ECON 351* -- Addendum to NOTE 8

The P-Value Decision Rule for Hypothesis Tests

Formulation 2 of the Decision Rule for t-Tests

Formulation 2: Determine if the p-value for t_0 , the calculated sample value of the test statistic, is *smaller* or *larger* than the chosen significance level α .

• <u>Definition</u>: The p-value (or probability value) associated with the calculated sample value of the test statistic is defined as the *lowest* significance level at which the null hypothesis H₀ can be rejected, given the calculated sample value of the test statistic.

Interpretation

- The p-value is the probability of obtaining a sample value of the test statistic as extreme as the one we computed if the null hypothesis H_0 is true.
- P-values are *inverse* measures of the strength of evidence *against* the *null* hypothesis H_0 .
 - Small p-values -- p-values close to zero -- constitute strong evidence against the null hypothesis H_0 .
 - Large p-values -- p-values close to one -- provide only weak evidence against the null hypothesis H_0 .

Decision Rule -- Formulation 2: the P-Value Decision Rule

1. If the **p-value** for the calculated sample value of the test statistic *is less than* the chosen **significance level** α , *reject* the null hypothesis at significance level α .

p-value
$$< \alpha \implies reject H_0$$
 at significance level α .

2. If the p-value for the calculated sample value of the test statistic *is greater than* or equal to the chosen significance level α , retain (i.e., do not reject) the null hypothesis at significance level α .

p-value
$$\geq \alpha \Rightarrow retain H_0$$
 at significance level α .

P-Values for Two-Tail and One-Tail t-Tests

Let t_0 be the calculated sample value of a t-statistic under some null hypothesis H_0 .

• Two-tail t-tests

$$H_0$$
: $\beta_2 = b_2$

H₁: $\beta_2 \neq b_2$ a *two-sided* alternative hypothesis

two-tail p-value for
$$t_0 = Pr(|t| > |t_0|)$$

• Left-tail t-tests

$$H_0$$
: $\beta_2 = b_2$

$$H_1$$
: $\beta_2 < b_2$ a one-sided left-sided alternative hypothesis

left-tail p-value for
$$t_0 = Pr(t < t_0)$$

• Right-tail t-tests

$$H_0$$
: $\beta_2 = b_2$

$$H_1$$
: $\beta_2 > b_2$ a one-sided right-sided alternative hypothesis

right-tail p-value for
$$t_0 = Pr(t > t_0)$$

□ P-values for *two-tail* t-tests

• Null and Alternative Hypotheses

 H_0 : $\beta_2 = b_2$

H₁: $\beta_2 \neq b_2$ a *two-sided* alternative hypothesis.

• Definition of two-tail p-value for t₀

 t_0 = the calculated sample value of the t-statistic for a given null hypothesis.

The *two-tail* **p-value of t**₀ is the probability that the null distribution of the test statistic takes an *absolute* value *greater than* the *absolute* value of \mathbf{t}_0 , where the absolute value of \mathbf{t}_0 is denoted as $|\mathbf{t}_0|$. That is,

two-tail p-value for
$$t_0 = Pr(|t| > |t_0|)$$

= $Pr(t > t_0) + Pr(t < -t_0) = 2Pr(t > t_0)$ if $t_0 > 0$
= $Pr(t < t_0) + Pr(t > -t_0) = 2Pr(t < t_0)$ if $t_0 < 0$

Two-tail p-value of t_0 is the probability of obtaining a t value greater in absolute size than the sample value t_0 if the null hypothesis H_0 : $\beta_2 = b_2$ is in fact true.

Remember that a t-distribution is symmetric around its mean of zero.

