Examples of Multiple Linear Regression Models Data: Stata tutorial data set in text file auto1.raw or auto1.txt. Sample data: A cross-sectional sample of 74 cars sold in North America in 1978. ## Variable definitions: ``` price_{i} = the \ price \ of \ the \ i-th \ car \ (in \ US \ dollars); wgt_{i} = the \ weight \ of \ the \ i-th \ car \ (in \ pounds); mpg_{i} = the \ fuel \ efficiency \ of \ the \ i-th \ car \ (in \ miles \ per \ gallon); foreign_{i} = 1 \ if \ the \ i-th \ car \ is \ manufactured \ outside \ North \ America, = 0 \ otherwise. ``` File: examples.doc Page 1 of 21 ## **Multiple Linear Regression Model (1)** The PRE is: price_i = $$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + u_i$$. (1) $k = 3$; $k - 1 = 2$ • The regressor wgt_i² is called an *interaction* variable. It is the product of wgt_i with itself; it is a *second-order* polynomial term in the variable wgt_i. ## Marginal or partial effect of wgt_i The marginal effect of wgt_i on price_i is obtained by partially differentiating regression equation (2) with respect to wgt_i . $$\frac{\partial \operatorname{price}_{i}}{\partial \operatorname{wgt}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} | \operatorname{wgt}_{i})}{\partial \operatorname{wgt}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} | \bullet)}{\partial \operatorname{wgt}_{i}} = \beta_{2} + 2\beta_{3} \operatorname{wgt}_{i}.$$ • Marginal effect of wgt_i on $price_i$ is a linear function of wgt_i . It is not a constant. # Hypotheses of interest 1. The *marginal* effect of wgt_i on $price_i$ is zero: i.e., wgt_i has no effect on $price_i$; or car $price_i$ is unrelated to car wgt_i . • $$H_0$$: $\beta_2 = 0$ and $\beta_3 = 0$ $\Rightarrow \frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i = 0$. **Restricted** model corresponding to H_0 : set $\beta_2 = 0$ and $\beta_3 = 0$ in PRE (1). price_i = $$\beta_1 + u_i$$. $k_0 = 1$; $k_0 - 1 = 0$ • $$H_1$$: $\beta_2 \neq 0$ and/or $\beta_3 \neq 0$ \Rightarrow $\frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i$. *Unrestricted* model corresponding to H₁: is PRE (1). File: examples.doc Page 2 of 21 2. The *marginal* effect of wgt_i on $price_i$ is *constant*: i.e., it does not depend on wgt_i . • $$H_0$$: $\beta_3 = 0$ \Rightarrow $\frac{\partial \, price_i}{\partial \, wgt_i} = \beta_2 + 2\beta_3 wgt_i = \beta_2$. **Restricted** model corresponding to H_0 : set $\beta_3 = 0$ in PRE (1). $$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + u_{i}.$$ $$k_0 = 2;$$ $k_0 - 1 = 1$ • $$H_1$$: $\beta_3 \neq 0 \implies \frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i$. *Unrestricted* model corresponding to H₁: is PRE (1). price_i = $$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + u_i$$. (1) $k = 3$; $k - 1 = 2$ ## The OLS SRE for Model (1) . regress price wgt wgtsq | Source | SS | df | MS | | Number of obs | = 74 | |---------------------------|-------------------------------------|----------------------------------|------------------------------------|-------------------------|---|----------------------------------| | Model
Residual
 | 250285462
384779934
635065396 | 71 5419
 |
142731
435.69

525.97 | | F(2, 71) Prob > F R-squared Adj R-squared Root MSE | = 0.0000 $= 0.3941$ | | price | Coef. | Std. Err. | t | P> t | [95% Conf. | Interval] | | wgt
wgtsq
_cons | -7.273097
.0015142
13418.8 | 2.691747
.0004337
3997.822 | -2.702
3.491
3.357 | 0.009
0.001
0.001 | -12.64029
.0006494
5447.372 | -1.905906
.002379
