Checklist for ECON 351* Mid-Term Exam, Fall Term 2003

<u>Coverage of exam</u> Part I: Sections 1-5 on Course Outline; NOTES 1-9.

Format of questions

Part 1: Definitions, Proofs, and Derivations

Part 2: Short Answer Questions (some requiring numerical answers)

Proofs and Derivations to Know for regression model $Y_i = \beta_1 + \beta_2 X_i + u_i$

- Derivation of OLS normal equations, the first-order conditions for the OLS coefficient estimators $\hat{\beta}_1$ and $\hat{\beta}_2$
- Proof of unbiasedness of $\hat{\beta}_2$, i.e., proof that $E(\hat{\beta}_2) = \beta_2$
- Derivation of OLS decomposition equation
- Derivations of the t-statistic and F-statistic for $\hat{\beta}_2$
- Basic concepts of hypothesis testing
- Derivation of two-sided $100(1-\alpha)$ percent confidence interval for β_2 or β_1

Important Things to Know

- Assumptions A1-A8 of the Classical Linear Regression Model.
- Definition and meaning of the following statistical properties of estimators:
 (1) unbiasedness; (2) minimum variance; (3) efficiency; and (4) consistency.
- Statistical properties of the OLS coefficient estimators $\hat{\beta}_1$ and $\hat{\beta}_2$.
- Computational properties of the OLS sample regression equation.
- How to compute and interpret OLS coefficient estimates $\hat{\beta}_1$ and $\hat{\beta}_2$.
- How to compute and interpret the coefficient of determination R^2 .
- The error normality assumption A9 and its implications for (1) the distribution of the Y_i values and (2) the sampling distributions of $\hat{\beta}_1$ and $\hat{\beta}_2$.
- How to construct and interpret *two-sided* confidence intervals for β_1 and β_2 .
- How to perform *two-tail* and *one-tail* hypothesis tests for β_1 and β_2 .