Two-tail p-values for sample t-statistic t₀

Case 1: $t_0 > 0$

$$t_0 > 0 \quad \Rightarrow \quad -t_0 < 0$$

two-tail p-value for
$$\mathbf{t}_0$$
 = left-tail area A + right-tail area A
= $\Pr(\mathbf{t} < -\mathbf{t}_0) + \Pr(\mathbf{t} > \mathbf{t}_0)$
= $\Pr(\mathbf{t} > \mathbf{t}_0) + \Pr(\mathbf{t} > \mathbf{t}_0)$
= $2\Pr(\mathbf{t} > \mathbf{t}_0)$
= $\Pr(\mathbf{t} > \mathbf{t}_0)$
= $\Pr(\mathbf{t} > \mathbf{t}_0)$

Two-tail p-values for sample t-statistic t₀

Case 2: $t_0 < 0$

$$t_0 < 0 \qquad \Rightarrow \qquad -t_0 > 0$$

two-tail p-value for
$$\mathbf{t}_0$$
 = left-tail area A + right-tail area A
= $\Pr(t < t_0) + \Pr(t > -t_0)$
= $\Pr(t < t_0) + \Pr(t < t_0)$
= $2\Pr(t < t_0)$
= $2\Pr(t < t_0)$
= $2\Pr(t > -t_0)$
= $\Pr(|t| > |t_0|)$

□ Computing *two-tail* critical values and p-values for t-statistics in *Stata* 7

Basic Syntax: The new *Stata* 7 statistical functions for the t-distribution are $ttail(df, t_{\theta})$ and invttail(df, p). The new *Stata* 7 function $ttail(df, t_{\theta})$ replaces the $tprob(df, t_{\theta})$ function of previous releases, and in many ways is easier to use. Similarly, the new *Stata* 7 function $invttail(df, t_{\theta})$ replaces the $invt(df, t_{\theta})$ function of previous releases.

- $ttail(df, t_{\theta})$ computes the <u>right-tail</u> (upper-tail) p-value of a t-statistic that has degrees of freedom df and calculated sample value t_{θ} . It returns the probability that $t > t_0$, i.e., the value of $Pr(t > t_0)$.
- invttail(df, p) computes the <u>right-tail</u> critical value of a t-distribution with degrees of freedom df and probability level p. Let α denote the chosen significance level of the test. For two-tail t-tests, set $p = \alpha/2$. For one-tail t-tests, set $p = \alpha$.
- If $ttail(df, t_{\theta}) = p$, then $invttail(df, p) = t_{\theta}$.

<u>Usage</u>: The statistical functions $ttail(df, t_0)$ and invttail(df, p) must be used with Stata 7 commands such as **display**, **generate**, **replace**, or **scalar**; they cannot be used by themselves. For example, simply typing ttail(72, 2.0) will produce an error message. Instead, to obtain the right-tail p-value for a calculated t-statistic that equals 2.0 and has the t-distribution with 60 degrees of freedom, enter the **display** command:

display ttail(72, 2.0)
.02463658

Examples: Suppose that sample size N = 74 and K = 2, so that the degrees of freedom for t-tests based on a linear regression with two regression coefficients equal N - K = N - 2 = 74 - 2 = 72.

Example 1: Two-tail t-tests

• The following are the *two-tail* critical values $\mathbf{t}_{\alpha/2}$ [72] of the t[72] distribution, where α is the chosen significance level for the two-tail t-test.

```
\begin{array}{lll} \alpha = 0.01 \implies & \alpha/2 = 0.005 \colon & t_{\alpha/2}[72] = t_{0.005}[72] = 2.646; \\ \alpha = 0.02 \implies & \alpha/2 = 0.01 \colon & t_{\alpha/2}[72] = t_{0.01}[72] = 2.379; \\ \alpha = 0.05 \implies & \alpha/2 = 0.025 \colon & t_{\alpha/2}[72] = t_{0.025}[72] = 1.993; \\ \alpha = 0.10 \implies & \alpha/2 = 0.05 \colon & t_{\alpha/2}[72] = t_{0.05}[72] = 1.666. \end{array}
```

