ECON 351* -- Addendum to NOTE 17

General F-Tests of Linear Coefficient Restrictions: An Example

1. An Example

Multiple Linear Regression Model 1

The PRE (population regression equation) for Model 1 is:

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + u_{i}.$$
 (1)

$$k = 6; \quad k - 1 = 5.$$

Marginal effect of wgt_i

$$\frac{\partial \operatorname{price}_{i}}{\partial \operatorname{wgt}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} | \operatorname{wgt}_{i}, \operatorname{mpg}_{i})}{\partial \operatorname{wgt}_{i}} = \frac{\partial \operatorname{E}(\operatorname{price}_{i} | \bullet)}{\partial \operatorname{wgt}_{i}} = \beta_{2} + 2\beta_{3}\operatorname{wgt}_{i} + \beta_{6}\operatorname{mpg}_{i}.$$

• Marginal effect of mpgi

$$\frac{\partial \, price_{_{i}}}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, wgt_{_{i}}, \, mpg_{_{i}})}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \, \big| \, \bullet)}{\partial \, mpg_{_{i}}} = \beta_{4} + 2 \, \beta_{5} mpg_{_{i}} + \, \beta_{6} wgt_{_{i}}.$$

Proposition to test

The *marginal* effect of mpg_i on $price_i$ is zero: i.e., mpg_i has no effect on $price_i$; or car $price_i$ is unrelated to fuel efficiency as measured by mpg_i .

Examine the above expression for the **marginal effect of** mpg_i on $price_i$. We see that a sufficient condition for the proposition to be true for all cars (regardless of their values for wgt_i and mpg_i) is that the **three coefficients** β_4 , β_5 and β_6 all equal zero.

If
$$\beta_4 = 0$$
 and $\beta_5 = 0$ and $\beta_6 = 0$, then $\frac{\partial \text{price}_i}{\partial \text{mpg}_i} = \beta_4 + 2\beta_5 \text{mpg}_i + \beta_6 \text{wgt}_i = 0 \ \forall i$.

Null and Alternative Hypotheses

$$price_{i} = \beta_{1} + \beta_{2}wgt_{i} + \beta_{3}wgt_{i}^{2} + \beta_{4}mpg_{i} + \beta_{5}mpg_{i}^{2} + \beta_{6}wgt_{i}mpg_{i} + u_{i}.$$
 (1)

$$\frac{\partial \, price_{_{i}}}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \big| \, wgt_{_{i}}, \, mpg_{_{i}})}{\partial \, mpg_{_{i}}} = \frac{\partial \, E(price_{_{i}} \big| \bullet)}{\partial \, mpg_{_{i}}} = \beta_{4} + 2 \beta_{5} mpg_{_{i}} + \beta_{6} wgt_{_{i}}.$$

•
$$\mathbf{H_0}$$
: $\beta_4 = \mathbf{0}$ and $\beta_5 = \mathbf{0}$ and $\beta_6 = \mathbf{0}$ $\Rightarrow \frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_4 + 2\beta_5 \operatorname{mpg}_i + \beta_6 \operatorname{wgt}_i = 0$

Restricted model corresponding to H_0 : set $\beta_4 = 0$ and $\beta_5 = 0$ and $\beta_6 = 0$ in the unrestricted model given by PRE (1).

price_i =
$$\beta_1 + \beta_2 wgt_i + \beta_3 wgt_i^2 + u_i$$
 (2)
 $k_0 = 3$; $k_0 - 1 = 2$; $N - k_0 = 74 - 3 = 71$.
 $RSS_0 = 384779934$; $df_0 = N - k_0 = 71$; $R_R^2 = 0.3941$.

The OLS SRE for the Restricted Model – Model 2

. regress price wgt wgtsq

Source	SS 	df	MS		Number of obs F(2, 71)	
Model Residual	250285462	2 125	5142731 9435.69		Prob > F R-squared Adj R-squared	= 0.0000 = 0.3941
Total	635065396	73 8699	9525.97		Root MSE	= 2328.0
price		Std. Err.	t	P> t	[95% Conf.	Interval]
wgt wgtsq _cons	-7.273097	2.691747 .0004337 3997.822	-2.702 3.491 3.357	0.009 0.001 0.001	-12.64029 .0006494 5447.372	-1.905906 .002379 21390.23

• **H₁:** $\beta_4 \neq 0$ and/or $\beta_5 \neq 0$ and/or $\beta_6 \neq 0 \Rightarrow \frac{\partial \operatorname{price}_i}{\partial \operatorname{mpg}_i} = \beta_4 + 2\beta_5 \operatorname{mpg}_i + \beta_6 \operatorname{wgt}_i$