21390.23 | . test wgt wgtsq F-test of hypothesis 1 File: examples.doc Page 3 of 21 3. The marginal effect of wgt_i on $price_i$ is decreasing in wgt_i : i.e., the marginal effect of wgt_i on $price_i$ exhibits decreasing marginal returns in wgt_i . • $$H_0$$: $\beta_3 = 0$ or $\beta_3 \ge 0$ \Rightarrow $\frac{\partial^2 \operatorname{price}_i}{\partial \operatorname{wgt}_i^2} = 2\beta_3 \ge 0$. • $$H_1$$: $\beta_3 < 0 \implies \frac{\partial \, price_i}{\partial \, wgt_i} = \beta_2 + 2\beta_3 wgt_i \quad and \quad \frac{\partial^2 \, price_i}{\partial \, wgt_i^2} = 2\beta_3 < 0$. $\Rightarrow \quad a \, one\text{-sided} \, alternative \, hypothesis$ $\Rightarrow \quad a \, left\text{-tail} \, test$ Perform a *left-tail* **t-test** using the OLS coefficient estimate $\hat{\beta}_3$ of β_3 for the *unrestricted* **model** corresponding to H₁, which is PRE (1): price_i = $$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + u_i$$. (1) $k = 3; \quad k - 1 = 2; \quad N - k = N - 3.$ **4.** The *marginal* effect of wgt_i on *price*_i is *increasing* in wgt_i : i.e., the marginal effect of wgt_i on $price_i$ exhibits *increasing* marginal returns in wgt_i . • $$H_0$$: $\beta_3 = 0$ or $\beta_3 \le 0$ \Rightarrow $\frac{\partial^2 \operatorname{price}_i}{\partial \operatorname{wgt}_i^2} = 2\beta_3 \le 0$. • $$H_1$$: $\beta_3 > 0 \implies \frac{\partial \, price_i}{\partial \, wgt_i} = \beta_2 + 2\beta_3 wgt_i \quad and \quad \frac{\partial^2 \, price_i}{\partial \, wgt_i^2} = 2\beta_3 > 0.$ $\Rightarrow \quad a \, one\text{-sided} \, alternative \, hypothesis$ $\Rightarrow \quad a \, right\text{-tail} \, test$ Perform a *right-tail* **t-test** using the OLS coefficient estimate $\hat{\beta}_3$ of β_3 for the *unrestricted* model corresponding to H₁, which is PRE (1): price_i = $$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + u_i$$. (1) $k = 3;$ $k - 1 = 2;$ $N - k = N - 3.$ File: examples.doc Page 4 of 21 ## **Multiple Linear Regression Model (2)** ### The PRE is: price_i = $$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + u_i$$. (2) $k = 4$; $k - 1 = 3$. # Marginal or partial effect of wgt_i The marginal effect of wgt_i on price_i is obtained by partially differentiating regression equation (2) with respect to wgt_i . $$\frac{\partial \, price_{_{i}}}{\partial \, wgt_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, wgt_{_{i}}, \, mpg_{_{i}})}{\partial \, wgt_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, \bullet)}{\partial \, wgt_{_{i}}} = \beta_{_{2}} + 2\, \beta_{_{3}} wgt_{_{i}} \, .$$ • Marginal effect of wgt_i on $price_i$ is a linear function of wgt_i ; it is not a constant. ## Marginal or partial effect of mpgi The marginal or partial effect of mpg_i mpg_i on price_i is obtained by partially differentiating regression equation (2) with respect to mpg_i. $$\frac{\partial \, price_{_{i}}}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, wgt_{_{i}}, \, mpg_{_{i}})}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, \bullet)}{\partial \, mpg_{_{i}}} = \beta_{_{4}} \, .$$ • Marginal effect of *mpg_i* on *price_i* is *constant*: it does not vary with any observable variable. # Hypotheses of interest - 1. The marginal effect of wgt_i on $price_i$ is zero: i.e., wgt_i has no effect on $price_i$; or car $price_i$ is unrelated to car wgt_i . - 2. The marginal effect of wgt_i on $price_i$ is constant: i.e., it does not depend on wgt_i . - 3. The *marginal* effect of *mpg_i* on *price_i* is *zero*: i.e., *mpg_i* has no effect on *price_i*; or car *price_i* is unrelated to fuel efficiency as measured by *mpg_i*. File: examples.doc Page 5 of 21 1. The marginal effect of wgt_i on $price_i$ is zero: i.e., wgt_i has no effect on $price_i$; or car $price_i$ is unrelated to car wgt_i . • $$H_0$$: $\beta_2 = 0$ and $\beta_3 = 0$ $\Rightarrow \frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i = 0$. **Restricted** model corresponding to H_0 : set $\beta_2 = 0$ and $\beta_3 = 0$ in PRE (2). $$price_{i} = \beta_{1} + \beta_{4}mpg_{i} + u_{i}.$$ $$k_0 = 2$$; $k_0 - 1 = 1$. • $$H_1$$: $\beta_2 \neq 0$ and/or $\beta_3 \neq 0$ \Rightarrow $\frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i$. *Unrestricted* model corresponding to H₁: is PRE (2). price_i = $$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + u_i$$. (2) $k = 4$; $k - 1 = 3$. 