• The following commands use the **invttail**(df, p) statistical function to display these *two-tail* critical values of the t[72] distribution at the four chosen significance levels α , namely $\alpha = 0.01$, 0.02, 0.05, and 0.10:

```
display invttail(72, 0.005)
display invttail(72, 0.01)
display invttail(72, 0.025)
display invttail(72, 0.05)
```

```
. display invttail(72, 0.005)
2.6458519

. display invttail(72, 0.01)
2.3792621

. display invttail(72, 0.025)
1.9934635

. display invttail(72, 0.05)
1.6662937
```

• Now use the **ttail**(df, t_0) statistical function to display the *two-tail* **p-values** of the four sample values $t_0 = 2.660$, 2.390, 2.000, and 1.671, which you already know equal the corresponding values of α (0.01, 0.02, 0.05, and 0.10):

```
display 2*ttail(60, 2.660)
display 2*ttail(60, 2.390)
display 2*ttail(60, 2.000)
display 2*ttail(60, 1.671)
```

Note that to compute the *two-tail* **p-values** of the calculated t-statistics, the values of the $ttail(df, t_0)$ function must be multiplied by 2.

```
. display 2*ttail(72, 2.646)
.00999602

. display 2*ttail(72, 2.379)
.02001316

. display 2*ttail(72, 1.993)
.05005189

. display 2*ttail(72, 1.666)
.1000587
```

This example demonstrates the relationship between the two statistical functions $ttail(df, t_0)$ and invttail(df, p) for the t-distribution.

• Suppose the sample t-values are *negative*, rather than *positive*. For example, consider the sample t-values $t_0 = -2.646$, and -1.993; you already know that their two-tail p-values are, respectively, 0.01, and 0.05. There are (at least) two alternative ways of using the **ttail**(df, t_0) statistical function to compute the correct *two-tail* **p-values** for negative values of t_0 . To illustrate, enter the following **display** commands:

```
display 2*(1 - ttail(72, -2.646))
display 2*ttail(72, abs(-2.646))
display 2*(1 - ttail(72, -1.993))
display 2*ttail(72, abs(-1.993))
```

Note the use of the *Stata* absolute value operator **abs()**.

```
. display 2*(1 - ttail(72, -2.646))
.00999602

. display 2*ttail(72, abs(-2.646))
.00999602

. display 2*(1 - ttail(72, -1.993))
.05005189

. display 2*ttail(72, abs(-1.993))
.05005189
```

• Recommendation for computing two-tail p-values of sample t-statistics

Let t0 be any calculated sample value of a t-statistic that is distributed under the null hypothesis as a t[df] distribution, where t0 may be either positive or negative.

The following command will always display the correct *two-tail* p-value of *t0*:

```
display 2*ttail(df, abs(t0))
```

Examples of Two-Tail Hypothesis Tests

The Model:

DATA: auto1.dta (a Stata-format data file)

MODEL: price_i = $\beta_1 + \beta_2$ weight_i + u_i (i = 1, ..., N)

. regress price weight												
Source		SS	df	Ν	MS		Num	ber of	obs	=	74	
	-+-						F(1,	72)	=	29.42	
Model		184233937	1	18423	33937		Pro	b > F		=	0.0000	
Residual		450831459	72	626154	48.04		R-s	quared	l	=	0.2901	
	-+-						Adj	R-squ	ared	=	0.2802	
Total		635065396	73	869952	25.97		Roo	t MSE		=	2502.3	
-		Coef.									_	
weight	I	2.044063 -6.707353	.3768	341	5.424	0.000		1.2928	58	2	.795268	

$$N = 74$$
 $N - 2 = 74 - 2 = 72$

$$\hat{\beta}_2 = 2.0441$$
 $\hat{se}(\hat{\beta}_2) = 0.376834$

$$\alpha = 0.05$$
 \Rightarrow $\alpha/2 = 0.025$

$$t_{\alpha/2}[N-2] = t_{0.025}[72] = 1.993$$

<u>Test 1</u>: Test the proposition that weight_i is unrelated to price_i.

• Null and Alternative Hypotheses

 H_0 : $\beta_2 = 0$

H₁: $β_2 \ne 0$ a *two-sided* alternative hypothesis.