Unrestricted model corresponding to H₁: is PRE (1).

$$\begin{aligned} &\text{price}_{i} = \beta_{1} + \beta_{2} \text{wgt}_{i} + \beta_{3} \text{wgt}_{i}^{2} + \beta_{4} \text{mpg}_{i} + \beta_{5} \text{mpg}_{i}^{2} + \beta_{6} \text{wgt}_{i} \text{mpg}_{i} + u_{i} \\ &k = 6; \quad k - 1 = 5; \quad N - k = 74 - 6 = 68. \\ &RSS_{1} = 326680563; \quad df_{1} = N - k = 68; \quad R_{IJ}^{2} = 0.4856. \end{aligned}$$

The OLS SRE for the *Unrestricted* Model – Model 1

. regress price wgt wgtsq mpg mpgsq wgtmpg

Source	SS	df	MS		Number of obs F(5, 68)	
Model Residual	308384833 326680563		76966.6 1125.93		Prob > F R-squared Adj R-squared	= 0.0000 = 0.4856
Total	635065396	73 8699	9525.97		Root MSE	= 2191.8
price		Std. Err.	t	P> t	[95% Conf.	Interval]
wgt wgtsq mpg mpgsq wgtmpg cons	-31.88985 .0034574 -3549.495 38.74472 .5421927 92690.55	9.148215 .0008629 1126.464 12.62339 .1971854 25520.53	-3.486 4.007 -3.151 3.069 2.750 3.632	0.001 0.000 0.002 0.003 0.008 0.001	-50.14483 .0017355 -5797.318 13.55514 .1487154 41765.12	-13.63487 .0051792 -1301.672 63.9343 .9356701 143616

2. The General F-Statistic

- *Usage:* Can be used to test *any linear* restrictions on the regression *coefficients* in a linear regression model.
- Formula 1 for the general F-statistic is:

$$F = \frac{(RSS_0 - RSS_1)/(df_0 - df_1)}{RSS_1/df_1} = \frac{(RSS_0 - RSS_1)/(k - k_0)}{RSS_1/(N - k)} \sim F[df_0 - df_1, df_1]$$
(F1)

where:

 RSS_0 = the *residual sum of squares* for the <u>restricted</u> OLS-SRE;

 RSS_1 = the *residual sum of squares* for the *unrestricted* OLS-SRE;

 k_0 = the number of free regression coefficients in the <u>restricted</u> model;

k = the *number of free regression coefficients* in the <u>unrestricted</u> model;

 $k - k_0$ = the **number of** *independent linear coefficient restrictions* specified by the null hypothesis H_0 ;

N - k =the degrees of freedom for RSS₁, the <u>unrestricted</u> RSS.

 $df_0 = N - k_0 = the$ degrees of freedom for RSS₀, the <u>restricted</u> RSS;

 $df_1 = N - k =$ the degrees of freedom for RSS₁, the <u>unrestricted</u> RSS;

$$df_0-df_1\ =\ N-k_0-(N-k)\ =\ N-k_0-N+k\ =\ k-k_0.$$

Note: $df_0 - df_1 = k - k_0 =$ the number of *independent linear coefficient* restrictions specified by the null hypothesis H_0 .

• Formula 2 for the general F-statistic is:

$$F = \frac{(R_U^2 - R_R^2)/(df_0 - df_1)}{(1 - R_U^2)/df_1} = \frac{(R_U^2 - R_R^2)/(k - k_0)}{(1 - R_U^2)/(N - k)} \sim F[df_0 - df_1, df_1].$$
 (F2)

where:

 R_R^2 = the *R*-squared value for the <u>restricted</u> OLS-SRE;

 $R_{\rm U}^2$ = the **R-squared value** for the <u>unrestricted</u> **OLS-SRE**.