2. The marginal effect of wgt_i on $price_i$ is constant: i.e., it does not depend on wgt_i . • $$H_0$$: $\beta_3 = 0$ \Rightarrow $\frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i = \beta_2$. **Restricted** model corresponding to H_0 : set $\beta_3 = 0$ in PRE (2). $$price_i = \beta_1 + \beta_2 wgt_i + \beta_4 mpg_i + u_i$$. $$k_0 = 3;$$ $k_0 - 1 = 2$ • $$H_1$$: $\beta_3 \neq 0 \implies \frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i$. *Unrestricted* model corresponding to H₁: is PRE (2). $$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + u_{i}$$. (2) $$k = 4;$$ $k - 1 = 3.$ File: examples.doc Page 6 of 21 3. The *marginal* effect of *mpg_i* on *price_i* is *zero*: i.e., *mpg_i* has no effect on *price_i*; or car *price_i* is unrelated to fuel efficiency as measured by *mpg_i*. $$\bullet \quad H_0: \ \beta_4 = 0 \qquad \Rightarrow \qquad \frac{\partial \, price_i}{\partial \, mpg_i} = \beta_4 \, = \, 0 \, .$$ **Restricted** model corresponding to H_0 : set $\beta_4 = 0$ in PRE (2). price_i = $$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + u_i$$. $k_0 = 3$; $k_0 - 1 = 2$ • $$H_1$$: $\beta_4 \neq 0$ \Rightarrow $\frac{\partial \, price_i}{\partial \, mpg_i} = \beta_4$. *Unrestricted* model corresponding to H₁: is PRE (2). price_i = $$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + u_i$$. (2) $k = 4$; $k - 1 = 3$. File: examples.doc Page 7 of 21 ## The OLS SRE for Model (2) $$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + u_{i}.$$ (2) #### . regress price wgt wgtsq mpg | Source | SS S | df | MS | | Number of obs F(3, 70) | | |------------------------------|--|---|------------------------------------|----------------------------------|--|--| | Model
Residual | 262753599
372311797 | 70 531 | 84533.2
8739.95 | | Prob > F
R-squared
Adj R-squared | = 0.0000
= 0.4137
= 0.3886 | | Total | 635065396 | 73 869 | 9525.97 | | Root MSE | = 2306.2 | | price | Coef. | Std. Err. | t
 | P> t | [95% Conf. | Interval] | | wgt
wgtsq
mpg
_cons | -9.039563
.0016794
-124.7675
19804.79 | 2.905512
.000443
81.49014
5751.709 | -3.111
3.791
-1.531
3.443 | 0.003
0.000
0.130
0.001 | -14.83442
.0007958
-287.2945
8333.365 | -3.244703
.002563
37.75945
31276.21 | #### . test wgt wgtsq ### F-test of hypothesis 1 $$F(2, 70) = 11.59$$ Prob > F = 0.0000 #### . test wgtsq ## F-test of hypothesis 2 $$(1)$$ wgtsq = 0.0 $$F(1, 70) = 14.37$$ $Prob > F = 0.0003$ #### . test mpg ## F-test of hypothesis 3 $$(1) mpg = 0.0$$ $$F(1, 70) = 2.34$$ $Prob > F = 0.1303$ #### . lincom mpg ### t-test of hypothesis 3 (1) mpg = 0.0 | - ' | Coef. | |
[95% Conf. | Interval] | |-----|-----------|--|----------------|-----------| | | -124.7675 | | -287.2945 | 37.75945 | File: examples.doc Page 8 of 21 ## **Multiple Linear Regression Model (3)** The PRE is: price_i = $$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + \beta_5 mpg_i^2 + u_i$$. (3) $k = 5$; $k - 1 = 4$. Marginal or partial effect of wgti $$\frac{\partial \operatorname{price}_{i}}{\partial \operatorname{wgt}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} \big| \operatorname{wgt}_{i}, \operatorname{mpg}_{i})}{\partial \operatorname{wgt}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} \big| \bullet)}{\partial \operatorname{wgt}_{i}} = \beta_{2} + 2\beta_{3} \operatorname{wgt}_{i}.$$ • Marginal effect of wgt_i on $price_i$ is a linear function of wgt_i ; it is not a constant. Marginal or partial effect of mpgi $$\frac{\partial \operatorname{price}_{i}}{\partial \operatorname{mpg}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} \big| \operatorname{wgt}_{i}, \operatorname{mpg}_{i})}{\partial \operatorname{mpg}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} \big| \bullet)}{\partial \operatorname{mpg}_{i}} = \beta_{4} + 2\beta_{5} \operatorname{mpg}_{i}.