• The *feasible* test statistic is the t-statistic for $\hat{\beta}_2$:

$$t(\hat{\beta}_2) = \frac{\hat{\beta}_2 - \beta_2}{\sqrt{V\hat{a}r(\hat{\beta}_2)}} = \frac{\hat{\beta}_2 - \beta_2}{s\hat{e}(\hat{\beta}_2)} \sim t[N-2] = t[72].$$

• Compute the sample value of $t(\hat{\beta}_2)$ under the null hypothesis H_0 Set $\hat{\beta}_2 = 2.0441$, $\beta_2 = 0$ and $s\hat{e}(\hat{\beta}_2) = 0.376834$ in the formula for $t(\hat{\beta}_2)$:

$$t_0(\hat{\beta}_2) = \frac{\hat{\beta}_2 - \beta_2}{\hat{\text{se}}(\hat{\beta}_2)} = \frac{2.0441 - 0}{0.376834} = \frac{2.0441}{0.376834} = 5.424$$

• P-Value Decision Rule:

If *two-tail* p-value of $t_0 < \alpha$, *reject* H_0 at significance level α ; If *two-tail* p-value of $t_0 \ge \alpha$, *retain* H_0 at significance level α .

• Use *Stata* 7 function $ttail(df, t_0)$ to compute two-tail p-value of $t_0 = 5.424$, with df = 72. Enter either of the following *Stata* commands:

• Inference:

two-tail p-value of $t_0 = \underline{0.0000} << 0.01 \implies reject H_0$ at $\alpha = 0.01$

Reject H_0 : $\beta_2 = 0$ in favour of H_1 : $\beta_2 \neq 0$ at less than the 1 percent significance level.

<u>Test 2</u>: Test the proposition that a **1-pound increase in weight**_i is associated with an **increase in average price**_i of 1 dollar.

• Null and Alternative Hypotheses

 H_0 : $\beta_2 = 1$

H₁: $\beta_2 \neq 1$ a <u>two-sided</u> alternative hypothesis.

• The *feasible* test statistic is the t-statistic for $\hat{\beta}_2$:

$$t(\hat{\beta}_2) = \frac{\hat{\beta}_2 - \beta_2}{\sqrt{V\hat{a}r(\hat{\beta}_2)}} = \frac{\hat{\beta}_2 - \beta_2}{s\hat{e}(\hat{\beta}_2)} \sim t[N-2] = t[72].$$

• Compute the sample value of $t(\hat{\beta}_2)$ under the null hypothesis H_0 Set $\hat{\beta}_2 = 2.0441$, $\beta_2 = 1$ and $s\hat{e}(\hat{\beta}_2) = 0.376834$ in the formula for $t(\hat{\beta}_2)$:

$$t_0(\hat{\beta}_2) = \frac{\hat{\beta}_2 - \beta_2}{\hat{se}(\hat{\beta}_2)} = \frac{2.0441 - 1}{0.376834} = \frac{1.0441}{0.376834} = 2.771$$

• P-Value Decision Rule:

If *two-tail* p-value of $t_0 < \alpha$, *reject* H_0 at significance level α ; If *two-tail* p-value of $t_0 \ge \alpha$, *retain* H_0 at significance level α .

• Use *Stata* 7 function **ttail**(df, t_0) to compute two-tail p-value of $t_0 = 2.771$, with df = 72. Enter either of the following *Stata* commands:

• Inference:

two-tail p-value of $t_0 = \underline{0.0071} < 0.01$ \Rightarrow *reject* H_0 at $\alpha = 0.01$

Reject H_0 : $\beta_2 = 1$ in favour of H_1 : $\beta_2 \neq 1$ at the *1 percent* significance level.

<u>Test 3</u>: Test the proposition that a 1-pound increase in weight_i is associated with an increase in average price_i of 2 dollars.

• Null and Alternative Hypotheses

 H_0 : $\beta_2 = 2$

H₁: $\beta_2 \neq 2$ a <u>two-sided</u> alternative hypothesis.