3. Performing a General F-Test of Exclusion Restrictions

Calculate the sample value of the general F-statistic using formula 1

$$\begin{split} RSS_0 &= 384779934; \quad df_0 = N - k_0 = 71; \qquad R_R^2 = 0.3941. \\ RSS_1 &= 326680563; \quad df_1 = N - k = 68; \qquad R_U^2 = 0.4856. \\ F_0 &= \frac{(RSS_0 - RSS_1)/(df_0 - df_1)}{RSS_1/df_1} \\ &= \frac{(384779934 - 326680563)/(71 - 68)}{326680563/68} \\ &= \frac{58099371/3}{326680563/68} \\ &= \textbf{4.031} \end{split}$$

Calculate the sample value of the general F-statistic using formula 2

$$F_0 = \frac{(R_U^2 - R_R^2)/(df_0 - df_1)}{(1 - R_U^2)/df_1}$$

$$= \frac{(0.4856 - 0.3941)/3}{(1 - 0.4856)/68}$$

$$= \frac{0.0915/3}{0.5144/68}$$

$$= 4.032$$

Result: $F_0 = 4.032$

Decision Rule -- Formulation 1

Let $F_{\alpha}[df_0 - df_1, df_1] = the \alpha$ -level critical value of the $F[df_0 - df_1, df_1]$ distribution.

Retain $\mathbf{H_0}$ at significance level α if $F_0 \leq F_{\alpha}[df_0 - df_0, df_1]$.

Reject $\mathbf{H_0}$ at significance level α if $F_0 > F_{\alpha}[df_0 - df_0, df_1]$.

• Critical values of F[3, 68]

```
\alpha = 0.05: \quad F_{0.05}[3, 68] = 2.79 \alpha = 0.01: \quad F_{0.01}[3, 68] = 4.08 . \text{ display invFtail(3, 68, 0.05)} 2.794891 . \text{ display invFtail(3, 68, 0.01)} 4.083395
```

Inference:

- $F_0 = 4.032 > 2.79 = F_{0.05}[3, 68]$ \Rightarrow *reject* H_0 at 5% significance level
- $F_0 = 4.032 < 4.08 = F_{0.01}[3, 68]$ \Rightarrow *retain* H_0 at 1% significance level

Decision Rule -- Formulation 2

Retain H_0 at significance level α if the **p-value for** $F_0 \ge \alpha$.

Reject H_0 at significance level α if the p-value for $F_0 < \alpha$.

• p-value for $F_0 = 0.0106$

```
. display Ftail(3, 68, 4.032)
.01062773
```

Inference:

- p-value for $F_0 = 0.0106 < 0.05$ \Rightarrow reject H_0 at 5% significance level
- p-value for $F_0 = 0.0106 > 0.01$ \Rightarrow retain H_0 at 1% significance level

Computing this General F-Test with Stata

The Stata test command computes general F-tests of any set of coefficient restrictions on linear regression models.

The OLS SRE for the Unrestricted Model – Model 1

. regress price wgt wgtsq mpg mpgsq wgtmpg

Source	SS	df	MS		Number of obs F(5, 68)	
Model Residual	308384833 326680563		76966.6 4125.93		Prob > F R-squared Adj R-squared	= 0.0000 = 0.4856
Total	635065396	73 869	9525.97		Root MSE	= 2191.8
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
wgt wgtsq mpg mpgsq wgtmpg _cons	-31.88985 .0034574 -3549.495 38.74472 .5421927 92690.55	9.148215 .0008629 1126.464 12.62339 .1971854 25520.53	-3.486 4.007 -3.151 3.069 2.750 3.632	0.001 0.000 0.002 0.003 0.008 0.001	-50.14483 .0017355 -5797.318 13.55514 .1487154 41765.12	-13.63487 .0051792 -1301.672 63.9343 .9356701 143616

. test mpg mpgsq wgtmpg

- (1) mpg = 0.0 (2) mpgsq = 0.0 (3) wgtmpg = 0.0

$$F(3, 68) = 4.03$$

 $Prob > F = 0.0106$

4. Outline of the General F-Test Procedure

Once the null hypothesis H_0 and the alternative hypothesis H_1 have been formulated, the procedure for testing a set of $df_0 - df_1 = k - k_0$ independent linear coefficient restrictions consists of **four basic steps**.

<u>Step 1</u>: Estimate by OLS the *unrestricted* model implied by the alternative **hypothesis** H_1 to obtain the *unrestricted* OLS SRE and associated statistics:

$$RSS_1$$
; $df_1 = N - k$; $R_U^2 = ESS_1/TSS = 1 - RSS_1/TSS$.

Step 2: Estimate by OLS the restricted model implied by the null hypothesis H_0 , after imposing on the unrestricted PRE the linear coefficient restrictions specified by the null hypothesis. This yields the restricted OLS SRE and associated statistics:

$$RSS_0$$
; $df_0 = N - k_0$; $R_R^2 = ESS_0/TSS = 1 - RSS_0/TSS$.