$$ • Marginal effect of mpg_i on $price_i$ is a linear function of mpg_i ; it is not a constant. # Hypotheses of interest - 1. The marginal effect of wgt_i on $price_i$ is zero: i.e., wgt_i has no effect on $price_i$; or car $price_i$ is unrelated to car wgt_i . - 2. The *marginal* effect of wgt_i on $price_i$ is *constant*: i.e., it does not depend on wgt_i or mpg_i . - 3. The *marginal* effect of *mpg_i* on *price_i* is *zero*: i.e., *mpg_i* has no effect on *price_i*; or car *price_i* is unrelated to fuel efficiency as measured by *mpg_i*. - **4.** The *marginal* effect of mpg_i on $price_i$ is *constant*: i.e., it does not depend on mpg_i or wgt_i . File: examples.doc Page 9 of 21 1. The *marginal* effect of wgt_i on $price_i$ is zero: i.e., wgt_i has no effect on $price_i$; or $car\ price_i$ is unrelated to $car\ wgt_i$. • $$H_0$$: $\beta_2 = 0$ and $\beta_3 = 0$ $\Rightarrow \frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i = 0$. **Restricted** model corresponding to H_0 : set $\beta_2 = 0$ and $\beta_3 = 0$ in PRE (3). price_i = $$\beta_1 + \beta_4 mpg_i + \beta_5 mpg_i^2 + u_i$$. $k_0 = 3$; $k_0 - 1 = 2$. • $$H_1$$: $\beta_2 \neq 0$ and/or $\beta_3 \neq 0$ \Rightarrow $\frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i$ *Unrestricted* model corresponding to H₁: is PRE (3). $$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + u_{i}.$$ $$k = 5; \quad k - 1 = 4.$$ (3) 2. The *marginal* effect of wgt_i on $price_i$ is *constant*: i.e., it does not depend on wgt_i or mpg_i . • $$H_0$$: $\beta_3 = 0$ \Rightarrow $\frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2$ **Restricted** model corresponding to H_0 : set $\beta_3 = 0$ in PRE (3). price_i = $$\beta_1 + \beta_2 wgt_i + \beta_4 mpg_i + \beta_5 mpg_i^2 + u_i$$. $k_0 = 4$; $k_0 - 1 = 3$. • $$H_1$$: $\beta_3 \neq 0 \implies \frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i$ *Unrestricted* model corresponding to H₁: is PRE (3). $$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + u_{i}.$$ $$k = 5; \quad k - 1 = 4.$$ (3) File: examples.doc Page 10 of 21 3. The marginal effect of mpg_i on $price_i$ is zero: i.e., mpg_i has no effect on $price_i$; or car $price_i$ is unrelated to fuel efficiency as measured by mpg_i . • $$H_0$$: $\beta_4 = 0$ and $\beta_5 = 0$ \Rightarrow $\frac{\partial \, price_i}{\partial \, mpg_i} = \beta_4 + 2 \beta_5 mpg_i = 0$. **Restricted** model corresponding to H_0 : set $\beta_4 = 0$ and $\beta_5 = 0$ in PRE (3). price_i = $$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + u_i$$. $k_0 = 3$; $k_0 - 1 = 2$. • $$H_1$$: $\beta_4 \neq 0$ and/or $\beta_5 \neq 0$ \Rightarrow $\frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_4 + 2\beta_5 \operatorname{mpg}_i$. *Unrestricted* model corresponding to H₁: is PRE (3). $$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + u_{i}.$$ $$k = 5; \quad k - 1 = 4.$$ (3) **4.** The *marginal* effect of mpg_i on $price_i$ is *constant*: i.e., it does not depend on mpg_i or wgt_i . • $$H_0$$: $\beta_5 = 0$ \Rightarrow $\frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_4 + 2\beta_5 \operatorname{mpg}_i = \beta_4$. **Restricted** model corresponding to H_0 : set $\beta_5 = 0$ in PRE (3). price_i = $$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + u_i$$. $k_0 = 4$: $k_0 - 1 = 3$. • $$H_1$$: $\beta_5 \neq 0 \implies \frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_4 + 2\beta_5 \operatorname{mpg}_i$ *Unrestricted* model corresponding to H₁: is PRE (3). $$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + u_{i}.$$ $$k = 5; \quad k - 1 = 4.$$ (3) File: examples.doc Page 11 of 21 ## Model (3) $$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + u_{i}.$$ (3) ## The OLS SRE for Model (3) #### . regress price wgt wgtsq mpg mpgsq | Source | SS S | df | MS | | Number of obs $F(4, 69)$ | | |--------------------------------------|---|--|---|---|---|--| | Model