• The *feasible* test statistic is the t-statistic for $\hat{\beta}_2$:

$$t(\hat{\beta}_2) = \frac{\hat{\beta}_2 - \beta_2}{\sqrt{V\hat{a}r(\hat{\beta}_2)}} = \frac{\hat{\beta}_2 - \beta_2}{s\hat{e}(\hat{\beta}_2)} \sim t[N-2] = t[72].$$

• Compute the sample value of $t(\hat{\beta}_2)$ under the null hypothesis H_0 Set $\hat{\beta}_2 = 2.0441$, $\beta_2 = 2$ and $s\hat{e}(\hat{\beta}_2) = 0.376834$ in the formula for $t(\hat{\beta}_2)$:

$$t_0(\hat{\beta}_2) = \frac{\hat{\beta}_2 - \beta_2}{\hat{se}(\hat{\beta}_2)} = \frac{2.0441 - 2}{0.376834} = \frac{0.0441}{0.376834} = \mathbf{0.1170}$$

• P-Value Decision Rule:

If *two-tail* p-value of $t_0 < \alpha$, *reject* H_0 at significance level α ; If *two-tail* p-value of $t_0 \ge \alpha$, *retain* H_0 at significance level α .

• Use *Stata* 7 function $ttail(df, t_0)$ to compute two-tail p-value of $t_0 = 0.1170$, with df = 72. Enter either of the following *Stata* commands:

• Inference:

two-tail p-value of $t_0 = \underline{0.9072} >> 0.10$ \Rightarrow retain H_0 at $\alpha = 0.10$

Retain H_0 : $\beta_2 = 2$ against H_1 : $\beta_2 \neq 2$ at the 10 percent significance level.

□ P-values for *one-tail* t-tests

Right-tail t-tests

• Null and Alternative Hypotheses

$$H_0$$
: $\beta_2 = b_2$

H₁: $\beta_2 > b_2$ a one-sided <u>right-sided</u> alternative hypothesis.

• Definition of right-tail p-value for t₀

For a <u>right-tail</u> t-test, the p-value for t_0 is the probability that the null distribution of the test statistic takes a value *greater than* the calculated sample value t_0 -- i.e.,

right-tail p-value for
$$t_0 = Pr(t > t_0)$$
.

Right-tail p-value of t_0 is the probability of obtaining a t value greater than the sample value t_0 if the null hypothesis H_0 : $\beta_2 = b_2$ is in fact true.

Right-tail p-values for sample t-statistic t₀

Case 1: $t_0 > 0$

$$Pr(t > t_0) = ttail(df, t_0)$$

right-tail p-value for
$$t_0 = Pr(t > t_0) = ttail(df, t_0)$$

Right-tail p-values for sample t-statistic t₀

Case 2: $t_0 < 0$

 $Pr(t > t_0) = ttail(df, t_0)$

right-tail p-value for $t_0 = Pr(t > t_0) = ttail(df, t_0)$

Left-tail t-tests

• Null and Alternative Hypotheses

$$H_0$$
: $\beta_2 = b_2$

H₁: $\beta_2 < b_2$ a one-sided <u>left-sided</u> alternative hypothesis.

• Definition of *left-tail* p-value for t₀

For a <u>left-tail</u> t-test, the p-value for t_0 is the probability that the null distribution of the test statistic takes a value *less than* the calculated *sample* value t_0 -- i.e.,

left-tail p-value for
$$t_0 = Pr(t < t_0)$$
.

Left-tail p-value of t_0 is the probability of obtaining a t value less than the sample value t_0 if the null hypothesis H_0 : $\beta_2 = b_2$ is in fact true.