Step 3: Compute the sample value of either of the general F-statistics.

$$F = \frac{(RSS_0 - RSS_1)/(df_0 - df_1)}{RSS_1/df_1} = \frac{(R_U^2 - R_R^2)/(df_0 - df_1)}{(1 - R_U^2)/df_1} \sim F[df_0 - df_1, df_1]$$

where:

$$df_0 = N - k_0 =$$
the degrees of freedom for RSS₀, the restricted RSS;
 $df_1 = N - k =$ the degrees of freedom for RSS₁, the unrestricted RSS;
 $df_0 - df_1 = N - k_0 - (N - k) = N - k_0 - N + k = k - k_0$
= the **number** of coefficient restrictions specified by H₀.

Step 4: Apply the conventional decision rule:

- (1) If $F_0 > F_{\alpha}(k-k_0, N-k)$, or if the p-value for $F_0 < \alpha$, reject the coefficient restrictions specified by the null hypothesis H_0 at the 100 α % significance level;
- (2) If $F_0 \leq F_{\alpha}(k-k_0, N-k)$, or if the p-value for $F_0 \geq \alpha$, retain (do not reject) the coefficient restrictions specified by the null hypothesis H_0 at the $100\alpha\%$ significance level.

5. Properties of the Restricted and Unrestricted Coefficient Estimators

The statistical properties of the *restricted* **OLS coefficient estimators** $\hat{\beta}_j$ (j = 1, ..., k) and the *unrestricted* **OLS coefficient estimators** $\hat{\beta}_j$ (j = 1, ..., k) depend on whether the linear coefficient restrictions are *true* or *false*.

- 5.1. If the linear coefficient restrictions specified by the null hypothesis H_0 are TRUE, then
 - (1) the <u>restricted</u> coefficient estimators $\tilde{\beta}_j$ (j = 1, ..., k) are <u>unbiased</u> and have smaller variances than (i.e., are <u>efficient</u> relative to) the unrestricted coefficient estimators $\hat{\beta}_j$ -- i.e.,

$$E(\widetilde{\beta}_{j}) = \beta_{j}$$
 and $Var(\widetilde{\beta}_{j}) \le Var(\widehat{\beta}_{j})$ for all $j = 0, 1, ..., k$;

whereas

(2) the <u>unrestricted</u> coefficient estimators $\hat{\beta}_j$ (j = 1, ..., k) are also unbiased, but have larger variances than (i.e., are inefficient relative to) the restricted coefficient estimators $\tilde{\beta}_j$ -- i.e.,

$$E(\hat{\beta}_j) = \beta_j$$
 and $Var(\widetilde{\beta}_j) \le Var(\hat{\beta}_j)$ for all $j = 0, 1, ..., k$.

<u>Implication</u>: If the linear coefficient restrictions specified by the null hypothesis are *retained* by an F-test, then the <u>restricted</u> coefficient estimators $\tilde{\beta}_j$ (j = 1, ..., k) are preferred because they have smaller variances than the unrestricted coefficient estimators $\hat{\beta}_j$ (j = 0, ..., k). Both estimators are unbiased if the coefficient restrictions are true.

- 5.2. If the linear coefficient restrictions specified by the null hypothesis H_0 are FALSE, then
 - (1) the <u>restricted</u> coefficient estimators $\tilde{\beta}_j$ (j = 1, ..., k) are *biased*, although they still have *smaller* variances than the unrestricted coefficient estimators $\hat{\beta}_i$ -- i.e.,

$$E(\widetilde{\beta}_{j}) \neq \beta_{j}$$
 and $Var(\widetilde{\beta}_{j}) \leq Var(\hat{\beta}_{j})$ for all $j = 0, 1, ..., k$;

whereas

(2) the <u>unrestricted</u> coefficient estimators $\hat{\beta}_j$ (j = 1, ..., k) are <u>unbiased</u>, though they have <u>larger</u> variances than the restricted coefficient estimators $\tilde{\beta}_j$.

$$E(\hat{\beta}_{j}) = \beta_{j}$$
 and $Var(\widetilde{\beta}_{j}) \le Var(\hat{\beta}_{j})$ for all $j = 0, 1, ..., k$.

<u>Implication</u>: If the linear coefficient restrictions specified by the null hypothesis are *rejected* by an F-test, then the <u>unrestricted</u> coefficient estimators $\hat{\beta}_j$ (j = 1, ..., k) are preferred because they are *unbiased*, even though they have larger variances than the restricted coefficient estimators $\tilde{\beta}_j$ (j = 0, ..., k).