Residual | 272062621
363002775 | | 5655.2
909.79 | | Prob > F R-squared Adj R-squared | = 0.0000
= 0.4284 | | Total | 635065396 | 73 8699! | 525.97 | | Root MSE | = 2293.7 | | price | Coef. | Std. Err. | t | P> t | [95% Conf. | Interval] | | wgt
wgtsq
mpg
mpgsq
cons | -7.99723
 .0014407
 -615.2419
 9.323582 | 2.994029
.0004757
377.5204
7.009083
6878.057 | -2.671
3.028
-1.630
1.330
3.618 | 0.009
0.003
0.108
0.188
0.001 | -13.97015
.0004916
-1368.375
-4.659156
11163.61 | -2.024306
.0023898
137.8907
23.30632
38606.3 | #### . test wgt wgtsq ### F-test of hypothesis 1 $$(1)$$ wgt = 0.0 (2) wgtsq = 0.0 $$F(2, 69) = 5.34$$ Prob > F = 0.0070 ### . test wgtsq ## F-test of hypothesis 2 $$(1)$$ wgtsq = 0.0 $$F(1, 69) = 9.17$$ $Prob > F = 0.0035$ ### . test mpg mpgsq ### F-test of hypothesis 3 $$(1)$$ mpg = 0.0 (2) mpgsq = 0.0 $$F(2, 69) = 2.07$$ Prob > F = 0.1340 . test mpgsq ## F-test of hypothesis 4 (1) mpgsq = 0.0 $$F(1, 69) = 1.77$$ Prob > F = 0.1878 ## **Multiple Linear Regression Model (4)** ### The PRE is: $$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + u_{i}.$$ (4) $$k = 6; \quad k - 1 = 5.$$ # Marginal or partial effect of wgt_i $$\frac{\partial \, price_{_{i}}}{\partial \, wgt_{_{i}}} = \frac{\partial \, E(price_{_{i}} \big| \, wgt_{_{i}}, \, mpg_{_{i}})}{\partial \, wgt_{_{i}}} = \frac{\partial \, E(price_{_{i}} \big| \, \bullet)}{\partial \, wgt_{_{i}}} = \beta_{_{2}} + 2\, \beta_{_{3}} wgt_{_{i}} + \beta_{_{6}} mpg_{_{i}}.$$ • Marginal effect of wgt_i on $price_i$ is a linear function of wgt_i and mpg_i ; it is not a constant. ## Marginal or partial effect of mpg_i $$\frac{\partial \, price_{_{i}}}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, wgt_{_{i}}, \, mpg_{_{i}})}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, \bullet)}{\partial \, mpg_{_{i}}} = \beta_{_{4}} + 2\beta_{_{5}} mpg_{_{i}} + \, \beta_{_{6}} wgt_{_{i}}.$$ • Marginal effect of mpg_i on $price_i$ is a linear function of mpg_i and wgt_i ; it is not a constant. # Hypotheses of interest - 1. The *marginal* effect of wgt_i on $price_i$ is zero: i.e., wgt_i has no effect on $price_i$; or car $price_i$ is unrelated to car wgt_i . - **2.** The *marginal* effect of wgt_i on $price_i$ is *constant*: i.e., it does not depend on wgt_i and/or mpg_i . - 3. The *marginal* effect of mpg_i on $price_i$ is zero: i.e., mpg_i has no effect on $price_i$; or car $price_i$ is unrelated to fuel efficiency as measured by mpg_i . - **4.** The *marginal* effect of mpg_i on $price_i$ is *constant*: i.e., it does not depend on mpg_i and/or wgt_i . File: examples.doc Page 13 of 21 Page 14 of 21 1. The marginal effect of wgt_i on $price_i$ is zero: i.e., wgt_i has no effect on $price_i$; or $car\ price_i$ is unrelated to $car\ wgt_i$. • $$H_0$$: $\beta_2 = 0$ and $\beta_3 = 0$ and $\beta_6 = 0$ \Rightarrow $\frac{\partial \, price_i}{\partial \, wgt_i} = \beta_2 + 2\beta_3 wgt_i + \beta_6 mpg_i = 0$ **Restricted** model corresponding to H_0 : set $\beta_2 = 0$ and $\beta_3 = 0$ and $\beta_6 = 0$ in PRE (4). $$price_i = \beta_1 + \beta_4 mpg_i + \beta_5 mpg_i^2 + u_i$$. $$k_0 = 3$$; $k_0 - 1 = 2$. • $$H_1$$: $\beta_2 \neq 0$ and/or $\beta_3 \neq 0$ and/or $\beta_6 \neq 0 \Rightarrow \frac{\partial \, price_i}{\partial \, wgt_i} = \beta_2 + 2 \, \beta_3 wgt_i + \beta_6 mpg_i$ *Unrestricted* model corresponding to H₁: is PRE (4). $$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + u_{i}.$$ (4) $k = 6$; $k - 1 = 5$. **2.** The *marginal* effect of wgt_i on $price_i$ is *constant*: i.e., it does not depend on wgt_i and/or mpg_i . • $$H_0$$: $\beta_3 = 0$ and $\beta_6 = 0$ $\Rightarrow \frac{\partial \, price_i}{\partial \, wgt_i} = \beta_2 + 2 \beta_3 wgt_i + \beta_6 mpg_i = \beta_2$ **Restricted** model corresponding to H_0 : set $\beta_3 = 0$ and $\beta_6 = 0$ in PRE (4). $$price_i = \beta_1 + \beta_2 wgt_i + \beta_4 mpg_i + \beta_5 mpg_i^2 + u_i.