Left-tail p-values for sample t-statistic t_0

Case 1: $t_0 < 0$

left-tail p-value for $t_0 = Pr(t < t_0)$

$$Pr(t < t_0) = 1 - Pr(t > t_0) = 1 - ttail(df, t_0)$$

left-tail p-value for $\mathbf{t}_0 = Pr(t < t_0) = 1 - Pr(t > t_0) = 1 - ttail(df, t_0)$

Left-tail p-values for sample t-statistic t_0

Case 2: $t_0 > 0$

left-tail p-value for $t_0 = Pr(t < t_0) = 1 - Pr(t > t_0)$

$$Pr(t < t_0) = 1 - Pr(t > t_0) = 1 - ttail(df, t_0)$$

left-tail **p-value for** $t_0 = Pr(t < t_0) = 1 - Pr(t > t_0) = 1 - ttail(df, t_0)$

□ Computing *one-tail* critical values and p-values for t-statistics in *Stata* 7

Example 2: One-tail t-tests -- right-tail t-tests

• The following are the *upper one-tail (right-tail)* critical values $t_{\alpha/2}$ [72] of the t[72] distribution, where α is the chosen significance level for the t-test.

```
\begin{array}{ll} \alpha = 0.01: & t_{\alpha}[72] = t_{0.01}[72] = 2.379; \\ \alpha = 0.05: & t_{\alpha}[72] = t_{0.05}[72] = 1.666; \\ \alpha = 0.10: & t_{\alpha}[72] = t_{0.10}[72] = 1.293. \end{array}
```

• The following commands use the **invttail**(df, p) statistical function with $p = \alpha$ to display these *upper one-tail* (*right-tail*) critical values of the t[72] distribution at the 1%, 5% and 10% significance levels, i.e., for $\alpha = 0.01$, 0.05 and 0.10:

```
display invttail (72, 0.01) display invttail (72, 0.05) display invttail (72, 0.10)
```

```
. display invttail(72, 0.01)
2.3792621
. display invttail(72, 0.05)
1.6662937
. display invttail(72, 0.10)
1.2934205
```

• Now use the **ttail**(df, t_0) statistical function to display the **right-tail p-values** of the sample t-values $t_0 = 2.379$, 1.666, and 1.293, which you already know equal the corresponding values of α , namely 0.01, 0.05, and 0.10, respectively:

```
display ttail(72, 2.379) display ttail(72, 1.666) display ttail(72, 1.293)
```

```
. display ttail(72, 2.379)
.01000658

. display ttail(72, 1.666)
.05002935

. display ttail(72, 1.293)
.10007231
```

Example 3: One-tail t-tests -- left-tail t-tests

• The following are the *lower one-tail (left-tail)* critical values $t_{\alpha/2}$ [72] of the t[72] distribution, where α is the chosen significance level for the one-tail t-test; they are taken from a published table of percentage points of the t distribution.

```
\alpha = 0.01: t_{\alpha}[72] = t_{0.01}[72] = -2.379; \alpha = 0.05: t_{\alpha}[72] = t_{0.05}[72] = -1.666; \alpha = 0.10: t_{\alpha}[72] = t_{0.10}[72] = -1.293.
```

• The following commands use the invttail(df, p) statistical function to display the *lower one-tail (left-tail)* critical values of the t[72] distribution:

```
display -1*invttail(72, 0.01)
display -1*invttail(72, 0.05)
display -1*invttail(72, 0.10)
```

```
. display -1*invttail(72, 0.01)
-2.3792621
. display -1*invttail(72, 0.05)
-1.6662937
. display -1*invttail(72, 0.10)
-1.2934205
```

• Now use the **ttail**(df, t_0) statistical function to display the *left-tail* **p-values** of the sample t-values $t_0 = -2.379$, -1.666, and -1.293, which you already know equal the corresponding values of α , namely 0.01, 0.05, and 0.10, respectively:

```
display 1 - ttail(72, -2.379)
display 1 - ttail(72, -1.666)
display 1 - ttail(72, -1.293)
```

```
. display 1 - ttail(72, -2.379)
.01000658

. display 1 - ttail(72, -1.666)
.05002935

. display 1 - ttail(72, -1.293)
.10007231
```

