operatorname{mpg}_{i}, \operatorname{foreign}_{i})}{\partial \operatorname{wgt}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} \big| \bullet)}{\partial \operatorname{wgt}_{i}} = \beta_{2} + 2\beta_{3} \operatorname{wgt}_{i} + \beta_{6} \operatorname{mpg}_{i}$$

• Marginal effect of wgt_i on $price_i$ is a linear function of wgt_i and mpg_i ; it is not a constant.

Marginal or partial effect of mpgi

$$\frac{\partial \, price_{_{i}}}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \big| \, wgt_{_{i}}, \, mpg_{_{i}}, \, foreign_{_{i}})}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \big| \, \bullet \,)}{\partial \, mpg_{_{i}}} = \beta_{_{4}} + 2\, \beta_{_{5}} mpg_{_{i}} + \, \beta_{_{6}} wgt_{_{i}}$$

• Marginal effect of mpg_i on $price_i$ is a linear function of mpg_i and wgt_i ; it is not a constant.

Hypotheses of interest

- 1. The *marginal* effect of wgt_i on $price_i$ is zero: i.e., wgt_i has no effect on $price_i$; or $car\ price_i$ is unrelated to $car\ wgt_i$.
- 2. The *marginal* effect of wgt_i on $price_i$ is *constant*: i.e., it does not depend on wgt_i and/or mpg_i .
- 3. The *marginal* effect of mpg_i on $price_i$ is zero: i.e., mpg_i has no effect on $price_i$; or car $price_i$ is unrelated to fuel efficiency as measured by mpg_i .
- **4.** The *marginal* effect of mpg_i on $price_i$ is *constant*: i.e., it does not depend on mpg_i and/or wgt_i .

File: examples.doc Page 17 of 21

Interpretation of the slope coefficient β_7 on the foreign_i dummy variable regressor

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + \beta_{7}foreign_{i} + u_{i}$$
... (5)

Compare the expressions implied by regression equation (5) for the conditional mean prices of foreign and domestic cars that have the same weight and fuel efficiency.

• The **conditional mean price of** *foreign* **cars** is obtained from equation (5) by **setting** $foreign_i = 1$ and taking the conditional expectation of $price_i$:

$$\begin{split} E(\text{price}_i | \text{ wgt}_i, \text{mpg}_i, \text{foreign}_i &= 1) \\ &= \beta_1 + \beta_2 \text{wgt}_i + \beta_3 \text{wgt}_i^2 + \beta_4 \text{mpg}_i + \beta_5 \text{mpg}_i^2 + \beta_6 \text{wgt}_i \text{mpg}_i + \beta_7 \end{split}$$

• The **conditional mean price of** *domestic* **cars** is obtained from equation (5) by **setting** $foreign_i = 0$ and taking the conditional expectation of $price_i$:

$$\begin{split} E & \left(price_i \middle| \ wgt_i, mpg_i, foreign_i = 0 \right) \\ & = \beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + \beta_5 mpg_i^2 + \beta_6 wgt_i mpg_i \end{split}$$

• Take the difference between the conditional mean price of foreign cars and the conditional mean price of "similar" domestic cars, where "similar" means foreign and domestic cars with **the** *same* **values of** *wgt_i* **and** *mpg_i*.

$$\begin{split} E \big(price_i \big| \ wgt_i, mpg_i, foreign_i = 1 \big) - \ E \big(price_i \big| \ wgt_i, mpg_i, foreign_i = 0 \big) \\ &= \beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + \beta_5 mpg_i^2 + \beta_6 wgt_i mpg_i + \beta_7 \\ &- \beta_1 - \beta_2 wgt_i - \beta_3 wgt_i^2 - \beta_4 mpg_i - \beta_5 mpg_i^2 - \beta_6 wgt_i mpg_i \\ &= \beta_7 \end{split}$$

File: examples.doc Page 18 of 21

Result: The coefficient β_7 on the foreign_i dummy variable in equation (5) is

$$\beta_7 = E(price_i | wgt_i, mpg_i, foreign_i = 1) - E(price_i | wgt_i, mpg_i, foreign_i = 0)$$

- = the mean price of *foreign* cars with given values of wgt_i and mpg_i minus
 - the mean price of *domestic* cars with the same values of wgt_i and mpg_i
- = the adjusted mean price difference between foreign and domestic cars of the same weight and fuel efficiency, that have the same values of wgt_i and mpg_i
- Compare β_7 in equation (5) with β_2 in the following simple regression equation:

$$price_i = \beta_1 + \beta_2 foreign_i + u_i$$

$$\beta_2 = E(price_i | foreign_i = 1) - E(price_i | foreign_i = 0)$$

- = the mean price of all *foreign* cars *minus*
 - the mean price of all *domestic* cars
- = the *unadjusted* mean price difference between *all foreign* and *all* domestic cars regardless of their weight and fuel efficiency