$$ $$k_0 = 4;$$ $k_0 - 1 = 3.$ • $$H_1$$: $\beta_3 \neq 0$ and/or $\beta_6 \neq 0$ $\Rightarrow \frac{\partial \operatorname{price}_i}{\partial \operatorname{wgt}_i} = \beta_2 + 2\beta_3 \operatorname{wgt}_i + \beta_6 \operatorname{mpg}_i$ *Unrestricted* model corresponding to H₁: is PRE (4). $$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + u_{i}$$. (4) $$k = 6;$$ $k - 1 = 5.$ File: examples.doc 3. The *marginal* effect of mpg_i on $price_i$ is zero: i.e., mpg_i has no effect on $price_i$; or car $price_i$ is unrelated to fuel efficiency as measured by mpg_i . • $$H_0$$: $\beta_4 = 0$ and $\beta_5 = 0$ and $\beta_6 = 0$ \Rightarrow $\frac{\partial \, price_i}{\partial \, mpg_i} = \beta_4 + 2\beta_5 mpg_i + \beta_6 wgt_i = 0$ **Restricted** model corresponding to H_0 : set $\beta_4 = 0$ and $\beta_5 = 0$ and $\beta_6 = 0$ in PRE (4). $$price_{_{i}}=\,\beta_{_{1}}+\beta_{_{2}}wgt_{_{i}}+\beta_{_{3}}wgt_{_{i}}^{^{2}}+u_{_{i}}\,.$$ $$k_0 = 3$$; $k_0 - 1 = 2$. • $$H_1$$: $\beta_4 \neq 0$ and/or $\beta_5 \neq 0$ and/or $\beta_6 \neq 0 \Rightarrow \frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_4 + 2\beta_5 \operatorname{mpg}_i + \beta_6 \operatorname{wgt}_i$ *Unrestricted* model corresponding to H₁: is PRE (4). $$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + u_{i}.$$ (4) $$k = 6; \quad k - 1 = 5.$$ **4.** The *marginal* effect of mpg_i on $price_i$ is *constant*: i.e., it does not depend on mpg_i and/or wgt_i . • $$H_0$$: $\beta_5 = 0$ and $\beta_6 = 0$ $\Rightarrow \frac{\partial \, price_i}{\partial \, mpg_i} = \beta_4 + 2\beta_5 mpg_i + \beta_6 wgt_i = \beta_4$ **Restricted** model corresponding to H_0 : set $\beta_5 = 0$ and $\beta_6 = 0$ in PRE (4). $$price_{_{i}} = \beta_{_{1}} + \beta_{_{2}}wgt_{_{i}} + \beta_{_{3}}wgt_{_{i}}^{^{2}} + \beta_{_{4}}mpg_{_{i}} + u_{_{i}}.$$ $$k_0 = 4;$$ $k_0 - 1 = 3.$ • $$H_1$$: $\beta_5 \neq 0$ and/or $\beta_6 \neq 0$ $\Rightarrow \frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_4 + 2\beta_5 \operatorname{mpg}_i + \beta_6 \operatorname{wgt}_i$ Unrestricted model corresponding to H₁: is PRE (4). $$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + u_{i}.$$ (4) $$k = 6;$$ $k - 1 = 5.$ ## Model (4) $$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + u_{i}$$. (4) ## The OLS SRE for Model (4) #### . regress price wgt wgtsq mpg mpgsq wgtmpg | Source | SS | df
 | MS | | Number of obs F(5, 68) | | |---|--|--|--|--|--|---| | Model
Residual | 308384833
326680563 | | 76966.6
1125.93 | | Prob > F R-squared Adj R-squared | = 0.0000 = 0.4856 | | Total | 635065396 | 73 8699 | 9525.97 | | Root MSE | = 2191.8 | | price | Coef. | Std. Err. | t | P> t | [95% Conf. | Interval] | | wgt
wgtsq
mpg
mpgsq
wgtmpg
_cons | -31.88985
.0034574
-3549.495
38.74472
.5421927
92690.55 | 9.148215
.0008629
1126.464
12.62339
.1971854
25520.53 | -3.486
4.007
-3.151
3.069
2.750
3.632 | 0.001
0.000
0.002
0.003
0.008
0.001 | -50.14483
.0017355
-5797.318
13.55514
.1487154
41765.12 | -13.63487
.0051792
-1301.672
63.9343
.9356701
143616 | #### . test wgt wgtsq wgtmpg #### F-test of hypothesis 1 - (1) wgt = 0.0 - (2) wgtsq = 0.0 - (3) wgtmpg = 0.0 $$F(3, 68) = 6.42$$ $Prob > F = 0.0007$ #### . test wgtsq wgtmpg ### F-test of hypothesis 2 - (1) wgtsq = 0.0 - (2) wgtmpg = 0.0 $$F(2, 68) = 8.80$$ $Prob > F = 0.0004$ #### . test mpg mpgsq wgtmpg - (1) mpg = 0.0 - (2) mpgsq = 0.0 - (3) wgtmpg = 0.0 $$F(3, 68) = 4.03$$ $Prob > F = 0.0106$ #### . test mpgsq wgtmpg ## F-test of hypothesis 4 - (1) mpgsq = 0.0 - (2) wgtmpg = 0.0 $$F(2, 68) = 4.75$$ $Prob > F = 0.0117$ File: examples.doc ## **Multiple Linear Regression Model (5)** ### The PRE is: $$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + \beta_{7}foreign_{i} + u_{i}$$... (5) $$k = 7$$; $k - 1 = 