Examples of One-Tail Hypothesis Tests

The Model:

DATA: auto1.dta (a Stata-format data file)

MODEL: price_i = $\beta_1 + \beta_2$ weight_i + u_i (i = 1, ..., N)

. regress price weight												
Source	SS	df	MS		Number of obs	= 74						
+-					F(1, 72)	= 29.42						
Model	184233937	1 184	233937		Prob > F	= 0.0000						
Residual	450831459	72 6261	548.04		R-squared	= 0.2901						
+-					Adj R-squared	= 0.2802						
Total	635065396	73 8699	525.97		Root MSE	= 2502.3						
price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]						
weight	2.044063	.3768341	5.424	0.000	1.292858	2.795268						
_cons	-6.707353	1174.43	-0.006	0.995	-2347.89	2334.475						

$$N = 74$$
 $N - 2 = 74 - 2 = 72$

$$\hat{\beta}_2 = 2.0441$$
 $\hat{se}(\hat{\beta}_2) = 0.376834$

$$\alpha = 0.05$$
 \Rightarrow $\alpha/2 = 0.025$

$$t_{\alpha/2}[N-2] = t_{0.025}[72] = 1.993$$

$$t_{\alpha}[N-2] = t_{0.05}[72] = 1.666$$

<u>Test 4 – A Left-Tail Test</u>: Test the proposition that weight_i has a *negative* effect on price_i.

• Null and Alternative Hypotheses

 H_0 : $\beta_2 = 0$

 H_1 : $\beta_2 < 0$ a one-sided <u>left-sided</u> alternative hypothesis.

• The *feasible* test statistic is the t-statistic for $\hat{\beta}_2$:

$$t(\hat{\beta}_2) = \frac{\hat{\beta}_2 - \beta_2}{\sqrt{V\hat{a}r(\hat{\beta}_2)}} = \frac{\hat{\beta}_2 - \beta_2}{s\hat{e}(\hat{\beta}_2)} \sim t[N-2] = t[72].$$

• Compute the sample value of $t(\hat{\beta}_2)$ under the null hypothesis H_0 .

Set $\hat{\beta}_2 = 2.0441$, $\beta_2 = 0$ and $\hat{se}(\hat{\beta}_2) = 0.376834$ in the formula for $\hat{t}(\hat{\beta}_2)$:

$$t_0(\hat{\beta}_2) = \frac{\hat{\beta}_2 - \beta_2}{\hat{se}(\hat{\beta}_2)} = \frac{2.0441 - 0}{0.376834} = \frac{2.0441}{0.376834} = 5.424$$

• P-Value Decision Rule -- Left-Tail Test:

If *left-tail* p-value of $t_0 < \alpha$, *reject* H_0 at significance level α ; If *left-tail* p-value of $t_0 \ge \alpha$, *retain* H_0 at significance level α .

• Use *Stata* 7 function **ttail**(df, t_0) to compute the left-tail p-value of $t_0 = 5.424$, with df = 72. Enter the following *Stata* command:

• Inference:

left-tail p-value of $t_0 = \underline{0.9999} >> 0.10 \implies retain H_0$ at $\alpha = 0.10$

Retain H_0 : $\beta_2 = 0$ against H_1 : $\beta_2 < 0$ at **any significance level**.

<u>Test 5 – A Right-Tail Test</u>: Test the proposition that weight_i has a *positive* effect on price_i.

• Null and Alternative Hypotheses

 H_0 : $\beta_2 = 0$

 H_1 : $\beta_2 > 0$ a one-sided <u>right-sided</u> alternative hypothesis.

• The *feasible* test statistic is the t-statistic for $\hat{\beta}_2$:

$$t(\hat{\beta}_2) = \frac{\hat{\beta}_2 - \beta_2}{\sqrt{V\hat{a}r(\hat{\beta}_2)}} = \frac{\hat{\beta}_2 - \beta_2}{s\hat{e}(\hat{\beta}_2)} \sim t[N-2] = t[72].$$

• Compute the sample value of $t(\hat{\beta}_2)$ under the null hypothesis H_0 .