Hypothesis of interest

- 5. There is no difference between the mean price of foreign and domestic cars that have the same weight and fuel efficiency.
- H_0 : $\beta_7 = 0 \implies$ $E(price_i | wgt_i, mpg_i, foreign_i = 1) E(price_i | wgt_i, mpg_i, foreign_i = 0) = 0$
- $H_1: \beta_7 \neq 0 \Rightarrow$ $E(price_i | wgt_i, mpg_i, foreign_i = 1) - E(price_i | wgt_i, mpg_i, foreign_i = 0) \neq 0$

Model (5)

$$price_{_{i}} = \beta_{_{1}} + \beta_{_{2}}wgt_{_{i}} + \beta_{_{3}}wgt_{_{i}}^{^{2}} + \beta_{_{4}}mpg_{_{i}} + \beta_{_{5}}mpg_{_{i}}^{^{2}} + \beta_{_{6}}wgt_{_{i}}mpg_{_{i}} + \beta_{_{7}}foreign_{_{i}} + u_{_{i}}.$$

File: examples.doc Page 19 of 21

The OLS SRE for Model (5)

. regress price wgt wgtsq mpg mpgsq wgtmpg foreign

Source	SS	df	MS		Number of obs	
Model Residual	358503838 276561558		0639.7 784.45		Prob > F R-squared Adj R-squared	= 0.0000 = 0.5645
Total	635065396	73 8699	525.97		Root MSE	= 2031.7
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
wgt wgtsq mpg mpgsq	-15.3063 .0020985 -1407.999 14.23503	9.724082 .0008898 1211.602 13.65253	-1.574 2.358 -1.162 1.043	0.120 0.021 0.249 0.301	-34.71565 .0003224 -3826.366 -13.01554	4.103051 .0038747 1010.368 41.4856

 wgtmpg
 .2373812
 .2026331
 1.171
 0.246
 -.1670761
 .6418385

 foreign
 2749.963
 789.1946
 3.485
 0.001
 1174.724
 4325.202

 _cons
 39826.01
 28102.9
 1.417
 0.161
 -16267.6
 95919.63

. test wgt wgtsq wgtmpg

F-test of hypothesis 1

```
(1) wgt = 0.0 (2) wgtsq = 0.0
```

(3) wgtmpg = 0.0

$$F(3, 67) = 8.46$$

 $Prob > F = 0.0001$

. test wgtsq wgtmpg

F-test of hypothesis 2

$$(1)$$
 wgtsq = 0.0 (2) wgtmpg = 0.0

$$F(2, 67) = 4.55$$

 $Prob > F = 0.0140$

. test mpg mpgsq wgtmpg

F-test of hypothesis 3

$$(1) mpg = 0.0$$

$$(2)$$
 mpgsq = 0.0

$$(3)$$
 wgtmpg = 0.0

$$F(3, 67) = 0.56$$

 $Prob > F = 0.6419$

. test mpgsq wgtmpg

F-test of hypothesis 4

$$(1)$$
 mpgsq = 0.0

$$(2)$$
 wgtmpg = 0.0

$$F(2, 67) = 0.69$$

Prob > F = 0.5068

File: examples.doc

The OLS SRE for Model (5)

. regress price wgt wgtsq mpg mpgsq wgtmpg foreign

Source	SS	df	MS		Number of obs	
Model Residual	358503838 276561558		0639.7 784.45		Prob > F R-squared Adi R-squared	= 0.0000 = 0.5645
Total	635065396	73 8699	525.97		Root MSE	= 2031.7
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
wgt wgtsq mpg mpgsq wgtmpg foreign _cons	-15.3063 .0020985 -1407.999 14.23503 .2373812 2749.963 39826.01	9.724082 .0008898 1211.602 13.65253 .2026331 789.1946 28102.9	-1.574 2.358 -1.162 1.043 1.171 3.485 1.417	0.120 0.021 0.249 0.301 0.246 0.001 0.161	-34.71565 .0003224 -3826.366 -13.01554 1670761 1174.724 -16267.6	4.103051 .0038747 1010.368 41.4856 .6418385 4325.202 95919.63

. test foreign = 0

F-test of hypothesis 5

(1) foreign = 0.0

$$F(1, 67) = 12.14$$

Prob > $F = 0.0009$

. test foreign

F-test of hypothesis 5 (again)

(1) foreign = 0.0

. lincom foreign

t-test of hypothesis 5

(1) foreign = 0.0

- '	Coef.		 [95% Conf.	Interval]
:	2749.963	3.485	1174.724	4325.202

File: examples.doc Page 21 of 21