6$. ## Marginal or partial effect of wgti $$\frac{\partial \operatorname{price}_{i}}{\partial \operatorname{wgt}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} \big| \operatorname{wgt}_{i}, \operatorname{mpg}_{i}, \operatorname{foreign}_{i})}{\partial \operatorname{wgt}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} \big| \bullet)}{\partial \operatorname{wgt}_{i}} = \beta_{2} + 2\beta_{3} \operatorname{wgt}_{i} + \beta_{6} \operatorname{mpg}_{i}$$ • Marginal effect of wgt_i on $price_i$ is a linear function of wgt_i and mpg_i ; it is not a constant. # Marginal or partial effect of mpgi $$\frac{\partial \, price_{_{i}}}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \big| \, wgt_{_{i}}, \, mpg_{_{i}}, \, foreign_{_{i}})}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \big| \, \bullet \,)}{\partial \, mpg_{_{i}}} = \beta_{_{4}} + 2\, \beta_{_{5}} mpg_{_{i}} + \, \beta_{_{6}} wgt_{_{i}}$$ • Marginal effect of mpg_i on $price_i$ is a linear function of mpg_i and wgt_i ; it is not a constant. # Hypotheses of interest - 1. The *marginal* effect of wgt_i on $price_i$ is zero: i.e., wgt_i has no effect on $price_i$; or $car\ price_i$ is unrelated to $car\ wgt_i$. - 2. The *marginal* effect of wgt_i on $price_i$ is *constant*: i.e., it does not depend on wgt_i and/or mpg_i . - 3. The *marginal* effect of mpg_i on $price_i$ is zero: i.e., mpg_i has no effect on $price_i$; or car $price_i$ is unrelated to fuel efficiency as measured by mpg_i . - **4.** The *marginal* effect of mpg_i on $price_i$ is *constant*: i.e., it does not depend on mpg_i and/or wgt_i . File: examples.doc Page 17 of 21 # Interpretation of the slope coefficient β_7 on the foreign_i dummy variable regressor $$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + \beta_{7}foreign_{i} + u_{i}$$... (5) Compare the expressions implied by regression equation (5) for the conditional mean prices of foreign and domestic cars that have the same weight and fuel efficiency. • The **conditional mean price of** *foreign* **cars** is obtained from equation (5) by **setting** $foreign_i = 1$ and taking the conditional expectation of $price_i$: $$\begin{split} E(\text{price}_i | \text{ wgt}_i, \text{mpg}_i, \text{foreign}_i &= 1) \\ &= \beta_1 + \beta_2 \text{wgt}_i + \beta_3 \text{wgt}_i^2 + \beta_4 \text{mpg}_i + \beta_5 \text{mpg}_i^2 + \beta_6 \text{wgt}_i \text{mpg}_i + \beta_7 \end{split}$$ • The **conditional mean price of** *domestic* **cars** is obtained from equation (5) by **setting** $foreign_i = 0$ and taking the conditional expectation of $price_i$: $$\begin{split} E & \left(price_i \middle| \ wgt_i, mpg_i, foreign_i = 0 \right) \\ & = \beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + \beta_5 mpg_i^2 + \beta_6 wgt_i mpg_i \end{split}$$ • Take the difference between the conditional mean price of foreign cars and the conditional mean price of "similar" domestic cars, where "similar" means foreign and domestic cars with **the** *same* **values of** *wgt_i* **and** *mpg_i*. $$\begin{split} E \big(price_i \big| \ wgt_i, mpg_i, foreign_i = 1 \big) - \ E \big(price_i \big| \ wgt_i, mpg_i, foreign_i = 0 \big) \\ &= \beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + \beta_4 mpg_i + \beta_5 mpg_i^2 + \beta_6 wgt_i mpg_i + \beta_7 \\ &- \beta_1 - \beta_2 wgt_i - \beta_3 wgt_i^2 - \beta_4 mpg_i - \beta_5 mpg_i^2 - \beta_6 wgt_i mpg_i \\ &= \beta_7 \end{split}$$ File: examples.doc Page 18 of 21 **Result:** The coefficient β_7 on the foreign_i dummy variable in equation (5) is $$\beta_7 = E(price_i | wgt_i, mpg_i, foreign_i = 1) - E(price_i | wgt_i, mpg_i, foreign_i = 0)$$ - = the mean price of *foreign* cars with given values of wgt_i and mpg_i minus - the mean price of *domestic* cars with the same values of wgt_i and mpg_i - = the adjusted mean price difference between foreign and domestic cars of the same