Set $\hat{\beta}_2 = 2.0441$, $\beta_2 = 0$ and $\hat{se}(\hat{\beta}_2) = 0.376834$ in the formula for $\hat{t}(\hat{\beta}_2)$:

$$t_0(\hat{\beta}_2) = \frac{\hat{\beta}_2 - \beta_2}{\hat{\text{se}}(\hat{\beta}_2)} = \frac{2.0441 - 0}{0.376834} = \frac{2.0441}{0.376834} = 5.424$$

• P-Value Decision Rule -- Right-Tail Test:

If *right-tail* p-value of $t_0 < \alpha$, *reject* H_0 at significance level α ; If *right-tail* p-value of $t_0 \ge \alpha$, *retain* H_0 at significance level α .

• Use *Stata 7* function **ttail**(df, t_0) to compute the *right-tail* p-value of $t_0 = 5.424$, with df = 72. Enter the following *Stata* command:

• Inference:

right-tail p-value of $t_0 = \underline{0.0000} \ll 0.01 \implies reject H_0$ at $\alpha = 0.01$

Reject H_0 : $\beta_2 = 0$ against H_1 : $\beta_2 > 0$ at the 1 percent significance level.

The sample evidence favours the alternative hypothesis H_1 : $\beta_2 > 0$.

<u>Test 6 – A Right-Tail Test</u>: Test the proposition that a **1-pound increase in** weight_i is associated with an increase in average price_i of *more than* 1 dollar.

• Null and Alternative Hypotheses

 H_0 : $\beta_2 = 1$

H₁: $\beta_2 > 1$ a one-sided <u>right-sided</u> alternative hypothesis.

• The *feasible* test statistic is the t-statistic for $\hat{\beta}_2$:

$$t(\hat{\beta}_2) = \frac{\hat{\beta}_2 - \beta_2}{\sqrt{V\hat{a}r(\hat{\beta}_2)}} = \frac{\hat{\beta}_2 - \beta_2}{s\hat{e}(\hat{\beta}_2)} \sim t[N-2] = t[72].$$

• Compute the sample value of $t(\hat{\beta}_2)$ under the null hypothesis H_0 . Set $\hat{\beta}_2 = 2.0441$, $\beta_2 = 1$ and $s\hat{e}(\hat{\beta}_2) = 0.376834$ in the formula for $t(\hat{\beta}_2)$:

$$t_0(\hat{\beta}_2) = \frac{\hat{\beta}_2 - \beta_2}{\hat{se}(\hat{\beta}_2)} = \frac{2.0441 - 1}{0.376834} = \frac{1.0441}{0.376834} = 2.771$$

• P-Value Decision Rule -- Right-Tail Test:

If *right-tail* p-value of $t_0 < \alpha$, *reject* H_0 at significance level α ; If *right-tail* p-value of $t_0 \ge \alpha$, *retain* H_0 at significance level α .

• Use Stata 7 function $ttail(df, t_0)$ to compute the right-tail p-value of $t_0 = 2.771$, with df = 72. Enter the following Stata command:

• Inference:

right-tail p-value of $t_0 = \underline{0.0036} < 0.01 \implies reject H_0$ at $\alpha = 0.01$

Reject H_0 : $\beta_2 = 1$ against H_1 : $\beta_2 > 1$ at the 1 percent significance level.

The sample evidence favours the alternative hypothesis H_1 : $\beta_2 > 1$.

P-values for two-tail F-tests

For an **F-test**, let the calculated sample value of the F-statistic for a given null hypothesis be F_0 .

Definition of p-value for F₀: Then the p-value associated with the sample value F_0 is the probability that the null distribution of the test statistic takes a value greater than the calculated sample value F_0 -- i.e.,

p-value for
$$F_0 = Pr(F > F_0)$$
.

Note that the F-distribution is defined only over non-negative values that are greater than or equal to zero.