weight and fuel efficiency, that have the same values of wgt_i and mpg_i - Compare β_7 in equation (5) with β_2 in the following simple regression equation: $$price_i = \beta_1 + \beta_2 foreign_i + u_i$$ $$\beta_2 = E(price_i | foreign_i = 1) - E(price_i | foreign_i = 0)$$ - = the mean price of all *foreign* cars *minus* - the mean price of all *domestic* cars - = the *unadjusted* mean price difference between *all foreign* and *all* domestic cars regardless of their weight and fuel efficiency # Hypothesis of interest - 5. There is no difference between the mean price of foreign and domestic cars that have the same weight and fuel efficiency. - H_0 : $\beta_7 = 0 \implies$ $E(price_i | wgt_i, mpg_i, foreign_i = 1) E(price_i | wgt_i, mpg_i, foreign_i = 0) = 0$ - $H_1: \beta_7 \neq 0 \Rightarrow$ $E(price_i | wgt_i, mpg_i, foreign_i = 1) - E(price_i | wgt_i, mpg_i, foreign_i = 0) \neq 0$ # Model (5) $$price_{_{i}} = \beta_{_{1}} + \beta_{_{2}}wgt_{_{i}} + \beta_{_{3}}wgt_{_{i}}^{^{2}} + \beta_{_{4}}mpg_{_{i}} + \beta_{_{5}}mpg_{_{i}}^{^{2}} + \beta_{_{6}}wgt_{_{i}}mpg_{_{i}} + \beta_{_{7}}foreign_{_{i}} + u_{_{i}}.$$ File: examples.doc Page 19 of 21 ## The OLS SRE for Model (5) #### . regress price wgt wgtsq mpg mpgsq wgtmpg foreign | Source | SS | df | MS | | Number of obs | | |------------------------------------|---|--|------------------------------------|----------------------------------|---|---| | Model
Residual | 358503838
276561558 | | 0639.7
784.45 | | Prob > F R-squared Adj R-squared | = 0.0000
= 0.5645 | | Total | 635065396 | 73 8699 | 525.97 | | Root MSE | = 2031.7 | | price | Coef. | Std. Err. | t | P> t | [95% Conf. | Interval] | | wgt
wgtsq
mpg
mpgsq | -15.3063
.0020985
-1407.999
14.23503 | 9.724082
.0008898
1211.602
13.65253 | -1.574
2.358
-1.162
1.043 | 0.120
0.021
0.249
0.301 | -34.71565
.0003224
-3826.366
-13.01554 | 4.103051
.0038747
1010.368
41.4856 | wgtmpg .2373812 .2026331 1.171 0.246 -.1670761 .6418385 foreign 2749.963 789.1946 3.485 0.001 1174.724 4325.202 _cons 39826.01 28102.9 1.417 0.161 -16267.6 95919.63 #### . test wgt wgtsq wgtmpg ### F-test of hypothesis 1 ``` (1) wgt = 0.0 (2) wgtsq = 0.0 ``` (3) wgtmpg = 0.0 $$F(3, 67) = 8.46$$ $Prob > F = 0.0001$ ### . test wgtsq wgtmpg ## F-test of hypothesis 2 $$(1)$$ wgtsq = 0.0 (2) wgtmpg = 0.0 $$F(2, 67) = 4.55$$ $Prob > F = 0.0140$ ## . test mpg mpgsq wgtmpg #### F-test of hypothesis 3 $$(1) mpg = 0.0$$ $$(2)$$ mpgsq = 0.0 $$(3)$$ wgtmpg = 0.0 $$F(3, 67) = 0.56$$ $Prob > F = 0.6419$ #### . test mpgsq wgtmpg ### F-test of hypothesis 4 $$(1)$$ mpgsq = 0.0 $$(2)$$ wgtmpg = 0.0 $$F(2, 67) = 0.69$$ Prob > F = 0.5068 File: examples.doc ## The OLS SRE for Model (5) #### . regress price wgt wgtsq mpg mpgsq wgtmpg foreign | Source | SS | df | MS | | Number of obs | | |--|---|---|---|---|--|---| | Model
Residual | 358503838
276561558 | | 0639.7
784.45 | | Prob > F
R-squared
Adi R-squared | = 0.0000
= 0.5645 | | Total | 635065396 | 73 8699 | 525.97 | | Root MSE | = 2031.7 | | price | Coef. | Std. Err. | t | P> t | [95% Conf. | Interval] | | wgt wgtsq mpg mpgsq wgtmpg foreign _cons | -15.3063
.0020985
-1407.999
14.23503
.2373812
2749.963
39826.01 | 9.724082
.0008898
1211.602
13.65253
.2026331
789.1946
28102.9 | -1.574
2.358
-1.162
1.043
1.171
3.485
1.417 | 0.120
0.021
0.249
0.301
0.246
0.001
0.161 | -34.71565
.0003224
-3826.366
-13.01554
1670761
1174.724
-16267.6 | 4.103051
.0038747
1010.368
41.4856
.6418385
4325.202
95919.63 | . test foreign = 0 ## F-test of hypothesis 5 (1) foreign = 0.0 $$F(1, 67) = 12.14$$ Prob > $F = 0.0009$. test foreign ## F-test of hypothesis 5 (again) (1) foreign = 0.0 . lincom foreign ## t-test of hypothesis 5 (1) foreign = 0.0 | - ' | Coef. | |
[95% Conf. | Interval] | |-----|----------|-------|----------------|-----------| | : | 2749.963 | 3.485 | 1174.724 | 4325.202 | File: examples.doc Page 21 of 21